JP3548002B2 - Demodulation method and demodulation device - Google Patents

Demodulation method and demodulation device Download PDF

Info

Publication number
JP3548002B2
JP3548002B2 JP15889698A JP15889698A JP3548002B2 JP 3548002 B2 JP3548002 B2 JP 3548002B2 JP 15889698 A JP15889698 A JP 15889698A JP 15889698 A JP15889698 A JP 15889698A JP 3548002 B2 JP3548002 B2 JP 3548002B2
Authority
JP
Japan
Prior art keywords
modulation
data
modulation scheme
phase component
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15889698A
Other languages
Japanese (ja)
Other versions
JPH11355374A (en
Inventor
智則 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP15889698A priority Critical patent/JP3548002B2/en
Publication of JPH11355374A publication Critical patent/JPH11355374A/en
Application granted granted Critical
Publication of JP3548002B2 publication Critical patent/JP3548002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、復調方法及び変調方法並びに復調装置及び変復調装置の改良に関する。
【0002】
【従来の技術】
複数の変調方式により変調された信号を受信できる受信装置としては、例えば、特開平7−123017号公報が知られている。これは、送信側から同一周波数を用いて複数の変調方式により時分割に送信される送信信号に対して、受信側では複数の変調方式に対応した複数の復調手段と、どの復調手段が正常に動作しているかにより受信信号の復調方式を検知し、この検知した復調方式に対応した復調手段の出力を択一的に導出する復調出力手段とを備え、複数の変調方式により送信される送信信号を復調できるようになっている。
【0003】
また、複数の変調方式を切換えることができるものとしては、例えば、特開平5−130082号公報が知られている。これは、移動端末が基地局等の制御局に希望の変調方式を通知する時分割多重の可変調通信方式において、伝送路の状態がよい場合、例えば、基地局と端末が近い場合には多値の変調方式を用いて占有時間を短くし、伝送路の状態が悪い場合、例えば、基地局と端末が離れている場合には多値数を減らし占有時間を長くすることで、実質的情報伝送速度を一定に保つという制御を行っている。
【0004】
【発明が解決しようとする課題】
しかしながら、特開平7−123017号公報のものは、受信側に複数の復調手段を設け、どの復調手段が正常に動作しているかを検知し、その結果により使用する復調手段を切換えて受信データを出力する構成になっているので、複数の復調方式に対する検知手段と切換え手段が必要となり、構成が複雑化する問題があった。
【0005】
また、特開平5−130082号公報のものは、移動端末が基地局等の制御局に希望の変調方式を通知する必要があり、変調方式の変更希望が発生する毎にその旨を制御局に伝えなければならない面倒があった。しかも、制御局に希望の変調方式を通知した際に、希望の変調波を通知している間に電波環境が急変し、制御局においてその変調方式の通知を受信できないことが発生し、また、時分割多重通信方式であるので空きチャンネルがない場合には希望の変調方式で通信できない場合が生じるなど変調方式の切換えが確実にできないという問題があった。
【0006】
発明は、簡単な構成で複数の変調方式の送信信号に対する復調ができる復調方法を提供する。
【0008】
また、発明は、簡単な構成で複数の変調方式の送信信号に対する復調ができる復調装置を提供する。
【0010】
【課題を解決するための手段】
発明は、同相成分と直交成分により構成される信号点がぞれぞれ異なる複数の変調方式で変調された信号を受信し、この受信信号を2つに分岐して同相成分と直交成分のそれぞれを同期検波し、この同期検波により得た同相成分に対応した複数レベルの信号及び直交成分に対応した複数レベルの信号変調方式を判定するためのビットを含む所定ビット数からなるデータにそれぞれ変換し、その後、この同相成分及び直交成分にそれぞれ対応した変換データを合成し、この合成データのうち、同相成分に対応した変換データの変調方式を表わすビット及び直交成分に対応した変換データの変調方式を表わすビットから変調方式を判定し、この判定した変調方式に応じて復調方式を選択して合成データから受信データの復調を行うことにある。
【0016】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。
図1は変調方式における信号点配置を示す図で、16個の16QAM変調方式の信号点配置と、それとは異なる4つの4相PSK変調方式の信号点配置を示している。すなわち、図1において、横軸は同相成分(I) の受信レベルを表わし、縦軸は直交成分(Q) の受信レベルを表わし、同相成分(I) と直交成分(Q) をそれぞれ5段階“−2,−1,0,+1,+2”にレベル付けし、黒点は16QAM変調方式の信号点配置を示し、楕円部は4相PSK変調方式の信号点配置を示している。
【0017】
また、この5段階のレベル信号“−2,−1,0,+1,+2”は、図2に示すように、3ビットのデータ“000,010,001,100,110”から変換され、同相成分が(a1,a3,a5)の3ビットから、直交成分が(a2,a4,a6)の3ビットからそれぞれレベル付けられ、最終的には(a1,a2,a3,a4,a5,a6)の6ビットで1つの信号点を表わすようになっている。
【0018】
図3は移動端末における復調装置の構成を示すブロック図で、この復調装置は、受信用アンテナ11、この受信用アンテナ11が受信した信号を増幅し、必要に応じて周波数変換を行う受信部12、分岐手段13により分岐された信号に対して受信信号から再生されたπ/2位相が異なる2つの基準搬送波により同相成分(I) と直交成分(Q) の同期検波を行う同期検波器14,15、クロックの同期を取り、基準搬送波を再生するクロック同期・基準搬送波再生部16、前記同期検波器14,15により同期検波された5段階のレベル信号“−2,−1,0,+1,+2”を3ビットのデータ“000,010,001,100,110”に変換する5値−3値変換部17,18、この2系列の5値−3値変換部17,18からの3ビットのデータを合わせて6ビットにし、その6ビットのデータのうち、変調方式を表わしているビットに基づいて受信データを復調し、出力端子19に出力する受信バッファ20及び前記クロック同期・基準搬送波再生部16、受信バッファ20を制御する制御部21により構成している。
【0019】
前記受信バッファ20は、具体的には、4相PSK変調方式については同相成分(I) と直交成分(Q) のいずれか一方は受信レベルが“0”となり、ビットa5、a6のいずれか一方は“1”となっているため、2系列の5値−3値変換部17,18からの3ビットのデータを合わせた6ビットのデータのうち、変調方式を表わしているビットa5,a6のオア演算を行い、このオア演算結果により出力が“0”であれば16QAM変調方式であると判断し、また、“1”であれば4相PSK変調方式であると判断する。
【0020】
次に図4乃至図7により復調方式について述べる。
受信用アンテナ11で受信した信号は、受信部12で増幅、周波数変換された後、分岐手段13により2つに分岐される。そして、位相がπ/2ずれた基準搬送波により2つの同期検波器14,15にて同相成分(I) と直交成分(Q) がそれぞれ同期検波される。各同期検波器14,15では受信信号を5段階のレベル信号“−2,−1,0,+1,+2”に分け、5値−3値変換部17,18に送る。
【0021】
前記5値−3値変換部17,18では、図4に示すような5値−3値変換を行い、送られてきた5段階のレベル信号により、例えば、“+1”であれば“100”に、“−2”であれば“000”に、予め決められた3ビットのデータに変換し受信バッファ20に送る。このとき、変調方式が16QAMの場合には同相成分(I) と直交成分(Q) の双方とも受信レベルが“0”となることはないが、変調方式が4相PSKの場合には同相成分(I) の受信レベルと直交成分(Q) の受信レベルのうち、どちらかは必ず“0”となる。これにより、5値−3値変換部17,18では受信レベルが“0”のときには、変換する3ビットデータの最終ビット(a5及びa6)を“1”とし、受信レベルが0以外のときにはその最終ビット(a5及びa6)を“0”とする変換を行う。
【0022】
前記受信バッファ20は変調方式を表わしているビットa5とビットa6のオア演算を行う。そして、その演算結果が“0”であれば変調方式が16QAMであると判断し、16個の信号点を構成しているビットa1〜a6のうち、ビットa1〜a4がそのまま受信データとなっているため、図5に示すようにビットa1〜a4を順番に出力端子19に出力する。また、ビットa5とビットa6のオア演算結果が“1”であれば変調方式が4相PSKであると判断し、図6に示すように切換部にて、格納データが、例えば、“000010”であれば“01”に、また、“010110”であれば“10”に、予め取り決められた2ビットのデータに変換し、出力端子19からは図7に示すデータを出力する。
【0023】
図8は移動端末の変調装置の構成を示すブロック図で、この変調装置は、入力端子31から入力する送信データを変調方式により信号点と変調方式を表わす6ビットa1〜a6のデータに変換し、さらに、a1,a3,a5とa2,a4,a6の3ビットずつの2系列のデータに変換する送信バッファ32、3ビットのデータ“000,010,001,100,110”を5段階のレベル信号“−2,−1,0,+1,+2”に変換する3値−5値変換部33,34、搬送波をπ/2ずらして同相成分(I) と直交成分(Q) のそれぞれを5値振幅変調する5値振幅変調器(AMMOD)35,36、この各振幅変調器35,36からの振幅変調信号を合成する合成手段37、この合成手段37にて合成した2系列の変調信号を必要に応じて周波数変換し送信用アンテナ38から送信する送信部39、受信側の端末が移動して用いられているのか固定で用いられているのか、又は、受信信号点と基準信号点との距離の差により変調方式を16QAMにするのか4相PSKにするのか判断する変調方式決定部40及びこの変調方式決定部40及び前記送信バッファ32を制御する制御部41により構成している。
【0024】
なお、入力端子31からの送信データを6ビットa1〜a6のデータに変換し、さらに、同相成分(I) と直交成分(Q) とに分けて変調を行うためにa1,a3,a5とa2,a4,a6の3ビットずつの2系列のデータに変換しているが、これは同相成分(I) と直交成分(Q) を5段階のレベル“−2,−1,0,+1,+2”に変換するためである。
【0025】
次に図9乃至図13により16QAM変調方式及び4相PSK変調方式について述べる。
送信側が16QAM変調を行う場合は、図9に示すように、送信バッファ32に送られてきたデータを4ビットずつ区切り、送信バッファ32内の“a1〜a4”に格納すると同時に変調方式により信号点を変えるために同相成分(I) と直交成分(Q) が各3ビットずつ計6ビットなるように“a5”と“a6”に0を格納する。
【0026】
そして、a1〜a6の6ビットデータのうち、同相成分(I) 変調用のデータとしてa1,a3,a5を1つの3値−5値変換部33に送り、また、直交成分(Q) 変調用のデータとしてa2,a4,a6をもう1つの3値−5値変換部34に送り、送信データを2系列に分ける。前記3値−5値変換部33,34では図10に示すように送られてきたデータが、例えば、“100”であれば“+1”、また、“000”であれば“−2”として予め決められた変換内容に基づいて5段階のレベル付けを行う。
【0027】
また、送信側が4相PSK変調を行う場合は、図11に示すように、送信バッファ32に送られてきたデータを2ビットずつ区切り、図12に示すように予め決められた変換内容に基づいて6ビットのデータに変換する。例えば、切換部にて送信データが“01”であれば“000010”の6ビットデータに変換し、また、“10”であれば“010110”の6ビットデータに変換し、送信バッファ32内の“a1〜a6”に格納する。このとき、“a1〜a6”のビットで4個の信号点を構成している。
【0028】
そして、“a1〜a6”の6ビットのデータのうち、同相成分(I) 変調用のデータとしてa1,a3,a5を1つの3値−5値変換部33に送り、また、直交成分(Q) 変調用のデータとしてa2,a4,a6をもう1つの3値−5値変換部34に送り、送信データを2系列に分ける。前記3値−5値変換部33,34では図13に示すように送られてきたデータが、例えば、“001”であれば“0”、また、“000”であれば“−2”として予め決められた変換内容に基づいて5段階のレベル付けを行う。
【0029】
なお、“a1〜a6”の6ビット及び“−2,−1,0,+1,+2”の5段階レベル付けは、16QAM変調及び4相PSK変調の異なった20個の信号点を効率よく構成するために必要なビット数及びレベルであり、他の変調方式を用いる場合にはこの数に限らない。
【0030】
その後、5段階のレベル“−2,−1,0,+1,+2”に分けられた2系列のデータは5値振幅変調器35,36に送られ、それぞれ位相がπ/2ずれた搬送波により同相成分(I) と直交成分(Q) をそれぞれ振幅変調した後に合成することで送信部39から送信用アンテナ38を介して送信する16QAM被変調出力又は4相PSK被変調出力を得る。
【0031】
次に前記変調方式決定部40の機能について述べる。
変調方式決定部40は、送信器自身の移動情報を検出し、この検出した情報に基づいて変調方式を決定する。
【0032】
伝播状況は送信器自身が移動中なのか固定されているかによって変化するため、例えば、送信器にGPSを搭載して周期的に位置を確認する。あるいはジャイロセンサや高度センサなど移動していることを示すことができるセンサを端末に持たせて周期的にセンサの値を検出し、この検出した情報を基に送信器自身が移動しているのか固定しているのかを判断し、移動しているのであれば変調方式を4相PSK、固定しているのであれば変調方式を16QAMにする。
【0033】
また、伝播状況は送信器の移動速度も関係し、送信器と受信器の間に障害物がなく、比較的低速であれば良好な伝播状況で通信ができる。そこで、送信器の移動状態として移動速度を検出し、これにより変調方式を決定する。移動速度の検出には、送信器にGPSを搭載し定期的に現在の位置とその時刻を求め、その位置情報と時間情報を記憶しておき、1つ前の情報と新しく求めた情報から送信器のおおよその速度を算出する方法や送信器に速度センサを搭載し送信器の制御部が速度を監視する方法などがある。そして、検出した移動速度を予め基準値として設定した速度値と比較し、基準値より大きければ4相PSK、また、小さければ16QAMにする。
【0034】
また、移動速度を検出する代わりに移動距離を検出してもよい。すなわち、送信器にGPSを搭載し、予め決められた時間間隔で現在位置を求め、その位置情報と1つ前の位置情報から送信器のおよその移動距離を検出する。そして、予め基準値として設定した移動距離値と比較し、移動距離値より大きければ4相PSK、また、小さければ16QAMにする。
【0035】
次に端末にGPSを搭載して変調方式の決定を行う例について述べる。
図14は端末51にGPS52を搭載したときのブロック図で、GPS52は、端末51からの周期的な位置の問い合わせや位置情報のやり取りを端末51の制御部53と行うGPS制御部54と、衛星からの電波を受信するアンテナ55及びGPS受信部56とからなる。そして、端末51の制御部53から位置情報の問い合わせがあると、GPS52が駆動し位置情報を端末51の制御部53に送信する。あるいは、GPS52を周期的に駆動させ、端末51の制御部53から位置情報の問い合わせがあると、その時点で最新の情報を直ちに端末51の制御部53に送信する。
【0036】
図15は送信側端末が移動しているのか固定されているのかを判断して変調方式を決定する場合の制御を示す流れ図で、送信側端末は、先ず、S1、S2にて、受信側端末とのデータ通信を開始する前に自己端末が移動中なのか固定されているのかを知るために自己端末の現在位置をGPS52に問い合わせて確認する。そして、S3にて、例えば、現在の変調方式が16QAMで、自己端末の移動状態が移動中であることを検出すると、S4にて、変調方式の変更を判断し、S5にて、一定時間待機してから、S6にて、変調方式を16QAMから4相PSKに変更し、S7にて、データ通信を行う。また、S3にて、自己端末が固定されていることを検出すると、S4にて、変調方式の非変更を判断し、この場合には変調方式が16QAMのまま、S7にて、データ通信を行う。
【0037】
このように、送信側端末は、周期的に自己端末の現在位置を確認し、移動中か固定しているかにより変調方式を変えるか否かを判断してデータ通信を継続することになる。
【0038】
図16は送信側端末自身の移動速度により変調方式を決定する場合の制御を示す流れ図で、送信側端末は、先ず、S11、S12にて、受信側端末とのデータ通信を開始する前に自己端末の現在位置をGPS52に問い合わせて確認する。そして、S13にて、現在の位置情報及び時間情報と前回の位置情報及び時間情報から移動速度を求める。
【0039】
続いて、S14にて、求めた移動速度と予め設定されている基準の移動速度を比較し、変調方式を決定する。例えば、現在の変調方式が16QAMで、移動速度が基準速度を超えていることを検出すると、S15にて、変調方式の変更を判断し、S16にて、一定時間待機してから、S17にて、変調方式を16QAMから4相PSKに変更し、S18にて、データ通信を行う。また、S14にて、移動速度が基準速度以下であることを検出すると、S15にて、変調方式の非変更を判断し、この場合には変調方式が16QAMのまま、S18にて、データ通信を行う。
【0040】
このように、送信側端末は、周期的に自己端末の移動速度を検出し、移動速度が基準速度を超えているか否かにより変調方式を変えるか否かを判断してデータ通信を継続することになる。
【0041】
また、変調方式を切換える他の方法としては、変調方式決定部40に記憶装置を設け、この記憶装置に図17に閾値領域として示すような受信信号点の閾値(受信レベルと位相)を格納しておき、16QAM変調方式を用いている場合に受信信号の信号点が判定可能な閾値から外れたときに4相PSK変調方式へ切換え、また、4相PSK変調方式を用いている場合に受信レベルが閾値内に入ったとき、つまり16QAM変調方式に切換えても16個の信号点を識別できると判断できる状態になって時点で16QAM変調方式に切換え可能と判定し変調方式を4相PSK変調方式から16QAM変調方式に切換える方法もある。
【0042】
このように、変調方式により信号点が異なるため、受信側では受信した信号を2つに分岐してから同期検波し、同相成分(I) と直交成分(Q) それぞれを表わすデータを合成し、このデータのうち、変調方式を表わしているビットから変調方式が判断でき、その判断した変調方式に合わせて復調ができる。従って、1個の復調器にて複数の変調方式の送信信号に対する復調ができ、構成を簡単にできる。
【0043】
また、変調器に送信バッファ32を設け、変調方式によって同相成分(I) と直交成分(Q) により構成されるそれぞれ異なる信号点を表わす所定ビット数からなるデータに変換し、この変換したデータをもとに変調信号を生成することで信号点の異なる複数の変調方式を実現できる。従って、1個の変調器にて複数の変調方式での送信に対処でき、構成を簡単にできる。また、変調方式を切換える際に、相手に変調方式を通知する必要がなく、従って、簡単な制御で変調方式の切換えが実現できる。さらに、変調器側の端末の状態や利用環境により、変調器の変調方式決定部40にて変調方式を切換えることで電波環境の変化による通信の遮断がなくなる。
【0044】
なお、この実施の形態では変調方式として、16QAM変調方式と4相PSK変調方式を用いた場合を例として述べたが、使用する変調方式はこの2つに限定するものではない。
【0045】
【発明の効果】
発明によれば、簡単な構成で複数の変調方式の送信信号に対する復調ができる復調方法を提供できる。
また、発明によれば、簡単な構成で複数の変調方式の送信信号に対する復調ができる復調装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における変調方式の信号点配置を示す図。
【図2】同実施の形態における5値レベルと3ビットデータの対応関係を示す図。
【図3】同実施の形態における移動端末の復調装置の構成を示すブロック図。
【図4】同実施の形態における復調装置の5値−3値変換部が行う5値−3値変換の内容を示す図。
【図5】同実施の形態における16QAM変調方式の場合の復調装置の受信バッファの動作を説明するための図。
【図6】同実施の形態における復調装置の受信バッファの切換部でのデータ変換の内容を示す図。
【図7】同実施の形態における4相PSK変調方式の場合の復調装置の受信バッファの動作を説明するための図。
【図8】同実施の形態における移動端末の変調装置の構成を示すブロック図。
【図9】同実施の形態における16QAM変調方式の場合の変調装置の送信バッファの動作を説明するための図。
【図10】同実施の形態における16QAM変調方式の場合の変調装置の3値−5値変換部が行う3値−5値変換の内容を示す図。
【図11】同実施の形態における4相PSK変調方式の場合の変調装置の送信バッファの動作を説明するための図。
【図12】同実施の形態における変調装置の送信バッファの切換部でのデータ変換の内容を示す図。
【図13】同実施の形態における4相PSK変調方式の場合の変調装置の3値−5値変換部が行う3値−5値変換の内容を示す図。
【図14】同実施の形態において移動端末にGPSを搭載したときのブロック図。
【図15】同実施の形態における送信側移動端末による変調方式の決定制御の一例を示す流れ図。
【図16】同実施の形態における送信側移動端末による変調方式の決定制御の他の例を示す流れ図。
【図17】同実施の形態において変調方式を16QAM変調方式と4相PSK変調方式とで切換えるための信号点の閾値を表わす図。
【符号の説明】
12…受信部
13…分岐手段
14,15…同期検波器
17,18…5値−3値変換部
20…受信バッファ
32…送信バッファ
33,34…3値−5値変換部
39…送信部
40…変調方式決定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a demodulation method, a modulation method, a demodulation device, and an improvement of a modulation / demodulation device.
[0002]
[Prior art]
As a receiving apparatus capable of receiving signals modulated by a plurality of modulation schemes, for example, Japanese Patent Application Laid-Open No. 7-122017 is known. This is because, for a transmission signal that is transmitted from the transmitting side in a time-division manner using a plurality of modulation schemes using the same frequency, on the receiving side, a plurality of demodulation means corresponding to a plurality of modulation schemes and which demodulation means normally operate. Demodulation output means for detecting a demodulation method of a received signal depending on whether it is operating, and selectively deriving an output of a demodulation means corresponding to the detected demodulation method, and a transmission signal transmitted by a plurality of modulation methods. Can be demodulated.
[0003]
As a device capable of switching a plurality of modulation methods, for example, Japanese Patent Application Laid-Open No. 5-1300082 is known. This is likely to occur when the mobile terminal notifies the control station such as a base station of a desired modulation scheme in a time-division multiplexing tunable communication scheme, when the transmission path condition is good, for example, when the base station and the terminal are close to each other. When the occupation time is shortened by using a value modulation method and the condition of the transmission path is poor, for example, when the base station and the terminal are far apart, the number of multi-values is reduced and the occupation time is lengthened to provide substantial information. Control is performed to keep the transmission speed constant.
[0004]
[Problems to be solved by the invention]
However, Japanese Unexamined Patent Publication No. Hei 7-123017 discloses a method in which a plurality of demodulating means are provided on the receiving side, which demodulating means is operating normally, and the demodulating means to be used is switched based on the result to convert the received data. Since the output is configured, detection means and switching means for a plurality of demodulation methods are required, and there has been a problem that the configuration is complicated.
[0005]
In Japanese Patent Application Laid-Open No. Hei 5-1300082, it is necessary for a mobile terminal to notify a control station such as a base station of a desired modulation scheme, and each time a request for changing the modulation scheme occurs, the control station is informed of the request. There was trouble to tell. Moreover, when the control station is notified of the desired modulation method, the radio wave environment changes suddenly while the desired modulation wave is notified, and the control station cannot receive the notification of the modulation method. Because of the time-division multiplex communication system, there is a problem that switching of the modulation system cannot be reliably performed, for example, when there is no available channel, communication cannot be performed with a desired modulation system.
[0006]
The present invention provides a demodulation method capable of demodulating transmission signals of a plurality of modulation schemes with a simple configuration.
[0008]
Further, the present invention provides a demodulation device capable of demodulating transmission signals of a plurality of modulation schemes with a simple configuration.
[0010]
[Means for Solving the Problems]
The present invention receives a signal modulated by a plurality of modulation schemes in which signal points composed of an in-phase component and a quadrature component are respectively different from each other, and divides the received signal into two to separate the in-phase component and the quadrature component. respectively synchronous detection, a multi-level signal corresponds to the multi-level signal and a quadrature component of the corresponding to the in-phase component obtained by the synchronous detection, composed of a predetermined number of bits including a bit for determining the modulation scheme data respectively converted into, then synthesizes the converted data respectively corresponding to the in-phase component and quadrature component, of the composite data, converted data corresponding to the bit and the quadrature component representing the modulation scheme of the conversion data corresponding to the in-phase component near the modulation scheme determined modulation scheme from bits representing, to demodulate the received data from the combined data by selecting the demodulation scheme in accordance with the determined modulation scheme .
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a signal point arrangement in a modulation scheme, showing 16 signal point arrangements in a 16QAM modulation scheme and four different signal point arrangements in a four-phase PSK modulation scheme. That is, in FIG. 1, the horizontal axis represents the reception level of the in-phase component (I), the vertical axis represents the reception level of the quadrature component (Q), and the in-phase component (I) and the quadrature component (Q) are divided into five stages. −2, −1, 0, +1 and +2 ″, the black points indicate the signal point constellations of the 16QAM modulation method, and the elliptical portions indicate the signal point constellations of the four-phase PSK modulation method.
[0017]
The five-level signal "-2, -1, 0, +1, +2" is converted from 3-bit data "000, 010, 001, 100, 110" as shown in FIG. The component is leveled from 3 bits of (a1, a3, a5) and the orthogonal component is leveled from 3 bits of (a2, a4, a6), and finally (a1, a2, a3, a4, a5, a6) These 6 bits represent one signal point.
[0018]
FIG. 3 is a block diagram showing a configuration of a demodulation device in a mobile terminal. The demodulation device includes a receiving antenna 11, a receiving unit 12 for amplifying a signal received by the receiving antenna 11, and performing frequency conversion as necessary. A synchronous detector 14, which performs synchronous detection of an in-phase component (I) and a quadrature component (Q) with two reference carriers having different π / 2 phases reproduced from the received signal with respect to the signal branched by the branching means 13, 15, a clock synchronization / reference carrier recovery unit 16 for synchronizing clocks and recovering a reference carrier, and five-level level signals "-2, -1, 0, +1" synchronously detected by the synchronous detectors 14 and 15; +2 "into three-bit data" 000, 010, 001, 100, 110 ", five-valued-three-value conversion units 17 and 18; The received data is demodulated on the basis of the bit representing the modulation method out of the 6-bit data, the reception buffer 20 for outputting to the output terminal 19 and the clock synchronization / reference carrier wave. It comprises a reproduction unit 16 and a control unit 21 for controlling the reception buffer 20.
[0019]
Specifically, the reception buffer 20 has a reception level of “0” for one of the in-phase component (I) and the quadrature component (Q) for the four-phase PSK modulation method, and one of the bits a5 and a6. Is "1", and among the 6-bit data obtained by combining the 3-bit data from the 2-series quinary-to-ternary conversion units 17 and 18, bits a5 and a6 representing the modulation method are used. An OR operation is performed. If the output is “0” based on the OR operation result, it is determined that the 16 QAM modulation method is used. If the output is “1”, it is determined that the four-phase PSK modulation method is used.
[0020]
Next, the demodulation method will be described with reference to FIGS.
The signal received by the receiving antenna 11 is amplified and frequency-converted by the receiving unit 12, and then branched into two by the branching unit 13. Then, the in-phase component (I) and the quadrature component (Q) are synchronously detected by the two synchronous detectors 14 and 15 using the reference carrier having the phase shifted by π / 2. Each of the synchronous detectors 14 and 15 divides the received signal into five levels of level signals “−2, −1, 0, +1 and +2” and sends them to the quinary-to-ternary converters 17 and 18.
[0021]
The quinary-ternary conversion units 17 and 18 perform quinary-ternary conversion as shown in FIG. 4 and, based on the transmitted five-level signal, for example, “100” if “+1” If it is “−2”, it is converted to “000” into predetermined 3-bit data and sent to the reception buffer 20. At this time, when the modulation scheme is 16 QAM, the reception level of both the in-phase component (I) and the quadrature component (Q) does not become “0”, but when the modulation scheme is 4-phase PSK, the in-phase component Either of the reception level of (I) and the reception level of the quadrature component (Q) always becomes “0”. Thus, when the reception level is "0", the quinary-to-ternary conversion units 17 and 18 set the last bits (a5 and a6) of the 3-bit data to be converted to "1". A conversion is performed to set the last bits (a5 and a6) to "0".
[0022]
The reception buffer 20 performs an OR operation on the bits a5 and a6 representing the modulation method. If the calculation result is "0", it is determined that the modulation scheme is 16QAM, and among the bits a1 to a6 constituting the 16 signal points, the bits a1 to a4 are used as received data as they are. Therefore, the bits a1 to a4 are sequentially output to the output terminal 19 as shown in FIG. If the OR operation result of the bit a5 and the bit a6 is “1”, it is determined that the modulation method is the 4-phase PSK, and as shown in FIG. In this case, it is converted to "01", and if it is "010110", it is converted to "2", and the output terminal 19 outputs the data shown in FIG.
[0023]
FIG. 8 is a block diagram showing a configuration of a modulation device of a mobile terminal. This modulation device converts transmission data input from input terminal 31 into 6-bit data a1 to a6 representing a signal point and a modulation method by a modulation method. Further, a transmission buffer 32 for converting data into two series of three bits of a1, a3, a5 and a2, a4, a6, and three-bit data "000,010,001,100,110" at five levels. Ternary-to-five-value conversion units 33 and 34 for converting signals into “−2, −1, 0, +1 and +2”, and shifting the carrier wave by π / 2 to convert each of the in-phase component (I) and the quadrature component (Q) Quinary amplitude modulators (AMMODs) 35, 36 for value amplitude modulation, synthesizing means 37 for synthesizing the amplitude modulation signals from the respective amplitude modulators 35, 36, and two-sequence modulated signals synthesized by the synthesizing means 37. As needed A transmitting unit 39 for performing frequency conversion and transmitting from the transmitting antenna 38, whether the receiving side terminal is used by moving or fixedly used, or the difference between the distance between the received signal point and the reference signal point. And a control unit 41 that controls the modulation scheme determination unit 40 and the transmission buffer 32 to determine whether the modulation scheme is 16QAM or 4-phase PSK.
[0024]
Here, a1, a3, a5 and a2 are used to convert the transmission data from the input terminal 31 into 6-bit data a1 to a6, and further perform modulation by dividing the data into an in-phase component (I) and a quadrature component (Q). , A4, and a6 are converted into two-series data of 3 bits each, which converts the in-phase component (I) and the quadrature component (Q) into five levels of "-2, -1, 0, +1, +2". To "".
[0025]
Next, the 16QAM modulation method and the four-phase PSK modulation method will be described with reference to FIGS.
When the transmitting side performs 16QAM modulation, as shown in FIG. 9, the data sent to the transmission buffer 32 is divided into 4 bits, and stored in "a1 to a4" in the transmission buffer 32, and at the same time, the signal point is changed by the modulation method. Is stored in "a5" and "a6" such that each of the in-phase component (I) and the quadrature component (Q) has a total of 6 bits, 3 bits each.
[0026]
Then, among the 6-bit data a1 to a6, a1, a3, and a5 are sent to one ternary-to-five-value conversion unit 33 as data for in-phase component (I) modulation, and are used for quadrature component (Q) modulation. A2, a4, and a6 are sent to another ternary-to-five-value converter 34 to divide the transmission data into two streams. In the ternary-to-five-value conversion units 33 and 34, the data sent as shown in FIG. 10 is, for example, "+1" for "100" and "-2" for "000". Five levels are assigned based on predetermined conversion contents.
[0027]
When the transmitting side performs the four-phase PSK modulation, the data sent to the transmission buffer 32 is divided into two bits at a time as shown in FIG. 11, and based on a predetermined conversion content as shown in FIG. Convert to 6-bit data. For example, if the transmission data is “01” in the switching unit, it is converted to 6-bit data of “000010”, and if it is “10”, it is converted to 6-bit data of “010110”. Stored in “a1 to a6”. At this time, four signal points are constituted by the bits “a1 to a6”.
[0028]
Then, among the 6-bit data of “a1 to a6”, a1, a3, and a5 are sent to one ternary-to-five-value converter 33 as data for in-phase component (I) modulation, and the quadrature component (Q A) a2, a4, and a6 as modulation data are sent to another ternary-to-five-value conversion unit 34 to divide transmission data into two streams. The ternary-to-five-value converters 33 and 34 assume that the data sent as shown in FIG. 13 is, for example, "0" for "001" and "-2" for "000". Five levels are assigned based on predetermined conversion contents.
[0029]
In addition, 6 bits of “a1 to a6” and 5 levels of “−2, −1, 0, +1, +2” efficiently configure 20 signal points different in 16QAM modulation and 4-phase PSK modulation. This is the number of bits and the level required to perform the modulation, and is not limited to this number when using another modulation method.
[0030]
Thereafter, the two series of data divided into five levels of "-2, -1, 0, +1, +2" are sent to quinary amplitude modulators 35 and 36, and the carrier is shifted by π / 2 in phase. The in-phase component (I) and the quadrature component (Q) are amplitude-modulated and then combined to obtain a 16-QAM modulated output or a 4-phase PSK modulated output transmitted from the transmitting unit 39 via the transmitting antenna 38.
[0031]
Next, the function of the modulation scheme determination unit 40 will be described.
The modulation scheme determination unit 40 detects the movement information of the transmitter itself, and determines the modulation scheme based on the detected information.
[0032]
Since the propagation state changes depending on whether the transmitter itself is moving or fixed, for example, a GPS is mounted on the transmitter to periodically check the position. Or is the terminal equipped with a sensor that can indicate that it is moving, such as a gyro sensor or altitude sensor, periodically detects the value of the sensor, and based on the detected information, is the transmitter itself moving? It is determined whether it is fixed. If it is moving, the modulation method is 4-phase PSK, and if it is fixed, the modulation method is 16QAM.
[0033]
In addition, the propagation condition is related to the moving speed of the transmitter. If there is no obstacle between the transmitter and the receiver and the speed is relatively low, communication can be performed in a favorable propagation condition. Therefore, the moving speed is detected as the moving state of the transmitter, and the modulation method is determined based on the detected moving speed. To detect the moving speed, a GPS is installed in the transmitter, the current position and the time are periodically obtained, the position information and the time information are stored, and the information is transmitted from the immediately preceding information and the newly obtained information. There are a method of calculating the approximate speed of the transmitter, a method of mounting a speed sensor on the transmitter, and a method of monitoring the speed by a control unit of the transmitter. Then, the detected moving speed is compared with a speed value set in advance as a reference value. If the moving speed is larger than the reference value, 4-phase PSK is set, and if it is smaller, 16QAM is set.
[0034]
Further, instead of detecting the moving speed, the moving distance may be detected. That is, the GPS is mounted on the transmitter, the current position is obtained at predetermined time intervals, and the approximate moving distance of the transmitter is detected from the position information and the previous position information. Then, it is compared with a moving distance value set in advance as a reference value. If the moving distance value is larger than the moving distance value, 4-phase PSK is set.
[0035]
Next, an example in which a GPS is mounted on a terminal to determine a modulation method will be described.
FIG. 14 is a block diagram when the GPS 52 is mounted on the terminal 51. The GPS 52 includes a GPS control unit 54 that periodically inquires of the terminal 51 and exchanges position information with the control unit 53 of the terminal 51; An antenna 55 for receiving radio waves from the GPS receiver and a GPS receiver 56. Then, when there is an inquiry about the position information from the control unit 53 of the terminal 51, the GPS 52 is driven and transmits the position information to the control unit 53 of the terminal 51. Alternatively, the GPS 52 is periodically driven, and when there is an inquiry about position information from the control unit 53 of the terminal 51, the latest information is immediately transmitted to the control unit 53 of the terminal 51 at that time.
[0036]
FIG. 15 is a flowchart showing the control in the case of determining whether the transmitting terminal is moving or fixed and deciding the modulation method. The transmitting terminal first determines the receiving terminal in S1 and S2. Before starting data communication with the terminal, the current position of the own terminal is inquired to the GPS 52 to confirm whether the own terminal is moving or fixed. Then, in S3, for example, when it is detected that the current modulation scheme is 16QAM and the moving state of the own terminal is moving, it is determined in S4 that the modulation scheme has been changed, and in S5, it waits for a fixed time. Then, in S6, the modulation method is changed from 16QAM to 4-phase PSK, and in S7, data communication is performed. If it is detected in S3 that the own terminal is fixed, it is determined in S4 that the modulation method is not changed. In this case, data communication is performed in S7 while the modulation method remains 16QAM. .
[0037]
As described above, the transmitting terminal periodically checks the current position of the terminal itself, determines whether to change the modulation scheme depending on whether the terminal is moving or fixed, and continues data communication.
[0038]
FIG. 16 is a flowchart showing the control when the modulation method is determined based on the moving speed of the transmitting terminal itself. First, in S11 and S12, the transmitting terminal performs its own operation before starting data communication with the receiving terminal. The current position of the terminal is checked by inquiring of the GPS 52. Then, in S13, a moving speed is obtained from the current position information and time information and the previous position information and time information.
[0039]
Subsequently, in S14, the obtained moving speed is compared with a preset reference moving speed to determine a modulation method. For example, if it is detected that the current modulation method is 16QAM and the moving speed exceeds the reference speed, a change in the modulation method is determined in S15, and after waiting for a certain time in S16, the process proceeds to S17. The modulation scheme is changed from 16QAM to 4-phase PSK, and data communication is performed in S18. If it is detected in S14 that the moving speed is equal to or lower than the reference speed, it is determined in S15 that the modulation method is not changed. In this case, the data communication is performed in S18 while the modulation method remains 16QAM. Do.
[0040]
As described above, the transmitting terminal periodically detects the moving speed of its own terminal, determines whether to change the modulation scheme based on whether the moving speed exceeds the reference speed, and continues data communication. become.
[0041]
As another method of switching the modulation method, a storage device is provided in the modulation method determination unit 40, and a threshold value (reception level and phase) of a reception signal point as shown in FIG. 17 as a threshold region is stored in the storage device. In addition, when the signal point of the received signal deviates from the determinable threshold value when the 16-QAM modulation method is used, the switching to the 4-phase PSK modulation method is performed. Is within the threshold value, that is, when it is possible to determine that 16 signal points can be identified even when switching to the 16QAM modulation method, it is determined that the 16QAM modulation method can be switched at the time, and the modulation method is changed to the 4-phase PSK modulation method. There is also a method of switching from the first to the 16QAM modulation method.
[0042]
As described above, since the signal point differs depending on the modulation method, the receiving side splits the received signal into two and then performs synchronous detection, synthesizes data representing each of the in-phase component (I) and the quadrature component (Q), Of the data, the modulation method can be determined from the bit indicating the modulation method, and demodulation can be performed in accordance with the determined modulation method. Accordingly, a single demodulator can demodulate transmission signals of a plurality of modulation schemes, thereby simplifying the configuration.
[0043]
Further, a transmission buffer 32 is provided in the modulator, and is converted into data having a predetermined number of bits representing different signal points each composed of an in-phase component (I) and a quadrature component (Q) according to a modulation scheme, and the converted data is converted. A plurality of modulation schemes having different signal points can be realized by generating a modulation signal based on the modulation signal. Therefore, one modulator can cope with transmission using a plurality of modulation schemes, and the configuration can be simplified. Further, when the modulation method is switched, there is no need to notify the other party of the modulation method, and therefore, the modulation method can be switched with simple control. Further, by switching the modulation method by the modulation method determination unit 40 of the modulator depending on the state of the terminal on the modulator side and the use environment, communication interruption due to a change in the radio wave environment is eliminated.
[0044]
In this embodiment, the case where the 16QAM modulation scheme and the four-phase PSK modulation scheme are used as the modulation scheme has been described as an example, but the modulation schemes to be used are not limited to these two.
[0045]
【The invention's effect】
According to the present invention, it is possible to provide a demodulation method capable of demodulating transmission signals of a plurality of modulation schemes with a simple configuration.
Further, according to the present invention, it is possible to provide a demodulator capable of demodulating transmission signals of a plurality of modulation schemes with a simple configuration .
[Brief description of the drawings]
FIG. 1 is a diagram showing a signal point arrangement of a modulation method according to an embodiment of the present invention.
FIG. 2 is a diagram showing a correspondence relationship between a quinary level and 3-bit data according to the embodiment;
FIG. 3 is a block diagram showing a configuration of a demodulator of the mobile terminal according to the embodiment.
FIG. 4 is an exemplary view showing contents of quinary to ternary conversion performed by a quinary to ternary conversion unit of the demodulation device in the embodiment.
FIG. 5 is an exemplary view for explaining the operation of the reception buffer of the demodulation device in the case of the 16QAM modulation method in the embodiment.
FIG. 6 is a view showing the contents of data conversion in a switching section of a reception buffer of the demodulation device according to the embodiment.
FIG. 7 is a diagram for explaining the operation of the reception buffer of the demodulation device in the case of the four-phase PSK modulation method according to the embodiment.
FIG. 8 is a block diagram showing a configuration of a modulation device of the mobile terminal according to the embodiment.
FIG. 9 is a diagram for explaining an operation of a transmission buffer of the modulation device in the case of a 16QAM modulation scheme according to the embodiment.
FIG. 10 is a diagram showing the contents of ternary to quinary conversion performed by the ternary to quinary conversion unit of the modulation device in the case of the 16QAM modulation method in the embodiment.
FIG. 11 is a diagram for explaining the operation of the transmission buffer of the modulation device in the case of the four-phase PSK modulation method in the embodiment.
FIG. 12 is a view showing the contents of data conversion in a switching section of a transmission buffer of the modulation device according to the embodiment.
FIG. 13 is a diagram showing the contents of ternary to quinary conversion performed by the ternary to quinary conversion unit of the modulation device in the case of the four-phase PSK modulation method in the embodiment.
FIG. 14 is a block diagram when a GPS is mounted on the mobile terminal in the embodiment.
FIG. 15 is a flowchart showing an example of modulation scheme determination control by the transmitting mobile terminal in the embodiment.
FIG. 16 is a flowchart showing another example of modulation scheme determination control by the transmitting mobile terminal according to the embodiment.
FIG. 17 is a diagram showing thresholds of signal points for switching the modulation scheme between the 16QAM modulation scheme and the four-phase PSK modulation scheme in the embodiment.
[Explanation of symbols]
12 receiving section 13 branching means 14 and 15 synchronous detectors 17 and 18 5-value to 3-value conversion section 20 reception buffer 32 transmission buffers 33 and 34 3-value to 5 value conversion section 39 transmission section 40 … Modulation method determination unit

Claims (2)

同相成分と直交成分により構成される信号点がぞれぞれ異なる複数の変調方式で変調された信号を受信し、この受信信号を2つに分岐して同相成分と直交成分のそれぞれを同期検波し、この同期検波により得た同相成分に対応した複数レベルの信号及び直交成分に対応した複数レベルの信号変調方式を判定するためのビットを含む所定ビット数からなるデータにそれぞれ変換し、その後、この同相成分及び直交成分にそれぞれ対応した変換データを合成し、この合成データのうち、同相成分に対応した変換データの変調方式を表わすビット及び直交成分に対応した変換データの変調方式を表わすビットから変調方式を判定し、この判定した変調方式に応じて復調方式を選択して合成データから受信データの復調を行うことを特徴とする復調方法。Receives a signal modulated by a plurality of modulation schemes with different signal points each consisting of an in-phase component and a quadrature component. Divides this received signal into two, and synchronously detects each of the in-phase and quadrature components. and, a multi-level signal corresponds to the multi-level signal and a quadrature component of the corresponding to the in-phase component obtained by the synchronous detection, then converted to data of a predetermined number of bits including a bit for determining a modulation scheme After that, the conversion data corresponding to the in-phase component and the quadrature component are combined, and the bit representing the modulation method of the conversion data corresponding to the in-phase component and the modulation method of the conversion data corresponding to the quadrature component are combined. determining a modulation scheme bits, and performs demodulation of the received data from the combined data by selecting the demodulation scheme in accordance with the determined modulation scheme condensate representing Method. 同相成分と直交成分により構成される信号点がぞれぞれ異なる複数の変調方式で変調された信号を受信する受信手段と、この受信手段が受信した受信信号を2つに分岐する分岐手段と、この分岐手段にて分岐した信号から同相成分と直交成分のそれぞれを同期検波し、同相成分に対応した複数レベルの信号及び直交成分に対応した複数レベルの信号を出力する同期検波手段と、この同期検波手段からの同相成分及び直交成分に対応した信号を、変調方式を判定するためのビットを含む所定ビット数からなるデータにそれぞれ変換する変換手段と、この変換手段が変換した同相成分及び直交成分にそれぞれ対応した変換データを合成する合成手段と、この合成手段が合成した合成データのうち、同相成分に対応した変換データの変調方式を表わすビット及び直交成分に対応した変換データの変調方式を表わすビットから変調方式を判定する変調方式判定手段と、この変調方式判定手段が判定した変調方式に応じて復調方式を選択して合成データから受信データを復調するデータ復調手段とを設けたことを特徴とする復調装置 Receiving means for receiving a signal modulated by a plurality of modulation schemes having different signal points each composed of an in-phase component and a quadrature component; and branching means for branching a received signal received by the receiving means into two. Synchronous detection means for synchronously detecting each of the in-phase component and the quadrature component from the signal branched by the branching means, and outputting a multi-level signal corresponding to the in-phase component and a multi-level signal corresponding to the quadrature component; Conversion means for converting signals corresponding to the in-phase component and the quadrature component from the synchronous detection means into data having a predetermined number of bits including bits for determining a modulation scheme; and the in-phase component and the quadrature converted by the conversion means. A synthesizing unit for synthesizing the conversion data corresponding to each of the components, and a modulation method of the conversion data corresponding to the in-phase component of the synthesis data synthesized by the synthesizing unit. A modulation scheme determining means for determining a modulation scheme from bits representing the modulation scheme of the converted data corresponding to the bits and the orthogonal components; and a demodulation scheme is selected according to the modulation scheme determined by the modulation scheme determining means and received from the combined data. demodulating apparatus characterized by comprising a data demodulation means for demodulating the data.
JP15889698A 1998-06-08 1998-06-08 Demodulation method and demodulation device Expired - Fee Related JP3548002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15889698A JP3548002B2 (en) 1998-06-08 1998-06-08 Demodulation method and demodulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15889698A JP3548002B2 (en) 1998-06-08 1998-06-08 Demodulation method and demodulation device

Publications (2)

Publication Number Publication Date
JPH11355374A JPH11355374A (en) 1999-12-24
JP3548002B2 true JP3548002B2 (en) 2004-07-28

Family

ID=15681749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15889698A Expired - Fee Related JP3548002B2 (en) 1998-06-08 1998-06-08 Demodulation method and demodulation device

Country Status (1)

Country Link
JP (1) JP3548002B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091332A1 (en) 2000-05-26 2001-11-29 Matsushita Electric Industrial Co., Ltd. Base station apparatus and packet transmitting method
JP3612563B2 (en) 2001-09-07 2005-01-19 独立行政法人情報通信研究機構 Multi-mode block coding modulation demodulation method
CN101835283B (en) * 2004-06-29 2012-07-11 夏普株式会社 Terminal device

Also Published As

Publication number Publication date
JPH11355374A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
EP0729681B1 (en) Apparatus and method for maximizing frequency offset tracking performance in a digital receiver
EP0899923A1 (en) Transmission of power control signals in a multicarrier modulation system
JPH05219021A (en) Orthogonal frequency division multiplexed digital signal transmission system and transmitting device and receiving device used for the same
JPH10322304A (en) Ofdm transmitter and receiver, ofdm transmission method and reception method
US5812614A (en) Apparatus and method for maximizing frequency offset tracking performance in a digital receiver
JPH08265143A (en) Carrier recovery circuit
US4438524A (en) Receiver for angle-modulated carrier signals
JP2772292B2 (en) OFDM transmission system and transceiver
JP3548002B2 (en) Demodulation method and demodulation device
JP2818151B2 (en) OFDM transmission system and OFDM transceiver
JPH08265292A (en) Ofdm receiver
US7283569B2 (en) Site delivery method, method for receiving digital satellite broadcast, and receiver for digital satellite broadcast
EP1039710A1 (en) Carrier reproduction circuit
WO1999039486A1 (en) Digital demodulator
JP3583932B2 (en) Demodulation device and demodulation method
JP2004254069A (en) Receiver
JP2001345869A (en) Carrier-reproducing circuit and digital signal receiver
JPH06232939A (en) Frame synchronization circuit
JP2500781B2 (en) Line switching device
JPH07123017A (en) Receiver
JP4375032B2 (en) QAM transmission system and QAM receiver
JPH0730595A (en) Modulation control system in satellite communication
JPH05110609A (en) Demodulator for orthogonal amplitude modulation system digital radio equipment
JPH05347644A (en) Data demodulator
JPH10290265A (en) Radio receiver

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees