JP3547314B2 - Compressed air production equipment - Google Patents

Compressed air production equipment Download PDF

Info

Publication number
JP3547314B2
JP3547314B2 JP15252998A JP15252998A JP3547314B2 JP 3547314 B2 JP3547314 B2 JP 3547314B2 JP 15252998 A JP15252998 A JP 15252998A JP 15252998 A JP15252998 A JP 15252998A JP 3547314 B2 JP3547314 B2 JP 3547314B2
Authority
JP
Japan
Prior art keywords
control
compressor
compressed air
inverter
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15252998A
Other languages
Japanese (ja)
Other versions
JPH11343986A (en
Inventor
優和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP15252998A priority Critical patent/JP3547314B2/en
Publication of JPH11343986A publication Critical patent/JPH11343986A/en
Application granted granted Critical
Publication of JP3547314B2 publication Critical patent/JP3547314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Multiple Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動電動機の回転数を変化させて圧縮機の容量を調整する圧縮機を複数台組み合わせる場合の制御方法に関する。
【0002】
【従来の技術】
従来、特開平9−250485 号公報において図5に示すものが公知である。圧縮機は圧縮空気出口の圧力センサーが設けられ、PID制御により圧縮機の回転数を変化させて容量制御を行う圧縮機が示されている。
【0003】
【発明が解決しようとする課題】
上記従来の技術においては、圧縮機を単独で運転する場合、従来の回転数一定での容量制御方法に対し大きな消費動力の改善が得られるが、圧縮空気製造装置では圧縮機を複数台並列に接続して運転を行う場合があり、この場合には従来技術の圧縮機を並列運転しても、従来方式の台数制御運転に対し大きな省電力効果が得られないという問題があった。
本発明の目的は、使用空気量の減少に対応してほぼ直線的に消費動力を減少させることのできる圧縮空気製造装置を得ることにある。
【0004】
【課題を解決するための手段】
上記目的を達成するため本発明は、電動機によって駆動されるスクリュー圧縮機を複数台並列に設置して、その吐出空気系統を一つの配管または空気槽に合流した圧縮空気製造装置において、電動機をインバータによって回転数を可変で駆動して容量制御を行う回転数制御と、この回転数制御の下限回転数で回転数を一定にし、圧縮機の吐出圧力を減圧することにより無負荷運転を行う容量制御とを組み合わせた容量制御を有する複数台のインバータ駆動圧縮機と、合流した配管または空気槽に設けられた圧力検出手段と、予め設定された制御上限圧力値と制御下限圧力値を有し、前記圧力検出手段で検出された圧力値と比較して前記複数台の圧縮機を制御する制御装置とを備え、前記制御装置は、前記複数台のインバータ駆動圧縮機うちの1台のみをインバータによる回転数制御を行わせ、その他のインバータ駆動圧縮機は全負荷運転に固定して運転するか停止させるように制御し、かつ前記圧力検出手段で検出された圧力値が前記制御上限圧力値以上となった場合には、前記回転数制御を行わせていた圧縮機を停止させると共に、他の全負荷運転中のインバータ駆動圧縮機を回転数制御に切り替え、空気消費量が減少して前記制御上限圧力値に到達する毎にこの動作を繰り返させることにより、順次圧縮機を停止させていくように制御することを特徴とするものである。
【0005】
上記構成とすることにより本発明によれば、複数台のインバータ駆動圧縮機を並列運転する場合、変動する付加に応じて回転数制御により容量制御を行う圧縮機を1台に限定し他の圧縮機は停止または全負荷運転するように構成しているので、使用空気量の減少に対し消費動力がほぼ直線的に変化する理想的な圧縮空気製造装置が得られる
【0006】
【発明の実施の形態】
図1に、本発明の実施例の圧縮機の機器の構成とフローを示す。
【0007】
本実施例では5台の圧縮機を使用した圧縮空気製造装置の例を示す。5台の圧縮機(1から5)はそれぞれインバータとPID機能を有し回転数を変化できるもので、其々の圧縮空気出口は集合されて空気槽6に接続され、圧縮空気使用ラインへと供給される。
【0008】
空気槽6には圧力センサー7が取り付けられており、この信号は制御装置8に取り込まれる。制御装置にはあらかじめ制御上限圧力Hと制御下限圧力Lを設定しておき、圧力センサーで検知される圧力と常に比較を行わせる。
【0009】
また制御装置には容量制御を行わせる圧縮機の順序をあらかじめ設定しておく。例えば本例では1から5の数字の大きい順に容量制御を行わせる。以降1を圧縮機No.1,2を圧縮機No.2と5まで順次圧縮機No.で呼ぶ。
【0010】
本制御装置8は圧縮機の運転中に空気槽の圧力がLより高く、H未満であれば、No.5圧縮機5のみを回転数制御し、その他のNo.1からNo.4の圧縮機(1,2,3,4)は容量制御を行わせずに全負荷で運転させる。
【0011】
空気槽の圧力がH以上になったときは、これを圧力センサー7で検出し、制御装置8からNo.5の圧縮機を停止させる信号を発すると同時に、回転数制御を行う圧縮機をNo.4圧縮機4に切り替える。装置から吐出される空気量より、消費量が減少して圧力がHに到達する毎に、この動作を繰り返させ順次圧縮機を停止させていく。
【0012】
逆に圧力がL以下になったことを圧力センサー7が検出すると、制御装置から、停止したのと逆の順序で圧縮機を起動し、起動した圧縮機にのみ回転数制御による容量制御を行わせる。
【0013】
容量制御を行う圧縮機は圧力が一定になるように回転数を変化させる運転を行うが、この制御圧力は前記LとHの間の任意の圧力に設定する。この圧力の検出は個々の圧縮機の出口に内蔵された圧力センサーで検出して個々のPID機能とインバータで制御する。あるいは、空気槽6に設置された圧力センサー7で圧力を検出し、これを個々の圧縮機のPID回路へ送り込んで回転数制御してもよい。
【0014】
図2に1台の圧縮機の使用空気量Qに対する消費動力Lの特性を示す。図は全負荷時の吐出し空気量を100%、そのときの圧縮機の消費動力を100%として示してある。図2aは圧縮機の回転数は一定で吸込み絞り方式の消費動力特性であり、図2bはインバータを用い30%〜100%の空気量の範囲で回転数制御を行い、30%以下の領域では吸込み絞りを行ったときの消費動力特性である。圧縮機1台で比較した場合には図2bの方が大幅に容量制御特性が優れており負荷変動時の電力消費は大きく改善できる。
【0015】
一方、圧縮機の回転数は一定の吸込絞り方式の圧縮機を5台設置し、そのうち1台のみ容量制御機とし他を全負荷運転させることのできる機能を制御装置によって付加した場合、図3及び図4のBのような消費動力特性となり、このような運転方法は従来からも圧縮機の台数制御方式として採り入れられている。
【0016】
また、回転数制御機能を有する5台の圧縮機を単純に並列運転した場合の消費動力特性は図3(図4)中のAのようになる。AとBの比較においては一部分Bの方が下回る(消費動力が小さくなる)場合があり、必ずしも回転数制御方式を有する圧縮機の省電力面での優位性が発揮できない。
【0017】
しかし、本発明の圧縮空気製造装置では回転数制御を1台の圧縮機のみに受け持たせることにより図3(図4)のCのような消費動力特性を得ることが可能になり、複数台の圧縮機で構成される圧縮空気製造設備においても、消費空気量に対してほぼ直線的に消費動力が低下するという理想的な特性を得ることができる。この場合Bの方式に対し、図3の中の斜線部が省電力となり、本例の装置を消費動力37kWの圧縮機5台で構成したとすると、最大18kWh(図2aのP点と図2bのQ点の差分に相当)の省電力となる。
【0018】
また、回転数制御機能を有する圧縮機は吐出圧力を一定値にするように制御を行わせることができるため、この設定圧力を前記Lより少し高く設定しておけば、無駄な圧力上昇を防止し、この面でも消費電力を軽減することが可能である。
【0019】
また、あらかじめ圧縮空気の消費空気量の変動パターンが把握されており、比較的少ない負荷で使用されるケースが少ない場合では、回転数が一定で吸込み絞り方式で容量を調整するタイプの圧縮機を少なくとも1台、設備の中に組み入れておいてもよい。
【0020】
この場合には、インバータで回転数を変化させることの可能な圧縮機がすべて停止するまで、制御装置8により、回転数一定の圧縮機は容量調整を行わせないようにする。例えば図1の如く、5台の圧縮機で装置を構成する場合で、あらかじめ空気の使用量が必ず2台分ある場合には図1中のNo.4圧縮機4とNo.5圧縮機5は回転数一定の圧縮機で構成しておく。この場合の消費動力特性は図4のようになるが、通常の圧縮空気の使用領域が40%以上であれば、従来の方法に対する省電力効果は図3の場合と同じになる。
【0021】
これにより、比較的イニシャルコストの低い一定速度の圧縮機を装置内に採り入れても前記と同様の省電力効果を得ることができる。
【0022】
【発明の効果】
本発明によれば、複数台の圧縮機で構成される圧縮空気製造装置において、使用空気量の減少に対し消費動力がほぼ直線的に変化する理想的な圧縮空気製造装置が得られる
【図面の簡単な説明】
【図1】本発明の圧縮空気製造装置を示す構成図。
【図2】1台の圧縮機の消費動力特性を示す図。
【図3】圧縮空気製造装置の消費動力特性を示す図。
【図4】本発明の圧縮空気製造装置の消費動力を示す図。
【図5】従来技術の圧縮空気製造装置の構成図。
【符号の説明】
1〜5…圧縮機、6…空気槽、7…圧力センサー、8…制御装置、9…圧縮機本体、10…電動機、11…インバータ,PID制御部、12…吸込フィルター、13…オイルセパレータ、14…アフタークーラ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control method in a case where a plurality of compressors for adjusting the capacity of a compressor by changing the rotation speed of a drive motor are combined.
[0002]
[Prior art]
2. Description of the Related Art FIG. The compressor is provided with a pressure sensor at a compressed air outlet, and performs capacity control by changing the rotation speed of the compressor by PID control.
[0003]
[Problems to be solved by the invention]
The above conventional art, when driving the compressor alone, but significant improvement in power consumption relative to a capacity control method of a conventional constant rotating speed is obtained, a plurality of the compressor compressed air producing device parallel In this case, there is a problem that even if the conventional compressors are operated in parallel, a large power saving effect cannot be obtained as compared with the conventional unit control operation.
SUMMARY OF THE INVENTION An object of the present invention is to provide a compressed air producing apparatus capable of reducing power consumption substantially linearly in response to a decrease in the amount of used air.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a compressed air producing apparatus in which a plurality of screw compressors driven by an electric motor are installed in parallel, and the discharge air system is merged into one pipe or an air tank. A speed control that performs capacity control by driving the speed variably, and a capacity control that performs no-load operation by reducing the discharge pressure of the compressor by keeping the speed constant at the lower limit speed of this speed control A plurality of inverter-driven compressors having capacity control in combination with, pressure detecting means provided in a merged pipe or air tank, having a preset control upper limit pressure value and control lower limit pressure value, A control device for controlling the plurality of compressors in comparison with the pressure value detected by the pressure detection means, wherein the control device is configured to control the plurality of the inverter-driven compressors. Only the units are controlled by the inverter to control the rotation speed, the other inverter-driven compressors are controlled to operate at a fixed full-load operation or stopped, and the pressure value detected by the pressure detection means is controlled by the pressure control. When the pressure becomes equal to or higher than the upper limit pressure value, the compressor that has been performing the rotation speed control is stopped, and the other inverter-driven compressor that is operating at full load is switched to the rotation speed control, thereby reducing the air consumption. By repeating this operation each time the control upper limit pressure value is reached, the compressor is controlled so as to be sequentially stopped.
[0005]
According to the present invention has the above structure, limiting case of parallel operation of the plurality of inverters driving the compressor, the compressor performs capacity control by rotational speed control according to the additional varying in one, the other since the compressor is configured to OPERATION stop or full load, the ideal compressed air producing apparatus power consumption to decreased use air amount changes substantially linearly are obtained.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the configuration and flow of a compressor device according to an embodiment of the present invention.
[0007]
In this embodiment, an example of a compressed air producing apparatus using five compressors will be described. Each of the five compressors (1 to 5) has an inverter and a PID function, and can change the rotation speed. The respective compressed air outlets are assembled and connected to the air tank 6, and the compressed air outlets are connected to the compressed air use line. Supplied.
[0008]
A pressure sensor 7 is attached to the air tank 6, and this signal is taken into a control device 8. A control upper limit pressure H and a control lower limit pressure L are set in the control device in advance, and are constantly compared with the pressure detected by the pressure sensor.
[0009]
The order of the compressors for performing the capacity control is set in the control device in advance. For example, in this example, the capacity control is performed in ascending order of numbers from 1 to 5. Thereafter, 1 is the compressor No. 1 and 2 are compressor Nos. Compressor Nos. Call it.
[0010]
If the pressure in the air tank is higher than L and lower than H during the operation of the compressor, The rotation speed of only the compressor 5 is controlled. No. 1 to No. The compressor No. 4 (1, 2, 3, 4) is operated at full load without performing capacity control.
[0011]
When the pressure of the air tank becomes higher than H, this is detected by the pressure sensor 7 and the The signal for stopping the compressor of No. 5 is issued, and at the same time, the compressor for controlling the rotation speed is No. 5. Switch to 4 compressor 4. This operation is repeated and the compressor is sequentially stopped every time the consumption amount is reduced from the air amount discharged from the device and the pressure reaches H.
[0012]
Conversely, when the pressure sensor 7 detects that the pressure has dropped to L or less, the control device starts the compressor in the reverse order of the stop, and performs capacity control by rotation speed control only for the started compressor. Let
[0013]
The compressor that performs capacity control performs an operation of changing the number of revolutions so that the pressure becomes constant. The control pressure is set to an arbitrary pressure between the above L and H. This pressure is detected by a pressure sensor built in the outlet of each compressor and controlled by an individual PID function and an inverter. Alternatively, the pressure may be detected by a pressure sensor 7 installed in the air tank 6 and sent to the PID circuit of each compressor to control the rotation speed.
[0014]
FIG. 2 shows the characteristics of the power consumption L with respect to the amount of used air Q of one compressor. The figure shows the discharge air amount at full load as 100% and the power consumption of the compressor at that time as 100%. FIG. 2A shows the power consumption characteristics of the suction throttle method with the compressor rotating at a constant speed, and FIG. 2B shows the case where the speed is controlled in an air amount range of 30% to 100% using an inverter. It is a power consumption characteristic at the time of performing suction restriction. When compared with one compressor, FIG. 2B has much better capacity control characteristics, and the power consumption during a load change can be greatly improved.
[0015]
On the other hand, in the case where five compressors of the suction throttling type are installed at a fixed rotation speed of the compressor, and only one of them is a capacity controller and a function of operating the other at full load is added by the control device, FIG. 4 and the power consumption characteristics as shown in FIG. 4B, and such an operation method has been conventionally adopted as a method of controlling the number of compressors.
[0016]
The power consumption characteristics when five compressors having a rotation speed control function are simply operated in parallel are as indicated by A in FIG. 3 (FIG. 4). In comparison between A and B, there is a case where B is partially lower (power consumption becomes smaller), and the compressor having the rotation speed control method cannot always exert the power saving advantage.
[0017]
However, in the compressed air production apparatus of the present invention, by controlling the rotation speed to only one compressor, it is possible to obtain a power consumption characteristic as shown by C in FIG. 3 (FIG. 4). In the compressed air production facility constituted by the compressor described above, the ideal characteristic that the power consumption decreases almost linearly with respect to the amount of consumed air can be obtained. In this case, in contrast to the system B, the hatched portion in FIG. 3 saves power, and assuming that the apparatus of this example is composed of five compressors consuming 37 kW of power, a maximum of 18 kWh (point P in FIG. ).
[0018]
In addition, since the compressor having the rotation speed control function can perform control so that the discharge pressure is kept at a constant value, setting this set pressure a little higher than the above L prevents unnecessary pressure rise. However, power consumption can be reduced in this aspect as well.
[0019]
In addition, when the fluctuation pattern of the amount of air consumed by compressed air is known in advance, and there are few cases where it is used with a relatively small load, a compressor with a constant rotation speed and a capacity adjusted by the suction throttle method is used. At least one unit may be incorporated in the equipment.
[0020]
In this case, the controller 8 prevents the compressor whose rotational speed is constant from performing capacity adjustment until all the compressors whose rotational speed can be changed by the inverter are stopped. For example, as shown in FIG. 1, when the apparatus is composed of five compressors, and the amount of air used is always two, the No. 1 in FIG. No. 4 compressor 4 and No. 4 The 5 compressor 5 is constituted by a compressor having a constant rotation speed. The power consumption characteristics in this case are as shown in FIG. 4, but if the area where normal compressed air is used is 40% or more, the power saving effect with respect to the conventional method is the same as that in FIG.
[0021]
As a result, the same power saving effect as described above can be obtained even if a compressor having a relatively low initial cost and a constant speed is adopted in the apparatus.
[0022]
【The invention's effect】
According to the present invention, in the compressed air producing device composed of a plurality of compressors, the ideal compressed air producing device power consumption against the decreased use air amount changes substantially linearly are obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a compressed air production device of the present invention.
FIG. 2 is a diagram showing power consumption characteristics of one compressor.
FIG. 3 is a diagram showing power consumption characteristics of a compressed air production device.
FIG. 4 is a diagram showing power consumption of the compressed air production device of the present invention.
FIG. 5 is a configuration diagram of a conventional compressed air production device.
[Explanation of symbols]
1-5 compressor, 6 air tank, 7 pressure sensor, 8 controller, 9 compressor body, 10 motor, 11 inverter, PID control unit, 12 suction filter, 13 oil separator, 14 ... Aftercooler.

Claims (4)

電動機によって駆動されるスクリュー圧縮機を複数台並列に設置して、その吐出空気系統を一つの配管または空気槽に合流した圧縮空気製造装置において、A plurality of screw compressors driven by an electric motor are installed in parallel, and in a compressed air production device in which the discharge air system is merged into one pipe or air tank,
電動機をインバータによって回転数を可変で駆動して容量制御を行う回転数制御と、この回転数制御の下限回転数で回転数を一定にし、圧縮機の吐出圧力を減圧することにより無負荷運転を行う容量制御とを組み合わせた容量制御を有する複数台のインバータ駆動圧縮機と、  Rotational speed control, in which the motor is variably driven by an inverter to control the rotational speed, to control the capacity, and no-load operation by reducing the discharge pressure of the compressor by keeping the rotational speed constant at the lower limit of the rotational speed control and reducing the discharge pressure of the compressor A plurality of inverter-driven compressors having capacity control in combination with capacity control to be performed;
合流した配管または空気槽に設けられた圧力検出手段と、  Pressure detection means provided in the joined pipe or air tank,
予め設定された制御上限圧力値と制御下限圧力値を有し、前記圧力検出手段で検出された圧力値と比較して前記複数台の圧縮機を制御する制御装置とを備え、  A control device having a control upper limit pressure value and a control lower limit pressure value set in advance, and controlling the plurality of compressors by comparing the pressure value detected by the pressure detection means,
前記制御装置は、前記複数台のインバータ駆動圧縮機うちの1台のみをインバータによる回転数制御を行わせ、その他のインバータ駆動圧縮機は全負荷運転に固定して運転するか停止させるように制御し、かつ  The control device controls only one of the plurality of inverter-driven compressors to perform rotation speed control by an inverter, and controls the other inverter-driven compressors to operate at a fixed full-load operation or to stop the operation. And
前記圧力検出手段で検出された圧力値が前記制御上限圧力値以上となった場合には、前記回転数制御を行わせていた圧縮機を停止させると共に、他の全負荷運転中のインバータ駆動圧縮機を回転数制御に切り替え、空気消費量が減少して前記制御上限圧力値に到達する毎にこの動作を繰り返させることにより、順次圧縮機を停止させていくように制御することを特徴とする圧縮空気製造装置。  When the pressure value detected by the pressure detecting means is equal to or higher than the control upper limit pressure value, the compressor that has performed the rotation speed control is stopped, and the inverter drive compression during other full load operation is performed. The compressor is switched to speed control, and this operation is repeated each time the air consumption decreases and reaches the control upper limit pressure value, whereby the compressor is controlled so as to sequentially stop. Compressed air production equipment.
請求項1において、前記無負荷運転を行う容量制御では、回転数制御の下限回転数で、回転数を一定にして吸い込み絞り弁も閉塞することを特徴とする圧縮空気製造装置。 2. The compressed air producing apparatus according to claim 1, wherein in the capacity control for performing the no-load operation, the suction throttle valve is closed with the rotation speed kept constant at the lower limit rotation speed of the rotation speed control . 前記請求項1において、制御手段に、容量制御を行わせる、または停止させる圧縮機の順序を任意に設定できる機能を付加したことを特徴とする圧縮空気製造装置。The Oite to claim 1, the control unit, compressed air production apparatus which is characterized in that an additional function can be arbitrarily set the order of the compressor to perform the capacity control or stop. 前記請求項1において、圧縮空気製造装置を構成する複数台の圧縮機のうち少なくとも1台が、回転数が一定で、吸込み空気を絞る手段によってその容量を調整する圧縮機であり、全てのインバータ駆動圧縮機が停止した場合にかぎって、回転数が一定の圧縮機に容量調整を行わせることを特徴とする圧縮空気製造装置。Oite to claim 1, at least one of the plurality of compressors constituting the compressed air producing device, at a rotational speed is constant, a compressor to adjust its capacity by means of squeezing the suction air, all of the inverter-driven compressor is only if you stop, compressed air producing device comprising a Turkey speed to perform the capacity adjustment to a certain compressor.
JP15252998A 1998-06-02 1998-06-02 Compressed air production equipment Expired - Lifetime JP3547314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15252998A JP3547314B2 (en) 1998-06-02 1998-06-02 Compressed air production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15252998A JP3547314B2 (en) 1998-06-02 1998-06-02 Compressed air production equipment

Publications (2)

Publication Number Publication Date
JPH11343986A JPH11343986A (en) 1999-12-14
JP3547314B2 true JP3547314B2 (en) 2004-07-28

Family

ID=15542440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15252998A Expired - Lifetime JP3547314B2 (en) 1998-06-02 1998-06-02 Compressed air production equipment

Country Status (1)

Country Link
JP (1) JP3547314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776072A (en) * 2009-12-09 2010-07-14 湖北兴瑞化工有限公司 Method for automatic matching running of multiple air compressors according to working conditions

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839755B1 (en) * 2002-05-14 2006-02-03 Air Liquide COMPRESSOR GAS PRODUCTION FACILITY, AND METHOD OF OPERATING THE SAME
BE1015460A3 (en) 2003-04-04 2005-04-05 Atlas Copco Airpower Nv Method for controlling an air system with multiple compressors, steering box applied thereby, and air system that applying this process.
JP4271046B2 (en) * 2004-01-26 2009-06-03 株式会社日立産機システム Compressor unit
JP2005330900A (en) * 2004-05-20 2005-12-02 Hitachi Industrial Equipment Systems Co Ltd Compressor unit
JP5016301B2 (en) * 2006-11-28 2012-09-05 北越工業株式会社 Compressor operation control method and compressed gas supply system in compressed gas supply system
JP4864063B2 (en) * 2008-10-27 2012-01-25 株式会社日立産機システム Compressor unit
JP5484867B2 (en) * 2009-11-17 2014-05-07 アズビル株式会社 Compressed air supply system and method
CN103362790B (en) * 2012-04-01 2016-12-14 比亚迪股份有限公司 A kind of air compressor control system and control method thereof
JP2013231396A (en) 2012-04-27 2013-11-14 Anest Iwata Corp Compressed gas supply unit
CN104968939B (en) * 2013-02-08 2018-01-09 株式会社日立产机*** Fluid compression system and its control device
CN107503927A (en) * 2017-08-22 2017-12-22 王浩宇 The parallel operation control system and its control method of a kind of gas compressor
CN109469602B (en) * 2017-09-07 2021-07-02 阿耐思特岩田株式会社 Compressed gas supply device and control method for compressed gas supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776072A (en) * 2009-12-09 2010-07-14 湖北兴瑞化工有限公司 Method for automatic matching running of multiple air compressors according to working conditions

Also Published As

Publication number Publication date
JPH11343986A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP3547314B2 (en) Compressed air production equipment
JP4248077B2 (en) Compressor device
JP5721309B2 (en) Multi-stage high pressure compressor
US8192171B2 (en) Compressor system
JP2004011597A (en) Pump unit
JPS59145392A (en) Method of controlling capacity of screw-type compressor
JP2675730B2 (en) Variable capacity compressor
JPH1082391A (en) Control device of two-stage screw compressor
JP3930987B2 (en) Compressed air production facility and operation method thereof
JPH09209949A (en) Screw compressor, and control method thereof
JP3470042B2 (en) Screw compressor pressure control method
JPH09264255A (en) Air compressor
JP5915931B2 (en) Compressor number control system
JP4443109B2 (en) Compressed air production facility
JP3406514B2 (en) Method and apparatus for adjusting compressor capacity
JP4122451B2 (en) Compressed air production system
JP4417178B2 (en) Compressed air production system
JP5163962B2 (en) Steam system
JP4399655B2 (en) Compressed air production facility
JP2001280275A (en) Method for operating screw compressor and the screw compressor
JP4627763B2 (en) Compressed air production facility and operation method thereof
JP3731931B2 (en) Compressor control method
JP3882112B2 (en) Screw compressor
JP2004100565A (en) Device for controlling motor revolution of compressor
JPH07293477A (en) Inverter driven screw compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

EXPY Cancellation because of completion of term