JP3549160B1 - LED degradation inspection method and device - Google Patents

LED degradation inspection method and device Download PDF

Info

Publication number
JP3549160B1
JP3549160B1 JP2003137113A JP2003137113A JP3549160B1 JP 3549160 B1 JP3549160 B1 JP 3549160B1 JP 2003137113 A JP2003137113 A JP 2003137113A JP 2003137113 A JP2003137113 A JP 2003137113A JP 3549160 B1 JP3549160 B1 JP 3549160B1
Authority
JP
Japan
Prior art keywords
led
voltage
current
constant current
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003137113A
Other languages
Japanese (ja)
Other versions
JP2004342809A (en
Inventor
冲 小方
芳男 湊
Original Assignee
株式会社テクノローグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノローグ filed Critical 株式会社テクノローグ
Priority to JP2003137113A priority Critical patent/JP3549160B1/en
Application granted granted Critical
Publication of JP3549160B1 publication Critical patent/JP3549160B1/en
Publication of JP2004342809A publication Critical patent/JP2004342809A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】
LEDの劣化を検査するに際し、測定精度のもっとも良い1μA以下の微小電流で検査するようにする。
また、微小電流を用いたときに生ずる浮遊容量による悪影響を可及的に少なくする。
更にLEDの並列・直列の抵抗成分として表れる二種の劣化を同時に測定する。
【解決手段】
LEDに1μA以下の微小電流を流して第一の電圧を測定し、次いで加熱用の電流を流してLEDを加熱した後、再び1μA以下の同じ値の電流を流して第二の電圧を測定し、両者の差によってLEDの劣化を測定する方法において、加熱用電流を遮断した直後に、LEDの浮遊容量に生じた電荷を放出させ、速やかに第一の電圧のレベルまでリセットした後、加熱されたLEDの温度が下らないうちに第二の電圧を測定することにより、LEDの並列・直列抵抗成分として表れる劣化を同時に且つ正確に検出できる。
【選択図】 図1
【Task】
When inspecting the deterioration of the LED, the inspection is performed with a very small current of 1 μA or less, which has the best measurement accuracy.
Further, the adverse effect caused by the stray capacitance generated when a minute current is used is reduced as much as possible.
Further, two kinds of deteriorations appearing as parallel and series resistance components of the LED are simultaneously measured.
[Solution]
A small current of 1 μA or less is passed through the LED to measure the first voltage, and then a current for heating is supplied to heat the LED. Then, a current of the same value of 1 μA or less is supplied again to measure the second voltage. In the method of measuring the deterioration of the LED based on the difference between the two, the charge generated in the stray capacitance of the LED is released immediately after the heating current is cut off, and the LED is quickly reset to the first voltage level and then heated. By measuring the second voltage before the temperature of the LED does not fall, deterioration that appears as a parallel / series resistance component of the LED can be simultaneously and accurately detected.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は発光ダイオード(LED)の検査方法及び装置に関するもので、特に、静電破壊(ESD)や、機械的衝撃によって生じたクラックによる劣化品を検査する方法及び装置に関する。
【0002】
【従来の技術】
LED製造工程における不良品を選別する一般的検査方法としては、PN接合の順方向に、ほぼ点灯に要する電流値に近い電流(ミリアンペア(mA)以上のオーダー)を流し、電圧降下の大小を測定することによって行っている。
しかしながら、この検査はPN接合の特性を確認するための検査であり、ESD等による、半導体PN接合と並列に存在する僅かな漏れ抵抗による不良や、PN接合と直列に存在する僅かな抵抗成分による不良は検出できない。
このうちPN接合と並列な漏れ抵抗の検査としては、LEDの逆方向電流(もれ電流)を検出して劣化の判断を行う方法があるが、この方法は素子に余分なストレスを与え、素子の状態を変化させてしまう恐れがあり、劣化を正確に検出することは難しい。
また、素子と並列に保護用ゼナーダイオード等が挿入されている場合は採用できない。
【0003】
この問題を解決する手段として、特開2002―156402号の方法及び装置が提案されている。
この方法及び装置は、LEDに第1のレベルの電流を流して第1の順方向電圧(VF)を測定した後、第1のレベルより大きな電流を印加して素子の温度を高めた後、再び第1のレベルの測定電流で第2の順方向電圧(VF)を測定し、第2の順方向電圧が第1の順方向電圧よりも高い時に不良とする、というものである。
【0004】
【発明が解決しようとする課題】
特開2002―156402号に示された方法及び装置に於いては、測定用の順方向電流として1〜10μAの電流を用いて測定を行っている。
しかし、本願発明者等の行った実験では、順方向と並列に存在する僅かな漏れ抵抗成分を検出するためには、後述の実験結果が示すように、1μA以下、望ましくは0.1μA程度の電流を用いることが好ましいことが判明している。
しかし、一方1μA以下の電流を使用すると、被測定LEDと並列に存在する容量の影響で応答速度が遅くなり、VFの確実な測定ができなくなるという問題が発生する。
【0005】
例えば、測定電流を0.1μAとして劣化の等価並列抵抗を20MΩとし、ダイオードの接合間容量を100pFとすると、加熱用の大電流を印加した後、再び0.1μAの測定電流に戻してVF値を測定しようとすると、VF値が測定電流0.1μAに対応したVF値に戻るまでの応答時間は10mS程度を要してしまう。
その結果、温度上昇を保っている時間内にその状態での順方向電圧を測定することが出来なくなり、何らかの対策を施さないと、測定電流を0.1μA程度まで下げて劣化を検出することは難しい。
【0006】
【課題を解決するための手段】
本願発明は1μA以下、望ましくは0.1μA近辺の測定電流を用いながら、応答速度も速め、素子の温度が維持されている間に二回目のVF値を測定することによって、等価並列抵抗を正確に測定する方法及び装置を提案するものである。
また、同時に直列抵抗成分も有効に検出しようとするものである。
【0007】
そのため、本発明においては、先ずVF1測定時、その測定電圧をサンプルホールドしておく。
さらに、被測定LEDの検出端と前記サンプルホールド回路出力端子との間に半導体スイッチ回路を設けておく。
そして加熱用電流印加終了と同時に、前記スイッチをキャパシタのチャージを放電させるに必要な時間のみ閉じ、加熱用電流による高い順方向電圧(例えば4V)が速やかにまずVF1に戻るようにする。
しかる後、前記スイッチを開放し、温度上昇後のVF2への変化を捉え、VF1との差分を検出して劣化の判定を行うようにしたものである。
さらに、VFをサンプルホールドした値を基準に、変化しているVFとの差分を差動検出回路で検出しするように構成し、この差分を連続的に捉えられるようにした。
【0008】
直列抵抗分の検出に当っては、通常の点灯電流より大きな加熱用電流を印加中に順方向電圧を測定すると、直列抵抗分が正常のものでは、温度上昇と共に順方向電圧が低下するのに対し、直列抵抗分が異常に大きいものはむしろ上昇していく傾向があることを見出した。
そこで、この変化を捉えるようにして、ESD劣化による並列抵抗成分検出と平行して、直列抵抗成分の異常も検出できるようにしたものである。
【0009】
【実施例】
以下本発明を図面に基づいて説明する。
図4は被測定LEDの劣化成分を含む等価回路を示す。
抵抗RpはESD等による劣化により生ずるPN接合と並列に存在する漏れ抵抗分、Rsはクラックやボンディング不良により生ずる直列に存在する抵抗分を示す。
CsはLEDに並列に存在するストレーキャパシタンス(浮遊容量分)を示す。
【0010】
図5は図4に示すLEDに印加した電流Iと電圧VFとの関係を模擬的に示したものである。正常なダイオードは電圧VFが印加電流Iの対数にほぼ比例するのに対し、Rpに関しては電流が例えば1μA以下の微小な領域においてその影響が表れはじめ、特に0.1μA以下で顕著に現れるようになる。またRsに関しては電流Iが大きな領域において顕著に表れることを示す。
【0011】
図1は本発明の検出装置の基本構成を示す図である。
図1において、LEDは被測定LED、RpはLEDの内部で並列に存在すると見なせる漏れ抵抗分、CsはLEDに並列に存在するストレーキャパシタンス(浮遊容量分)、11は0.1μA定電流源、12はLEDに温度上昇を与える第2の電流源(例えば100mA以上)、13は高入力抵抗バッファーアンプ、スイッチ14とキャパシター15およびOPアンプ16とで構成される回路は、LEDの温度上昇前の初期VF値(=VF)をサンプルホールドするための第一のサンプルホールド回路である。17はバッファーアンプ13の入力端子と第一のサンプルホールド回路出力間を制御信号に従って低インピーダンスで短絡する光結合FETのスイッチ素子である。18は信号切換えスイッチ、19は差動増幅器で、二つの入力端子への入力の差動分のみを検出・増幅する回路、スイッチ20とキャパシター21およびバッファーアンプ22で構成される回路は第2のサンプルホールド回路である。24は制御信号発生部で図1の例では4種の制御信号A,B,C,Dを発生する。
【0012】
図2は、以上の構成要素から構成される本装置の動作を示すタイミング図である。
図2に於いて縦軸を電圧(又は電流),横軸を時間にとり、第一の定電流及び第二の電流による電圧の変化と制御信号との関係を表している。制御信号A,B,C,Dの波形において、立ち上がり部をON,立ち下がり部をOFFのタイミングとして表している。
LEDを本測定装置に接続したら、定電流源11より常時LEDにVF測定電流0.1μAを印加しておく。この0.1μA印加中、制御信号Aによりスイッチ14をONしてLEDの温度上昇前の0.1μAにおけるVF値VF1をサンプルホールドする。つぎに、制御信号Bの指示により、スイッチ23を、第二の電流源12の出力(例えば100mA)がLEDへ印加されるよう切換える。加熱に必要な一定時間経過後、制御信号Bの指示により、この100mAの印加をOFFにすると同時に、制御信号CによりFETスイッチ素子17をONする。
【0013】
LEDに100mA印加中はVF値は例えば約4V位で、LEDと並列に存在するキャパシター成分Csにこの高いVF値がチャージされている。従って印加電流Iを100mAから0.1μAに切換えたとき、このFETスイッチ素子17がないと、回路のインピーダンスが高いため、0.1μA相当のVF値に戻るまで大きな放電時間を要してしまう。例えばRpが20MΩ、キャパシタンスCsが100pFとすると、時定数は2mSとなり、VFに戻るまで10mS程度を要することになる。
【0014】
ところで、温度上昇用電流印加による接合部の温度上昇は、その電流を取除いた直後から元の温度に戻り始めるが、その速度は前記応答時間に比して、無視できない短時間である。
そこで、スイッチ素子17をONにして、Csの電荷を放電させ、速やかにVF値をまず加熱用電流印加前のVF1に等しくするようにする。
このスイッチ素子17をONする時間はディスチャージに必要な時間だけでよく、例えば数十μSとする。加熱用の電流印加により、LEDの接合部は温度上昇し、直列抵抗Rsが低ければ、温度上昇に応じてVF値がやや低下する。その値は温度上昇が一定であれば、正常なLEDでは一定の値を示し半導体の温度係数の一つである。測定電流Iが0.1μAに戻った場合も、VF2はVF1に対し温度上昇分だけ一定の低下した値を示す。図2でVFはスイッチ素子17による放電により一旦VF1と等しい値に戻り、放電が終了した後も、引き続き新しいVF値(=VF2)に向かって若干の応答特性をもって変化する。時間の経過と共に、温度が元に戻っていくことにより、VF2値もVF1と等しい値に戻っていく。△VF1=VF2−VF1は図2の曲線部に示すような経過をとる。
【0015】
差動増幅器19の一方の入力端子に予めサンプルホールドしておいたVF1(=Vh)を加え、もう一方の端子にVF2測定値を加えて差動検出することにより、この差動増幅器出力電圧Voより△VF値(VF2−VF1)を検出することが出来る。このとき△VFの検出が必要なのはスイッチ素子17の“ON”が終了した後なので、加熱電流印加中の大きなVF値が、差動増幅器に印加されないように、制御信号Bにより、スイッチ18を第一のサンプルホールド回路側に切換えておき、差動増幅器の両端子とも入力をVF1として、△VFがゼロになるようにしている。
第二のサンプルホールド回路は、変化している△VF値の一定期間後の値を、制御信号Dによりサンプルホールドすることにより、ほぼ最大値に近い値をVohとしてA―D変換用の一定信号として出力する。
【0016】
印加電流と、LEDの品種が同じで、温度係数も同じであれば、LEDが正常品のときこの△VF値はほぼ同じ特性を示すことはすでに述べた。しかし、ESD等により劣化を生じると、接合部と並列に等価的に漏れ抵抗分Rpが存在した状態となるが、測定電流I×Rpの値がPN接合の電圧降下と同じレベル以下になると、測定電流の多くはRpの側に流れるようになり、Rpの影響が顕著に現れるようになる。すなわち、加熱や大電流印加による僅かなRpの変化が△VFとして現れ、僅かな劣化でも検出できるようになる。測定電流が一桁増えると、結果として検出できるRpの影響は一桁減少する。このため測定電流を1μA以下、望ましくは0.1μAのレベルで測定を行うことは、より僅かな劣化を検出するために有効な手段となる。
【0017】
つぎに直列抵抗成分Rsの検出法について説明する。
前述した△VF1検出法により、Rsが大きければ温度上昇が大きくなるので、△VF1が大きくなり、Rsが正常品より大きいことをある程度判別できる。しかし、この方法は直接的なRsの検出方法とは言えない。加熱用大電流印加時、Rsが小さければ温度上昇によりVF値は低下するが、Rsが大きくなるに従いI×Rsの成分の比率が増すと、むしろRsの温度上昇による増大により、トータルのVF値は逆に加熱と共に増大することを見出した。この場合の加熱電流は、対象素子の最大許容電流値に近い電流を印加するのが効果的である。
【0018】
図3はこの状況を示す図で、図2の一部を拡大して示したものである。図3において線aは加熱電流印加時においてRsが正常値のものが示すVFを表す線で、Rsが増加するに従って線aは矢印のように線bの方向に移動する。加熱電流印加直後のVF値VF10をまず測定し、つぎに加熱電流を取除く前の加熱状態におけるVF値VF20を測定する。ここで、まずVF10が正常品と比較し異常に大きければ、不具合と判定する。また△VF2=VF20−VF10を測定し正の大きな値を示せば不具合と判定する。△VF2の測定方法に関しては、高速A―D変換機でVF10とVF20を計測し、その差を求める方法がある。または、VF10をサンプルホールドしVF20からVF10のサンプルホールド値を差し引くことにより求める方法もある。
このようにして、ESD劣化による並列漏れ抵抗分を検出する一連のシーケンスの中で、直列抵抗過大の不具合も検出できる。
【発明の効果】
本発明の方法によれば、従来測定が困難であった通常の点灯試験では検出できないLEDの半劣化状態を正確、簡単に検知できるので、LEDの検査精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の装置の一例を示す系統図
【図2】図1の装置の動作を説明する図
【図3】図1の装置の動作を説明する図
【図4】LEDの仮想抵抗,浮遊容量を表す概念図
【図5】LEDの電流一電圧特性を示す図
【符号の説明】
LED・・・・・・・発光ダイオード
VF・・・・・・・第1の順方向電圧
VF・・・・・・・第2の順方向電圧
Rp・・・・・・・・並列抵抗分
Rs・・・・・・・・直列
Cs・・・・・・・・ストレーキャパシタンス(浮遊容量分)
12・・・・・・・・定電流源
13・・・・・・・・高入力抵抗バッファーアンプ
14・・・・・・・・スイッチ
15・・・・・・・・キャパシター
16・・・・・・・・OPアンプ
17・・・・・・・・スイッチ素子
18・・・・・・・・スイッチ
19・・・・・・・・差動増幅器
20・・・・・・・・スイッチ
21・・・・・・・・キャパシター
22・・・・・・・・バッファーアンプ
23・・・・・・・・スイッチ
24・・・・・・・・制御信号発生部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for inspecting a light emitting diode (LED), and more particularly, to a method and an apparatus for inspecting an electrostatic discharge (ESD) or a deteriorated product due to a crack caused by a mechanical shock.
[0002]
[Prior art]
As a general inspection method for selecting defective products in the LED manufacturing process, a current close to a current value required for lighting (in the order of milliamperes (mA) or more) flows in the forward direction of the PN junction, and a magnitude of a voltage drop is measured. By doing so.
However, this inspection is an inspection for confirming the characteristics of the PN junction, and is a defect due to a slight leakage resistance existing in parallel with the semiconductor PN junction due to ESD or the like or a slight resistance component existing in series with the PN junction. Failure cannot be detected.
Among them, as a test for the leakage resistance in parallel with the PN junction, there is a method of detecting a reverse current (leakage current) of the LED and judging deterioration. However, this method gives an extra stress to the element, May be changed, and it is difficult to accurately detect deterioration.
Further, when a protection zener diode or the like is inserted in parallel with the element, it cannot be adopted.
[0003]
As a means for solving this problem, a method and apparatus disclosed in JP-A-2002-156402 have been proposed.
The method and apparatus include measuring a first forward voltage (VF 1 ) by flowing a first level of current to an LED, and then increasing a temperature of the element by applying a current higher than the first level. The second forward voltage (VF 2 ) is measured again with the first level of the measured current, and a failure is determined when the second forward voltage is higher than the first forward voltage.
[0004]
[Problems to be solved by the invention]
In the method and apparatus disclosed in JP-A-2002-156402, measurement is performed using a current of 1 to 10 μA as a forward current for measurement.
However, in experiments conducted by the inventors of the present application, in order to detect a slight leakage resistance component existing in parallel with the forward direction, as shown in the experimental results described below, 1 μA or less, preferably about 0.1 μA It has been found preferable to use current.
On the other hand, if a current of 1 μA or less is used, the response speed becomes slow due to the effect of the capacitance existing in parallel with the LED to be measured, which causes a problem that the VF 2 cannot be reliably measured.
[0005]
For example, assuming that the measured current is 0.1 μA, the equivalent parallel resistance of deterioration is 20 MΩ, and the capacitance between junctions of the diode is 100 pF, after applying a large current for heating, the current is returned to the measured current of 0.1 μA again and the VF value is increased. , The response time required for the VF value to return to the VF value corresponding to the measurement current of 0.1 μA requires about 10 ms.
As a result, it becomes impossible to measure the forward voltage in that state within the time during which the temperature rise is maintained, and if no countermeasures are taken, it is impossible to detect the deterioration by reducing the measured current to about 0.1 μA. difficult.
[0006]
[Means for Solving the Problems]
The present invention increases the response speed while using a measurement current of 1 μA or less, preferably around 0.1 μA, and measures the second time VF value while the temperature of the element is maintained, so that the equivalent parallel resistance can be accurately determined. The present invention proposes a method and an apparatus for performing measurement.
At the same time, the series resistance component is also to be effectively detected.
[0007]
For this reason, in the present invention, first, at the time of measuring VF1, the measured voltage is sampled and held.
Further, a semiconductor switch circuit is provided between the detection end of the LED to be measured and the output terminal of the sample hold circuit.
At the same time as the application of the heating current, the switch is closed only for a time necessary for discharging the charge of the capacitor, so that a high forward voltage (for example, 4 V) due to the heating current quickly returns to VF1 first.
Thereafter, the switch is opened, the change to VF2 after the temperature rise is detected, and the difference from VF1 is detected to determine the deterioration.
Furthermore, based on the value obtained by sampling and holding the VF 1, the difference between VF 2 is changing configured to detect a differential detection circuit, and to be captured this difference continuously.
[0008]
In detecting the series resistance, if the forward voltage is measured while a heating current larger than the normal lighting current is applied, the forward voltage decreases with increasing temperature if the series resistance is normal. On the other hand, it has been found that those having an abnormally large series resistance tend to rise.
Therefore, by detecting this change, an abnormality in the series resistance component can be detected in parallel with the detection of the parallel resistance component due to the ESD deterioration.
[0009]
【Example】
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 4 shows an equivalent circuit including a deteriorated component of the LED to be measured.
The resistance Rp indicates a leak resistance existing in parallel with the PN junction caused by deterioration due to ESD or the like, and Rs indicates a resistance existing in series caused by cracks or bonding failure.
Cs indicates a stray capacitance (a stray capacitance) existing in parallel with the LED.
[0010]
FIG. 5 schematically shows the relationship between the current I applied to the LED shown in FIG. 4 and the voltage VF. In a normal diode, the voltage VF is almost proportional to the logarithm of the applied current I, whereas the effect of Rp begins to appear in a minute region where the current is, for example, 1 μA or less, and particularly becomes remarkable at 0.1 μA or less. Become. In addition, as for Rs, it shows that the current I appears remarkably in a large region.
[0011]
FIG. 1 is a diagram showing a basic configuration of the detection device of the present invention.
In FIG. 1, the LED is the LED to be measured, Rp is the leakage resistance that can be considered to exist in parallel inside the LED, Cs is the stray capacitance (the stray capacitance) existing in parallel with the LED, 11 is a 0.1 μA constant current source, Reference numeral 12 denotes a second current source (for example, 100 mA or more) for increasing the temperature of the LED, 13 denotes a high input resistance buffer amplifier, and a circuit composed of a switch 14, a capacitor 15, and an OP amplifier 16 This is a first sample and hold circuit for sampling and holding an initial VF value (= VF 1 ). Reference numeral 17 denotes a switch element of an optically coupled FET for short-circuiting between the input terminal of the buffer amplifier 13 and the output of the first sample and hold circuit with low impedance according to a control signal. 18 is a signal changeover switch, 19 is a differential amplifier, a circuit for detecting and amplifying only the differential of the input to the two input terminals, and a circuit comprising a switch 20, a capacitor 21, and a buffer amplifier 22 is a second circuit. This is a sample and hold circuit. Reference numeral 24 denotes a control signal generator which generates four types of control signals A, B, C and D in the example of FIG.
[0012]
FIG. 2 is a timing chart showing the operation of the present device composed of the above components.
In FIG. 2, the vertical axis represents voltage (or current) and the horizontal axis represents time, and represents a relationship between a change in voltage due to the first constant current and the second current and a control signal. In the waveforms of the control signals A, B, C, and D, the rising portion is represented as ON and the falling portion is represented as OFF timing.
When the LED is connected to the present measuring apparatus, a constant current source 11 constantly applies a VF measurement current of 0.1 μA to the LED. During the application of 0.1 μA, the switch 14 is turned on by the control signal A to sample and hold the VF value VF1 at 0.1 μA before the LED temperature rises. Next, according to the instruction of the control signal B, the switch 23 is switched so that the output (for example, 100 mA) of the second current source 12 is applied to the LED. After the elapse of a predetermined time required for heating, the application of 100 mA is turned off by the instruction of the control signal B, and the FET switch element 17 is turned on by the control signal C.
[0013]
During application of 100 mA to the LED, the VF value is, for example, about 4 V, and the capacitor component Cs existing in parallel with the LED is charged with the high VF value. Therefore, when the applied current I is switched from 100 mA to 0.1 μA, without the FET switch element 17, a large discharge time is required until the VF value returns to 0.1 μA because the impedance of the circuit is high. For example Rp is 20 M.OMEGA, the capacitance Cs is to 100 pF, the time constant it takes about 10mS to return next 2 mS, the VF 2.
[0014]
By the way, the temperature rise of the junction due to the application of the current for temperature rise starts to return to the original temperature immediately after removing the current, but the speed is a short time that cannot be ignored compared to the response time.
Therefore, the switch element 17 is turned on to discharge the electric charge of Cs, so that the VF value is immediately made equal to VF1 before the application of the heating current.
The time for turning on the switch element 17 may be only the time required for discharging, and is set to, for example, several tens of μS. By the application of the heating current, the junction of the LEDs rises in temperature, and if the series resistance Rs is low, the VF value decreases slightly in accordance with the rise in temperature. If the temperature rise is constant, the value shows a constant value in a normal LED and is one of the semiconductor temperature coefficients. Even when the measured current I returns to 0.1 μA, VF2 shows a value that is constant and lower than VF1 by the temperature rise. In FIG. 2, VF once returns to a value equal to VF1 due to the discharge by the switch element 17, and after the discharge ends, continuously changes with a slight response characteristic toward a new VF value (= VF2). Over time, the temperature returns to the original value, so that the VF2 value returns to a value equal to VF1. ΔVF1 = VF2−VF1 takes a course as shown by a curved portion in FIG.
[0015]
VF1 (= Vh), which has been sampled and held in advance, is applied to one input terminal of the differential amplifier 19, and the VF2 measurement value is applied to the other terminal to detect the difference, thereby obtaining the differential amplifier output voltage Vo. Thus, the ΔVF value (VF2−VF1) can be detected. At this time, the detection of ΔVF is necessary after the “ON” of the switch element 17 is completed. Therefore, the switch 18 is controlled by the control signal B so that a large VF value during application of the heating current is not applied to the differential amplifier. Switching to one sample-and-hold circuit side is performed so that the input to both terminals of the differential amplifier is VF1 so that △ VF becomes zero.
The second sample-and-hold circuit samples and holds the value of the changing ΔVF value after a certain period of time by using the control signal D, and sets a value close to the maximum value to Voh, thereby obtaining a constant signal for AD conversion. Is output as
[0016]
As described above, when the applied current is the same as the type of LED and the temperature coefficient is the same, the ΔVF value shows almost the same characteristics when the LED is a normal product. However, when deterioration occurs due to ESD or the like, a state where the leakage resistance Rp is equivalently present in parallel with the junction is obtained. However, when the value of the measured current I × Rp falls below the same level as the voltage drop of the PN junction, Most of the measured current flows to the side of Rp, and the influence of Rp becomes remarkable. That is, a slight change in Rp due to heating or application of a large current appears as ΔVF, and even a slight deterioration can be detected. As the measured current increases by an order of magnitude, the effect of the resulting detectable Rp decreases by an order of magnitude. For this reason, performing measurement at a measurement current of 1 μA or less, preferably 0.1 μA, is an effective means for detecting a slight deterioration.
[0017]
Next, a method of detecting the series resistance component Rs will be described.
According to the above-described ΔVF1 detection method, the temperature rise increases as Rs increases, so that ΔVF1 increases and it can be determined to some extent that Rs is larger than a normal product. However, this method cannot be said to be a direct Rs detection method. When a large current for heating is applied, if Rs is small, the VF value decreases with an increase in temperature. However, if the ratio of the I × Rs component increases as Rs increases, the total VF value increases due to the increase in Rs temperature. Conversely increased with heating. In this case, it is effective to apply a heating current close to the maximum allowable current value of the target element.
[0018]
FIG. 3 is a diagram showing this situation, and is an enlarged view of a part of FIG. In FIG. 3, a line a is a line representing VF indicating that the Rs has a normal value when the heating current is applied. First, the VF value VF10 immediately after the application of the heating current is measured, and then the VF value VF20 in the heating state before removing the heating current is measured. Here, first, if the VF 10 is abnormally large as compared with a normal product, it is determined to be defective. Also, if ΔVF2 = VF20−VF10 is measured and a large positive value is indicated, it is determined that there is a problem. Regarding the method of measuring ΔVF2, there is a method of measuring VF10 and VF20 with a high-speed A / D converter and calculating the difference between them. Alternatively, there is a method of sampling and holding VF10 and subtracting the sample and hold value of VF10 from VF20.
In this way, in a series of sequences for detecting the parallel leakage resistance due to the ESD deterioration, a problem of excessive series resistance can be detected.
【The invention's effect】
According to the method of the present invention, it is possible to accurately and easily detect a semi-degraded state of an LED that cannot be detected by a normal lighting test, which has been difficult to measure in the past, so that the inspection accuracy of the LED can be improved.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of the device of the present invention. FIG. 2 is a diagram illustrating the operation of the device of FIG. 1. FIG. 3 is a diagram illustrating the operation of the device of FIG. 1. FIG. FIG. 5 is a conceptual diagram showing stray capacitance. FIG. 5 is a diagram showing current-voltage characteristics of an LED.
LED: light emitting diode VF 1: first forward voltage VF 2: second forward voltage Rp: parallel Resistance Rs ・ ・ ・ ・ ・ ・ ・ ・ ・ Series Cs ・ ・ ・ ・ ・ ・ ・ ・ ・ Stray capacitance (stray capacitance)
12 ... constant current source 13 ... high input resistance buffer amplifier 14 ... switch 15 ... capacitor 16 ... ·································· Switch element 18 ··········································· Switch 21... Capacitor 22... Buffer amplifier 23... Switch 24... Control signal generator

Claims (3)

LEDに第1の定電流を流して第1の電圧を測定し、次いで加熱用の第2の電流を流してLEDを加熱した後、再び第1の定電流と同じ量の定電流を流して第2の電圧を測定し、第1の電圧と第2の電圧の差によってLEDの劣化を検査する方法において、
第1の定電流を1μA以下として、第1の電圧を測定し、
第2の電流を遮断すると同時にLEDの浮遊容量に生じた電荷をスイッチ素子によって放電させ、
第2の電流によって加熱されたLEDの温度が実質的に低下しない状態で第1の定電流と同量の定電流を流し、第2の電圧を測定するようにし、
第1の電圧と第2の電圧の差分によってLEDの劣化によって生じた並列抵抗成分を検出するLEDの劣化検査方法。
A first constant current is applied to the LED to measure a first voltage, then a second current for heating is applied to heat the LED, and then a constant current of the same amount as the first constant current is applied again. In a method of measuring a second voltage and checking for LED degradation by a difference between the first voltage and the second voltage,
The first constant current is set to 1 μA or less, and the first voltage is measured.
At the same time as blocking the second current, the charge generated in the stray capacitance of the LED is discharged by the switch element,
Supplying a constant current equal to the first constant current in a state where the temperature of the LED heated by the second current does not substantially decrease, and measuring the second voltage;
An LED deterioration inspection method for detecting a parallel resistance component caused by LED deterioration based on a difference between a first voltage and a second voltage.
LEDに第1の定電流を流して第1の電圧を測定し、次いで加熱用の第2の電流を流してLEDを加熱した後、再び第1の定電流と同じ量の定電流を流して第2の電圧を測定し、第1の電圧と第2の電圧の差によってLEDの並列抵抗成分の劣化を検査する方法において、
加熱用の第2の電流印加直後の、LEDが加熱される直前の電圧を測定し、
次いで加熱が終了し、第2の電流を遮断する直前の電圧を測定し、
両電圧の差分によって、直列抵抗成分の劣化を検出するとともに、
第2の電流を遮断すると同時にLEDの浮遊容量に生じた電荷をスイッチ素子によって放電させ、
第2の電流によって加熱されたLEDの温度が実質的に低下しない状態で第1の定電流と同量の定電流を流し、第2の電圧を測定するようにし、
第1の電圧と第2の電圧の差分によって並列抵抗成分の劣化を検出し、
LEDの劣化によって生じた並列抵抗成分と直列抵抗成分を同時に検出するようにしたLEDの劣化検査方法。
A first constant current is applied to the LED to measure a first voltage, then a second current for heating is applied to heat the LED, and then a constant current of the same amount as the first constant current is applied again. In a method of measuring a second voltage and checking for a deterioration of a parallel resistance component of an LED by a difference between the first voltage and the second voltage,
Measure the voltage immediately after the application of the second current for heating and immediately before the LED is heated,
Then, the heating is completed, and the voltage immediately before the interruption of the second current is measured,
Based on the difference between the two voltages, the deterioration of the series resistance component is detected ,
At the same time as blocking the second current, the charge generated in the stray capacitance of the LED is discharged by the switch element,
Supplying a constant current equal to the first constant current in a state where the temperature of the LED heated by the second current does not substantially decrease, and measuring the second voltage;
Deterioration of the parallel resistance component is detected based on a difference between the first voltage and the second voltage,
An LED deterioration inspection method for simultaneously detecting a parallel resistance component and a series resistance component caused by LED deterioration.
LEDに1μA以下の第1の定電流を印加する定電流電源、
第1の定電流をLEDに印加したときの順方向電圧を第1の電圧としてサンプルホールドするサンプルホールド回路、
LEDの出力端とサンプルホールド回路の出力端の間に設けられたスイッチ素子、
LEDを加熱するための第2の定電流電源からなり、
第2の定電流電源を遮断すると、前記スイッチ素子がONになり、LED浮遊容量によって生じた電荷を放電するようにし、
そのときの順方向電圧を第2の電圧とし、前記第1の電圧との差分を差動増幅器で検出し、
LEDの並列抵抗成分を検出するようにしたLEDの劣化検出装置。
A constant current power supply for applying a first constant current of 1 μA or less to the LED;
A sample and hold circuit that samples and holds a forward voltage when a first constant current is applied to the LED as a first voltage;
A switch element provided between the output terminal of the LED and the output terminal of the sample and hold circuit,
A second constant current power supply for heating the LED,
When the second constant current power supply is cut off, the switch element is turned on, and the charge generated by the LED stray capacitance is discharged.
The forward voltage at that time is defined as a second voltage, and a difference from the first voltage is detected by a differential amplifier.
An LED deterioration detecting device for detecting a parallel resistance component of an LED.
JP2003137113A 2003-05-15 2003-05-15 LED degradation inspection method and device Expired - Fee Related JP3549160B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137113A JP3549160B1 (en) 2003-05-15 2003-05-15 LED degradation inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137113A JP3549160B1 (en) 2003-05-15 2003-05-15 LED degradation inspection method and device

Publications (2)

Publication Number Publication Date
JP3549160B1 true JP3549160B1 (en) 2004-08-04
JP2004342809A JP2004342809A (en) 2004-12-02

Family

ID=32906108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137113A Expired - Fee Related JP3549160B1 (en) 2003-05-15 2003-05-15 LED degradation inspection method and device

Country Status (1)

Country Link
JP (1) JP3549160B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111035A (en) 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Light emitting diode drive device, illumination device using light emitting diode drive device, in-vehicle cabin illumination device, and vehicle illumination device
RU2541098C1 (en) * 2013-10-04 2015-02-10 Наталия Михайловна Шмидт METHOD OF SCREENING HIGH-POWER InGaN/GaN LIGHT-EMITTING DIODES
CN112097937B (en) * 2020-09-07 2021-06-04 成都海光微电子技术有限公司 Temperature detection circuit and chip

Also Published As

Publication number Publication date
JP2004342809A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
EP1046923B1 (en) Apparatus for inspecting electric component for inverter circuit
EP2523008A1 (en) Method of characterising an LED device
JP2016213955A5 (en)
TWI451101B (en) Inspection system and inspection method
TW201602595A (en) Systems and methods for an open wire scan
JP3108455B2 (en) How to measure breakdown voltage
CN103713253A (en) System and method for online detection of illumination, chrominance and junction temperature decay characteristics of LED
JP2007333465A (en) Inspection apparatus
JP4566502B2 (en) Solar cell module inspection method
JP3549160B1 (en) LED degradation inspection method and device
CN103954629A (en) Quality detection device and method of encapsulation LED solder joint
JP2004170311A (en) Method for inspecting degradation of light emitting diode
JPH06130101A (en) Measuring device for insulation resistance of capacitor
JP4777828B2 (en) Measuring device and inspection device
JP2015010880A (en) Insulation inspection device
JP4259692B2 (en) Circuit board inspection equipment
JPH02103479A (en) Method for testing withstand voltage against electrostatic discharge
JP3673589B2 (en) Method and apparatus for measuring capacitor leakage current
WO2016188786A1 (en) Method for testing the die-attach of a photovoltaic cell assembly
CN107024273B (en) Light sensing circuit and defect repairing method thereof
JP3577912B2 (en) Electronic circuit inspection equipment
JP2006189340A (en) Inspection system and inspection method for semiconductor device
JP3932793B2 (en) Capacitor inspection method
US11788900B2 (en) Method for determining the temperature of a power electronics unit, device, and power electronics unit
JP2005003606A (en) Inspection device of display panel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees