JP3546721B2 - Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction - Google Patents

Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction Download PDF

Info

Publication number
JP3546721B2
JP3546721B2 JP30096098A JP30096098A JP3546721B2 JP 3546721 B2 JP3546721 B2 JP 3546721B2 JP 30096098 A JP30096098 A JP 30096098A JP 30096098 A JP30096098 A JP 30096098A JP 3546721 B2 JP3546721 B2 JP 3546721B2
Authority
JP
Japan
Prior art keywords
temperature
less
cooling
sec
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30096098A
Other languages
Japanese (ja)
Other versions
JP2000129350A (en
Inventor
伸一 鈴木
隆二 村岡
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP30096098A priority Critical patent/JP3546721B2/en
Publication of JP2000129350A publication Critical patent/JP2000129350A/en
Application granted granted Critical
Publication of JP3546721B2 publication Critical patent/JP3546721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高層建築物などの鋼構造物に用いられる低降伏比高張力鋼材の製造方法に関し、特に板厚方向の材質差の小さい低降伏比高張力鋼材の製造方法に関する。
【0002】
【従来の技術】
近年建築物の高層化、大型化に伴い使用される部材にも厚肉化、高張力化が要求され、引張強度490N/mm以上の高張力厚鋼材が普及してきている。また、今日の高層建築物には、巨大地震に見舞われた時、柱・梁部材の塑性変形により地震エネルギーを吸収させ、大崩壊を回避するという人的安全性を重視した限界状態設計法が適用される。したがって、限界状態設計法で使用される柱・梁部材には、高い塑性変形能の目安として降伏比(YR)が低いこと、つまり低降伏比が望まれ、降伏比が低い材料ほど塑性変形能が優れていると言われている。低降伏比化については、一般的に焼入れと焼戻し処理の間に二相域に加熱する中間熱処理を施す方法等に代表されるように、軟質相であるフェライトと硬質相であるべイナイトあるいはマルテンサイトを混在させたフェライト+硬質相組織により達成されることが知られている。このフェライト+硬質相組織を得るための従来技術としては、上述した焼入れ−二相域焼入れ−焼戻し処理する方法や、熱間圧延後フェライトとオーステナイトの二相域まで待機した後加速冷却する方法などが挙げられるが、これらの技術では複雑な熱処理工程の必要や焼入れ開始までの待機時間の長期化による生産性の低下や製造コストの増加が避けられない。 これを回避する方法が、特公平7−74379号公報や特開平5−271761号公報に開示されている。特公平7−74379号公報、特開平5−271761号公報の提案とも、熱間圧延後に(Ar−20)℃以下、(Ar−100)℃以上まで予備冷却を行った後鋼板表面が(Ar−100)℃以上に復熱させ、再び15℃/秒を超える冷却速度で400℃未満まで冷却後、400℃以上Ac点以下で焼戻すというものである。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの提案では冷却速度が速いため表面に著しい強度上昇を生じる揚合があるばかりでなく、予備冷却後の復熱時間についての規定がないため、低降伏比に適した組織に制御し難く、板厚方向の材質の均一性および低降伏比鋼の製造安定性に劣る。
【0004】
鋼材の板厚方向の強度差を低減する方法は、特開平3−188216号公報や特開平4−224623号公報に開示されている。特開平3−188216号公報の提案は鋼スラブをオーステナイトの再結晶域で圧延終了後、Ar点以上から水冷を開始し、表面温度が(Ar−150)℃以下で一旦冷却を中止して表面温度がAc点〜Ac点に復熱した後、水冷を再開するものである。しかしながら、この方法は表面温度をAc点〜Ac点に復熱して硬質べイナイトの一部をオーステナイトへ逆変態させた後水量密度0.6m/(m・min)以上で急冷するため、逆変態オーステナイトが再び硬質べイナイトになる場合があり、板厚方向の強度差は必ずしも低減されない。また、冷却時の板厚方向内部の温度履歴が規定されておらず、これだけでは必ずしも低降伏比鋼を得ることができない。また、特開平4−224623号公報の提案は、制御冷却時の冷却速度の範囲を3〜12℃/secとした他、圧延終了温度、冷却開始温度、冷却停止温度等を規定したものである。しかしながら、この方法では表面と内部の強度をそれぞれ制御することができず、冷却速度が提案の範囲の上限に近づくと板厚方向の強度差が大きくなることは避けられない。
【0005】
本発明の目的は、上記の各問題点を解消し、高層建築物などに用いる低降伏比高張力鋼材を板厚方向の材質の均一性を損なうことなく安価で大量に安定して製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
【0007】
(1)本発明の製造方法は、鋼成分として、重量%で、C:0.02〜0.18%と、Si:0.05〜0.5%と、Mn:0.6〜1.7%と、Al:0.08%以下、残部がFeおよび不可避不純物からなる含有する鋼材を1000℃以上に加熱後Ar3 以上の温度域において圧下率が50%以上の熱間圧延を行う工程と、熱間圧延された鋼材をAr3 以上から2℃/秒以上の冷却速度で加速冷却を開始して、表面温度が(Ar3 −200)℃以下で一旦冷却を中断し、表面温度が650℃以上Ac1 以下に復熱した後、再び2℃/秒以上の冷却速度で平均温度Ar3 〜(Ar3 −100)℃の温度範囲まで加速冷却し、当該温度域において下記(1)式を満たす待機時間:t秒の待機を行う工程と、待機された鋼材を平均温度が400℃未満の温度域まで2℃/秒以上の冷却速度で加速冷却を行い、その後630℃越えAc1 点以下の温度で焼戻す工程と、を備えたことを特徴とする、板厚方向材質差の小さい低降伏比高張力鋼材の製造方法である。
【0008】
10 1.3-0.00 6×Δ T ≦t≦150 …(1)
ここで、ΔT(℃):Ar3 と待機時の平均温度T(℃)の温度差(=Ar3−T)、t(秒):待機時間(2)本発明の製造方法は、鋼成分として、重量%で、C:0.02〜0.18%と、Si:0.05〜0.5%と、Mn:0.6〜1.7%と、Al:0.08%以下含有する鋼材を1000℃以上に加熱後Ar3 以上の温度域において圧下率が50%以上の熱間圧延を行う工程と、熱間圧延された鋼材をAr3 以上から2℃/秒以上の冷却速度で加速冷却を開始して、表面温度が(Ar3 −200)℃以下で一旦冷却を中断し、表面温度が650℃以上Ac1 以下に復熱した後、再び2℃/秒以上の冷却速度で平均温度Ar3 〜(Ar3 −100)℃の温度範囲まで加速冷却し、当該温度域において下記(1)式を満たす待機時間:t秒の待機を行う工程と、待機された鋼材を平均温度が400℃未満の温度域まで2〜15℃/秒の冷却速度で加速冷却を行い、その後500℃越えAc1 点以下の温度で焼戻す工程と、を備えたことを特徴とする、板厚方向材質差の小さい低降伏比高張力鋼材の製造方法である。
【0009】
10 1.3-0.00 6×Δ T t≦150 …(1)
ここで、ΔT(℃):Ar3 と待機時の平均温度T(℃)の温度差(=Ar3−T)、t(秒):待機時間(3)本発明の製造方法は、鋼成分として、重量%でさらに、Cu:0.05〜1.0%、Ni:0.05〜0.8%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.1%、V:0.005〜0.1%及びTi:0.005〜0.03%の群から選択された1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の板厚方向材質差の小さい低降伏比高張力鋼材の製造方法である。
【0010】
なお、本発明においては特にことわりのない限り温度は鋼板板厚方向の平均温度とする。
【0011】
【発明の実施の形態】
本発明者らは、圧延後加速冷却前に長時間の待機あるいは焼入れ−二相域焼入れ−焼戻しといった複雑な熱処理を行うことなく、低降伏比高張力厚鋼材を製造する技術を鋭意検討した結果、以下の知見を得るに至った。
【0012】
図1は、表1に示した鋼Aの成分系を用いて鋼材特性(強度、降伏比)に及ぼす待機温度と待機時間の影響を示した図である。図1に示すように、Ar3 〜(Ar3 −100)℃の温度域で10 1.3-0.00 6×Δ T ≦t≦150秒待機することにより引張強度が490N/mm2 以上でかつ降伏比が80%以下となることが明らかである。
【0013】
この知見に基づき、本発明者らは、特定量の化学成分を有する鋼に施す熱間圧延条件、加速冷却条件、及び熱処理条件を一定範囲内に制御するようにして、鋼組織をフェライト+焼戻しマルテンサイト混合組織もしくはフェライト+焼戻しマルテンサイト+べイナイト混合組織として490N/mm以上の引張強度と80%以下の低降伏比を達成できるとともに、板厚方向の材質差を小さくすることが可能な、低降伏比高張力鋼材の製造方法を見出し、本発明を完成させた。
【0014】
即ち、本発明は、鋼組成及び製造条件を下記範囲に限定することにより、高層建築物用などに用いる低降伏比高張力鋼材を、板厚方向の材質の均一性を損なうことなく安価で大量に安定して製造する方法を提供することができる。
【0015】
以下に、本発明の成分添加理由、成分限定理由、及び製造条件の限定理由について説明する。
【0016】
(1)成分組成範囲
C:0.02〜0.18%
Cは、鋼の強度を確保するために0.02%以上添加するが、0.18%を超えて多量に含有させると靭性および溶接性が劣化するため、その範囲は0.02〜0.18%である。
【0017】
Si:0.05〜0.5%
Siは、脱酸のために0.05%以上の添加が必要であるが、0.5%を超えるとHAZ(熱影響部)靭性及び溶接性が劣化するため、その範囲は0.05〜0.5%である。
【0018】
Mn:0.6〜1.7%
Mnは、鋼材の強度・靭性の向上ならびにFeSの生成抑制のため0.6%以上は必要であるが、1.7%を超える多量の添加は鋼の焼き入れ性の増加を引き起こし、溶接時に硬化層が生成して割れ感受性が高くなるため、その範囲は0.6〜1.7%である。
【0019】
Al:0.08%以下
Alは、脱酸上鋼に含まれる元素であるが、多量に含有させると鋼の清浄度を悪くし、溶接部の靭性劣化を招くため、その範囲は0.08%以下である。
【0020】
本発明は以上を基本成分とし、以下の選択成分群の1種または2種以上を添加する。
【0021】
(選択成分群)
Cu:0.05〜1.0%
Cuは、強度上昇および靭性改善に非常に有効な元素であるが、含有量が0.05%未満では十分な効果が発揮されず、1.0%を越えると析出硬化が著しくまた鋼材表面に割れが生じやすいため、Cuを添加する場合にはその範囲は0.05〜1.0%である。
【0022】
Ni:0.05〜0.8%
Niは、母材の強度ならびに靭性を向上させる効果を有するが、その含有量が0.05%未満では十分な効果が得られず、0.8%を超える添加はコストアップにつながるため、Niを添加する場合にはその範囲は0.05〜0.8%である。
【0023】
Cr:0.05〜1.0%
Crは、焼入性向上に有効な元素であるが、その含有量が0.05%未満では効果が小さく、1.0%を超えると溶接性やHAZ靭性を劣化させるため、Crを添加する場合にはその範囲は0.05〜1.0%である。
【0024】
Mo:0.05〜1.0%
Moは、焼入性を高めるとともに焼き戻し軟化抵抗を高め、強度上昇に有効であるが、その含有量が0.05%未満ではその効果が十分に発揮されず、1.0%を超えると溶接性を劣化させるとともに炭化物の析出により降伏比が上昇するため、Moを添加する場合にはその範囲は0.05〜1.0%である。
【0025】
Nb:0.005〜0.1%
Nbは、微細炭窒化物の析出効果により強度上昇、靭性向上に有効に作用する元素であるが、その含有量が0.005%未満では効果が発揮されず、0.1%を越える添加は過度の析出効果により降伏比低下の妨げになるため、Nbを添加する場合にはその範囲は0,005〜0.1%である。
【0026】
V:0.005〜0.1%
Vは、少量の添加により焼入性を向上させ、焼戻し軟化抵抗を高める元素であるが、その含有量が0.005%未満ではその効果が十分に発揮されず、0.1%を超えて添加すると溶接性を劣化させるため、Vを添加する場合にはその範囲は0.005〜0.1%である。
【0027】
Ti:0.005〜0.03%
Tiは、TiNの溶接HAZ部の組織粗大化を抑制してHAZ籾性の向上に寄与する元素である。0.005%未満のTi添加ではHAZ靭性向上効果が発揮されない。一方、0.03%を越えて添加すると、溶接の冷却過程でTiCが析出し、HAZ靭性の劣化を招くため、Tiを添加する場合にはその範囲は0.005〜0.03%の範囲である。
【0028】
上記の成分組成範囲に調整することにより、高層建築物などに用いる降伏比が80%以下の高張力厚鋼材を、圧延後の板熱処理を必要とすることなく安価で大量に安定して得ることが可能となる。
【0029】
このような特性の鋼材は以下の製造方法により、製造することができる。
【0030】
(2)鋼材製造工程
(2−1)態様1の製造条件
(製造方法)
上記の成分組成範囲に調整した鋼を1000℃以上に加熱後Ar以上の温度域において圧下率が50%以上の熱間圧延を行った後、続いてAr以上から2℃/秒以上の冷却速度で加速冷却を開始して、表面温度が(Ar−200)℃以下で一旦冷却を中断し、表面温度が650℃以上Ac以下に復熱した後、再び2℃/秒以上の冷却速度で平均温度Ar〜(Ar−100)℃の温度範囲まで加速冷却し、当該温度域において下記(1)式を満たす待機時間:t秒の待機を行った後、平均温度が400℃未満の温度域まで2℃/秒以上の冷却速度で加速冷却を行い、その後630℃越えAc点以下の温度で焼戻す。
【0031】
10 1.3-0.00 6×Δ T ≦t≦150 …(1)
ここで、ΔT(℃):Ar3 と待機時の平均温度T(℃)の温度差(=Ar3−T)、t(秒):待機時間a.鋼の加熱温度:1000℃以上1000℃未満の加熱では、良好な熱間加工性が得られない。よって、鋼の加熱温度は1000℃以上である。
【0032】
b.熱間圧延終了温度:Ar以上
熱間圧延終了温度がAr未満では超音波探傷の測定精度に悪影響を及ぼす音響異方性が生じる。よって、熱間圧延終了温度はAr以上である。
【0033】
c.Ar以上の圧下率:50%以上
Ar以上での圧下率が50%未満では、加熱により粗大化した組織の再結晶が不十分であり、特に靭性が劣化する。よって、Ar以上での圧下率は50%以上である。
【0034】
d.加速冷却開始温度:Ar以上
加速冷却の開始温度がAr未満では、加速冷却開始前に粗大なフェライトが生成し靭性が劣化するとともに、冷却待ち時間を要し生産性が低下する。よって、加速冷却の開始温度はAr以上である。
【0035】
e.Ar以上からの加速冷却速度:2℃/秒以上
Ar以上からの加速冷却速度が2℃/秒未満では、加速冷却中に粗大なフェライトが生成し、靭性が劣化することに加え、冷却中断後に表面温度がすみやかに650℃以上に復熱しにくくなる。よって、Ar以上からの加速冷却速度は2℃/秒以上である。
【0036】
f.冷却中断時の表面温度:(Ar−200)℃以下
冷却中断時の表面温度が(Ar−200)℃よりも高い場合、冷却再開後も含めた初期の冷却速度が小さくなり、加速冷却の効果が損なわれる。よって、冷却中断時の表面温度は(Ar−200)℃以下である。
【0037】
g.復熱時の表面温度:650℃以上Ac以下
復熱時の表面温度が650℃未満の場合、最初の加速冷却により表面付近に生成した硬いべイナイトもしくはマルテンサイトの焼戻しによる軟化が十分に起こらず、板厚方向の材質差が解消されない。また、復熱時の表面温度がAcを越えると逆変態によりオーステナイトが生成し、引き続いて行われる加速冷却により再び硬いべイナイトやマルテンサイトとなる場合がある。よって、復熱時の表面温度は650℃以上Ac以下である。
【0038】
h.復熱後の加速冷却速度:2℃/秒以上復熱後の加速冷却速度が2℃/秒未満では、加速冷却中に粗大なフェライトが生成し、靭性が劣化する。よって、復熱後の加速冷却速度は2℃/秒以上である。
i.冷却待機時の温度:Ar3 〜(Ar3 −100)℃、および待機時間t:
10 1.3-0.00 6×Δ T ≦t≦150秒
前述したように、本発明者らは表1に示した鋼Aの成分系を用いて鋼材特性に及ぼす待機温度と待機時間の影響を検討した結果、図1に示すようにAr3 〜(Ar3 −100)℃の温度域で10 1.3-0.00 6×Δ T ≦t≦150秒待機することにより引張強度が490N/mm2 以上でかつ降伏比が80%以下となることを見出した。つまり、待機温度を比較的短時間でフェライトが析出するAr3 〜(Ar3 −100)℃とし、待機時間を10 1.3-0.00 6×Δ T ≦t≦150秒とすることにより所定のフェライト分率に制御し、その後の更なる加速冷却により残りのオーステナイトをマルテンサイトもしくはマルテンサイトとべイナイトの混合組織とし、630℃を越えAc1 点以下の温度での焼戻しにより最終的にフェライト+焼戻しマルテンサイト混合組織もしくはフェライト+焼戻しマルテンサイト+べイナイト混合組織として降伏比≦80%を達成する。また、待機時間の上限は生産性を損なわないように150秒である。待機温度がAr3 より高温では待機中にフェライトが生成せず、80%以下の低降伏比が得られない。一方、待機温度が(Ar3 −100)℃以下となると短時間の待機においてもフェライトが過度に生成するため強度を確保し難くなる。したがって、強度確保および低降伏比の観点から、待機温度はAr3 〜(Ar3 −100)℃、かつ待機時間は10 1.3-0.00 6×Δ T ≦t≦150秒である。なお、ここに示される冷却待機温度は鋼板の平均温度であり、上記g項に示した復熱時の表面温度よりも高くなる場合もあり得る。
【0039】
j.待機後の加速冷却停止温度:400℃未満
待機後の加速冷却停止温度を400℃以上とすると、加速冷却を行ってもマルテンサイトが生成せず高張力鋼としての十分な強度が得られない。したがって、待機後の加速冷却停止温度は400℃未満である。
【0040】
k.待機後の加速冷却速度および焼戻し温度:2℃/秒以上で冷却した後630℃を越えAc点以下で焼き戻し
待機後の加速冷却速度が2℃/秒未満では、待機後の未変態オーステナイトからマルテンサイトもしくはべイナイト変態が起こりにくく、80%以下の低降伏比を得ることができない。したがって、待機後の加速冷却速度は2℃/秒以上である。圧延・冷却後に焼戻しを行うのは、マルテンサイトの靭性を向上させるとともに、待機後の冷却速度が速い場合に生じる板厚方向の材質差を緩和するためである。焼戻し温度が630℃以下では、この効果が十分でなく、特に板厚方向の材質差が解消されない。一方、焼戻し温度がAc点越えではマルテンサイトもしくはべイナイトの一部もしくは全部がオーステナイトに逆変態するため、高張力鋼としての強度が得られなくなる。したがって、待機後の加速冷却速度が2℃/秒以上の場合焼戻し温度は630℃を越えAc点以下である。
【0041】
(2−1)態様2の製造条件
(製造方法)
上記の成分組成範囲に調整した鋼を1000℃以上に加熱後Ar以上の温度域において圧下率が50%以上の熱間圧延を行った後、続いてAr以上から2℃/秒以上の冷却速度で加速冷却を開始して、表面温度が(Ar−200)℃以下で一旦冷却を中断し、表面温度が650℃以上Ac以下に復熱した後、再び2℃/秒以上の冷却速度で平均温度Ar〜(Ar−100)℃の温度範囲まで加速冷却し、当該温度域において下記(1)式を満たす待機時間:t秒の待機を行った後、平均温度が400℃未満の温度域まで2〜15℃/秒の冷却速度で加速冷却を行い、その後500℃越えAc点以下の温度で焼戻す。
【0042】
101.3−0.006×ΔT≦t≦150 …(1)
ここで、ΔT(℃):Arと待機時の平均温度T(℃)の温度差(=Ar−T)、t(秒):待機時間
a.鋼の加熱温度:1000℃以上
態様1の限定理由と同様。
【0043】
b.熱間圧延終了温度:Ar以上
態様1の限定理由と同様。
【0044】
c.Ar以上の圧下率:50%以上
態様1の限定理由と同様。
【0045】
d.加速冷却開始温度:Ar以上
態様1の限定理由と同様。
【0046】
e.Ar以上からの加速冷却速度:2℃/秒以上
態様1の限定理由と同様。
【0047】
f.冷却中断時の表面温度:(Ar−200)℃以下
態様1の限定理由と同様。
【0048】
g.復熱時の表面温度:650℃以上Ac以下
態様1の限定理由と同様。
【0049】
h.復熱後の加速冷却速度:2℃/秒以上
態様1の限定理由と同様。
【0050】
i.冷却待機時の温度:Ar3 〜(Ar3 −100)℃、および待機時間t:
10 1.3-0.00 6×Δ T ≦t≦150秒
態様1の限定理由と同様。
【0051】
j.待機後の加速冷却停止温度:400℃未満
態様1の限定理由と同様。
【0052】
k.待機後の加速冷却速度および焼戻し温度:2〜15℃/秒で冷却した後500℃を越えAc点以下で焼き戻し
待機後の加速冷却速度を2〜15℃/秒に限定することにより、表面の硬度上昇の程度は小さくなり、板厚方向の材質差が小さくなるため、態様1の条件に比べて焼戻し温度を下げることが可能となる。焼戻し温度が500℃以下ではマルテンサイトの焼戻しが十分に行われず、良好な靭性が得られない。一方、焼戻し温度がAc点越えではマルテンサイトもしくはべイナイトの一部もしくは全部がオーステナイトに逆変態するため、高張力鋼としての強度が得られなくなる。したがって、待機後の加速冷却速度が2〜15℃/秒の場合焼戻し温度は500℃を越えAc点以下である。
【0053】
以上により、上記成分系と圧延・加速冷却条件および焼戻し条件の採用により生産性を損なうことなく490N/mm以上の強度と80%以下の降伏比を有し、かつ板厚方向の材質差が小さい高張力鋼材の製造が可能となる。
【0054】
以下に本発明の実施例を挙げ、本発明の効果を立証する。
【0055】
【実施例】
成分系ならびに圧延、加速冷却条件を変えて製造した鋼材の機械的性質を調べた。表1に供試鋼の化学成分およびAr,Acの各変態点を、表2に供試鋼の製造条件と引張試験、シャルピー衝撃試験の結果ならびに表面と板厚中心部のビッカース硬度差を示す(A〜L:本発明鋼、M〜X:比較鋼)。
【0056】
成分系、製造条件とも本発明の範囲内である本発明鋼A〜Lは、490N/mm以上の十分な引張強度(TS)と80%以下の降伏比(YR)および優れた靭性(vE0)を示し、かつ表面の板厚中心部の硬度差(ΔHv)も12〜25程度と小さい。これに対し、復熱時の表面温度が本発明の範囲外である比較鋼MおよびP、焼戻し温度が本発明の請求項1の範囲より低い比較鋼Uはいずれも表面と板厚中心部の硬度差ΔHvが40以上あり、板厚方向の材質差が大きい。また、冷却中断時の表面温度が本発明の範囲より高い比較鋼X、冷却待機時の平均温度が本発明の範囲より低い比較鋼Oはいずれも引張強度が490N/mm以下であり、高張力鋼としての強度が得られない。また、冷却待機時の平均温度が本発明の範囲より高い比較鋼V、冷却待機時間が本発明の範囲より短い比較鋼W、成分系が本発明の範囲外である比較鋼NおよびRは、いずれもYRが80%を越えており、低降伏比が得られない。また、Ar以上の圧下率が本発明の範囲外である比較鋼T、加速冷却速度が本発明の範囲より小さい比較鋼Sは、いずれも靭性が他の鋼に較べて劣っている。また、焼戻し温度が本発明の範囲より低い比較鋼Qは表面と板厚中心部の硬度差ΔHvが40以上あり、板厚方向の材質差が大きく、かつ靭性も劣っている。
【0057】
【表1】

Figure 0003546721
【0058】
【表2】
Figure 0003546721
【0059】
【本発明の効果】
本発明によれば、鋼組成及び製造条件を特定することにより、高層建築物用などに使用される低降伏比高張力厚鋼材を、製造することができ、圧延後加速冷却前に長時間の待機あるいは焼入れ−二相域焼入れ−焼戻しといった複雑な熱処理を行う必要がないため生産性と経済性を著しく高めることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る鋼材の特性(強度、YR)に及ぼす待機温度と待機時間の影響を示した図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a low-yield-ratio high-strength steel material used for a steel structure such as a high-rise building, and more particularly to a method for producing a low-yield-ratio high-strength steel material having a small material difference in a thickness direction.
[0002]
[Prior art]
In recent years, with the increase in height and size of buildings, members used are required to be thicker and have higher tensile strength, and high-strength thick steel materials having a tensile strength of 490 N / mm 2 or more have become widespread. In addition, today's high-rise buildings are subject to a critical state design method that emphasizes human safety, which is to absorb large amounts of seismic energy by plastic deformation of columns and beams to avoid large collapses when a huge earthquake is hit. Applied. Therefore, the column and beam members used in the limit state design method are required to have a low yield ratio (YR) as a measure of high plastic deformability, that is, a low yield ratio, and a material having a lower yield ratio has a higher plastic deformability. Is said to be excellent. For lowering the yield ratio, a ferrite, which is a soft phase, and a bainite or a marten, which is a hard phase, are typically used, as represented by a method of performing an intermediate heat treatment in which two phases are heated between quenching and tempering. It is known that this can be achieved by a ferrite + hard phase structure in which sites are mixed. Conventional techniques for obtaining this ferrite + hard phase structure include the above-described quenching, two-phase quenching, and tempering treatments, and a method of performing hot-rolling and then cooling to a two-phase region of ferrite and austenite followed by accelerated cooling. However, these technologies inevitably reduce the productivity and increase the manufacturing cost due to the necessity of a complicated heat treatment step and a prolonged standby time until the start of quenching. Methods for avoiding this are disclosed in Japanese Patent Publication No. 7-74379 and Japanese Patent Application Laid-Open No. Hei 5-271761. Kokoku 7-74379 discloses, also proposed in JP-A 5-271761 and JP-after hot rolling (Ar 3 -20) ℃ or less, the steel sheet surface after the pre-cooled to (Ar 3 -100) ℃ or higher The heat is recovered to (Ar 3 -100) ° C. or more, cooled again to less than 400 ° C. at a cooling rate exceeding 15 ° C./sec, and then tempered at 400 ° C. or more and one point of Ac or less.
[0003]
[Problems to be solved by the invention]
However, in these proposals, the cooling rate is high and there is not only a rise that causes a significant increase in strength on the surface, but also there is no regulation on the recuperation time after pre-cooling. Difficulty in uniformity of the material in the thickness direction and poor production stability of low yield ratio steel.
[0004]
Methods for reducing the strength difference in the thickness direction of a steel material are disclosed in JP-A-3-188216 and JP-A-4-224623. Japanese Patent Laid-Open No. Hei 3-188216 proposes that after rolling a steel slab in the austenite recrystallization region, water cooling is started from an Ar point of 3 or more, and the cooling is temporarily stopped when the surface temperature is (Ar 3 -150) ° C. or less. After the surface temperature is restored to Ac 1 point to Ac 3 points, water cooling is restarted. However, in this method, the surface temperature is restored to Ac 1 point to Ac 3 point to partially transform hard bainite into austenite, and then quenched at a water density of 0.6 m 3 / (m 2 · min) or more. Therefore, the reverse transformed austenite may become hard bainite again, and the difference in strength in the thickness direction is not necessarily reduced. Further, the temperature history inside the sheet in the thickness direction at the time of cooling is not specified, and it is not always possible to obtain a low yield ratio steel only by this. In addition, the proposal of Japanese Patent Application Laid-Open No. Hei 4-224623 specifies a rolling end temperature, a cooling start temperature, a cooling stop temperature, and the like, in addition to setting the range of the cooling rate at the time of controlled cooling to 3 to 12 ° C./sec. . However, in this method, the strength of the surface and the strength of the inside cannot be controlled, and it is inevitable that the strength difference in the thickness direction increases when the cooling rate approaches the upper limit of the proposed range.
[0005]
An object of the present invention is to solve the above-mentioned problems and to produce a low-yield-ratio high-strength steel material used for high-rise buildings and the like stably inexpensively in large quantities without impairing the uniformity of the material in the thickness direction. Is to provide.
[0006]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention uses the following means.
[0007]
(1) In the production method of the present invention, as a steel component, C: 0.02 to 0.18%, Si: 0.05 to 0.5%, and Mn: 0.6 to 1. Step of heating a steel material containing 7%, Al: 0.08% or less , and the balance consisting of Fe and unavoidable impurities to 1000 ° C or more, and then performing hot rolling with a draft of 50% or more in a temperature range of Ar 3 or more. And accelerated cooling of the hot-rolled steel material from Ar 3 or higher at a cooling rate of 2 ° C./sec or more, and once the surface temperature is (Ar 3 −200) ° C. or less, the cooling is interrupted. After the temperature is restored to 650 ° C. or more and Ac 1 or less, accelerated cooling is again performed at a cooling rate of 2 ° C./sec or more to a temperature range of an average temperature Ar 3 to (Ar 3 −100) ° C. Standby time that satisfies the formula: a step of waiting for t seconds and an average temperature of the standby steel material of 400 ° C. Perform accelerated cooling in the temperature range up to 2 ° C. / sec or more cooling rate fully, and comprising the a step of tempering the subsequent 630 ° C. over Ac 1 point temperatures below the thickness direction material difference This is a method for producing a small low-yield-ratio high-tensile steel material.
[0008]
10 1.3-0.00 6 × Δ T ≦ t ≦ 150 ... (1)
Here, ΔT (° C.): temperature difference between Ar 3 and average temperature T (° C.) during standby (= Ar 3 −T), t (second): standby time (2) % By weight, C: 0.02 to 0.18%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.7%, and Al: 0.08% or less process and the hot rolled steel than the Ar 3 from 2 ° C. / sec or more cooling rate reduction ratio in the temperature range of the heating after the Ar 3 or more than 1000 ° C. the steel material is rolling for 50% or more of heat , Accelerated cooling is started, and once the surface temperature is (Ar 3 -200) ° C. or less, the cooling is temporarily interrupted. After the surface temperature is restored to 650 ° C. or more and Ac 1 or less, a cooling rate of 2 ° C./sec or more is resumed. And accelerated cooling to a temperature range of an average temperature Ar 3 to (Ar 3 -100) ° C., and a standby time satisfying the following formula (1) in the temperature range: t A second waiting step and an accelerated cooling of the waiting steel material at a cooling rate of 2 to 15 ° C./sec to a temperature range where the average temperature is less than 400 ° C., and thereafter, a firing at a temperature exceeding 500 ° C. and one point or less of Ac. A method for producing a low-yield-ratio high-tensile steel material having a small difference in material in the thickness direction, comprising a returning step.
[0009]
10 1.3-0.00 6 × Δ T t ≦ 150 ... (1)
Here, ΔT (° C.): temperature difference between Ar 3 and average temperature T (° C.) during standby (= Ar 3 −T), t (second): standby time (3) Further, by weight%, Cu: 0.05 to 1.0%, Ni: 0.05 to 0.8%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0% , Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.03%. A method for producing a low-yield-ratio high-tensile steel material having a small material difference in the thickness direction according to the above (1) or (2), which is characterized by the following.
[0010]
In the present invention, the temperature is the average temperature in the thickness direction of the steel sheet unless otherwise specified.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted extensive studies on a technique for producing a low-yield-ratio high-tensile-thick steel material without performing a complicated heat treatment such as a long-time standby or quenching-two-phase region quenching-tempering before accelerated cooling after rolling. The following findings were obtained.
[0012]
FIG. 1 is a diagram showing the effects of standby temperature and standby time on steel material properties (strength, yield ratio) using the steel A component system shown in Table 1. As shown in FIG. 1, Ar 3 ~ (Ar 3 -100) a tensile strength by waiting in a temperature range 10 1.3-0.00 6 × Δ T ≦ t ≦ 150 seconds ℃ is 490 N / mm 2 or more and a yield ratio Is clearly 80% or less.
[0013]
Based on this finding, the present inventors controlled the hot rolling conditions, accelerated cooling conditions, and heat treatment conditions to be applied to steel having a specific amount of chemical components within a certain range, and changed the steel structure to ferrite + tempering. As a martensite mixed structure or a ferrite + tempered martensite + bainite mixed structure, a tensile strength of 490 N / mm 2 or more and a low yield ratio of 80% or less can be achieved, and a material difference in a sheet thickness direction can be reduced. The present inventors have found a method for producing a high-strength steel material having a low yield ratio, and have completed the present invention.
[0014]
That is, the present invention restricts the steel composition and the production conditions to the following ranges, thereby producing a low-yield-ratio high-strength steel material used for high-rise buildings or the like at a low cost without loss of the uniformity of the material in the thickness direction. And a method for stably producing the same.
[0015]
The reasons for adding the components, the reasons for limiting the components, and the reasons for limiting the production conditions of the present invention are described below.
[0016]
(1) Component composition range C: 0.02 to 0.18%
C is added in an amount of 0.02% or more in order to secure the strength of steel. However, if it is contained in a large amount exceeding 0.18%, toughness and weldability are deteriorated. 18%.
[0017]
Si: 0.05-0.5%
Si needs to be added in an amount of 0.05% or more for deoxidation, but if it exceeds 0.5%, HAZ (heat affected zone) toughness and weldability are deteriorated. 0.5%.
[0018]
Mn: 0.6 to 1.7%
Mn is required to be at least 0.6% in order to improve the strength and toughness of the steel material and to suppress the production of FeS. However, the addition of a large amount exceeding 1.7% causes an increase in the hardenability of the steel. The range is 0.6 to 1.7% because a hardened layer is formed to increase crack sensitivity.
[0019]
Al: 0.08% or less Al is an element contained in the deoxidized upper steel, but when contained in a large amount, the cleanliness of the steel is deteriorated and the toughness of the welded portion is deteriorated. % Or less.
[0020]
In the present invention, the above is a basic component, and one or more of the following selected components are added.
[0021]
(Selected component group)
Cu: 0.05-1.0%
Cu is a very effective element for increasing the strength and improving the toughness. However, if the content is less than 0.05%, a sufficient effect is not exhibited. When Cu is added, the range is 0.05 to 1.0% because cracks are easily generated.
[0022]
Ni: 0.05-0.8%
Ni has the effect of improving the strength and toughness of the base material. However, if the content is less than 0.05%, a sufficient effect cannot be obtained, and if added over 0.8%, leads to an increase in cost. Is added, the range is 0.05 to 0.8%.
[0023]
Cr: 0.05-1.0%
Cr is an element effective for improving hardenability, but if its content is less than 0.05%, the effect is small, and if it exceeds 1.0%, weldability and HAZ toughness are deteriorated, so Cr is added. In such a case, the range is 0.05 to 1.0%.
[0024]
Mo: 0.05 to 1.0%
Mo enhances hardenability and increases tempering softening resistance, and is effective in increasing strength. However, if its content is less than 0.05%, its effect is not sufficiently exhibited, and if it exceeds 1.0%, Mo is not effective. Since the yield ratio increases due to precipitation of carbides while deteriorating the weldability, when Mo is added, the range is 0.05 to 1.0%.
[0025]
Nb: 0.005 to 0.1%
Nb is an element that effectively increases the strength and improves the toughness due to the precipitation effect of fine carbonitrides. However, if the content is less than 0.005%, the effect is not exhibited, and if it exceeds 0.1%, the addition exceeds 0.1%. If Nb is added, its range is 0.005 to 0.1% because the excessive precipitation effect prevents the yield ratio from decreasing.
[0026]
V: 0.005 to 0.1%
V is an element that improves the hardenability by adding a small amount and increases the tempering softening resistance. However, if the content is less than 0.005%, the effect is not sufficiently exhibited, and the content exceeds 0.1%. If added, V deteriorates the weldability, so when V is added, the range is 0.005 to 0.1%.
[0027]
Ti: 0.005 to 0.03%
Ti is an element that suppresses the coarsening of the structure of the welded HAZ portion of TiN and contributes to the improvement of the HAZ rice quality. If less than 0.005% of Ti is added, the effect of improving the HAZ toughness is not exhibited. On the other hand, if it is added in excess of 0.03%, TiC precipitates during the cooling process of welding and causes deterioration of the HAZ toughness. Therefore, when Ti is added, the range is 0.005 to 0.03%. It is.
[0028]
By adjusting to the above-mentioned component composition range, it is possible to obtain a high-strength thick steel material having a yield ratio of 80% or less for high-rise buildings and the like stably inexpensively and in large quantities without the need for sheet heat treatment after rolling. Becomes possible.
[0029]
A steel material having such characteristics can be manufactured by the following manufacturing method.
[0030]
(2) Steel material manufacturing process (2-1) Manufacturing conditions (manufacturing method) of mode 1
After reduction ratio in the temperature range of heating after Ar 3 or more steel adjusted to component composition range of the above 1000 ° C. is carried out rolling more than 50% of the heat, followed by the Ar 3 or more than 2 ° C. / sec start the accelerated cooling at a cooling rate, the surface temperature of (Ar 3 -200) ℃ once interrupted cooling below, after the surface temperature of heated condensate to 650 ° C. or higher Ac 1 or less, or more 2 ° C. / sec again After accelerated cooling to a temperature range of average temperature Ar 3 to (Ar 3 -100) ° C. at a cooling rate, and a standby time satisfying the following expression (1): t seconds in the temperature range, an average temperature of 400 is obtained. Accelerated cooling is performed at a cooling rate of 2 ° C./sec or more to a temperature range of less than 0 ° C., and thereafter tempering is performed at a temperature of more than 630 ° C. and 1 Ac or less.
[0031]
10 1.3-0.00 6 × Δ T ≦ t ≦ 150 ... (1)
Here, ΔT (° C.): temperature difference (= Ar 3 −T) between Ar 3 and average temperature T (° C.) during standby, t (second): standby time a. Heating temperature of steel: If the temperature is 1000 ° C. or more and less than 1000 ° C., good hot workability cannot be obtained. Therefore, the heating temperature of steel is 1000 ° C. or higher.
[0032]
b. Hot rolling finishing temperature: Ar 3 or more hot rolling termination temperature is acoustic anisotropy adversely affect the measurement accuracy of the ultrasonic flaw detection occurs less than Ar 3. Therefore, the hot rolling end temperature is Ar 3 or more.
[0033]
c. Reduction rate of Ar 3 or more: 50% or more If the reduction rate of Ar 3 or more is less than 50%, recrystallization of a structure coarsened by heating is insufficient, and toughness is particularly deteriorated. Therefore, the rolling reduction for Ar 3 or more is 50% or more.
[0034]
d. Accelerated cooling start temperature: When Ar 3 or more and accelerated cooling start temperature is less than Ar 3 , coarse ferrite is generated before the start of accelerated cooling, the toughness is deteriorated, and a cooling waiting time is required, and productivity is reduced. Therefore, the starting temperature of the accelerated cooling is Ar 3 or more.
[0035]
e. Accelerated cooling rate from Ar 3 or more: 2 ° C./sec or more If the accelerated cooling rate from Ar 3 or more is less than 2 ° C./sec, coarse ferrite is generated during accelerated cooling, and toughness is deteriorated. It becomes difficult for the surface temperature to quickly return to 650 ° C. or higher immediately after the interruption. Therefore, the accelerated cooling rate from Ar 3 or more is 2 ° C./sec or more.
[0036]
f. Surface temperature at the time of cooling interruption: (Ar 3 -200) ° C. or less When the surface temperature at the time of cooling interruption is higher than (Ar 3 -200) ° C., the initial cooling rate including after restarting cooling becomes small, and accelerated cooling Effect is lost. Therefore, the surface temperature of the cooling interruption is (Ar 3 -200) ℃ or less.
[0037]
g. Surface temperature at the time of reheating: 650 ° C. or more and Ac 1 or less When the surface temperature at the time of reheating is less than 650 ° C., softening due to tempering of hard bainite or martensite generated near the surface by the first accelerated cooling sufficiently occurs. And the material difference in the thickness direction is not eliminated. Also, there are cases where the surface temperature during recuperation austenite is generated by reverse transformation exceeds Ac 1, again becomes rigid base bainite or martensite by accelerated cooling to be performed subsequently. Therefore, the surface temperature at the time of reheating is 650 ° C. or more and Ac 1 or less.
[0038]
h. Accelerated cooling rate after recuperation: 2 ° C./sec or more If the accelerated cooling rate after recuperated is less than 2 ° C./sec, coarse ferrite is generated during accelerated cooling, and toughness is deteriorated. Therefore, the accelerated cooling rate after reheating is 2 ° C./sec or more.
i. Temperature during cooling standby: Ar 3 to (Ar 3 -100) ° C., and standby time t:
10 1.3-0.00 6 × As described above Δ T ≦ t ≦ 150 seconds, the present inventors have studied the influence of the standby temperature and the waiting time on the steel properties using component system of the steel A shown in Table 1 results, Ar 3 ~ as shown in FIG. 1 (Ar 3 -100) a tensile strength by waiting in a temperature range 10 1.3-0.00 6 × Δ T ≦ t ≦ 150 seconds ℃ is 490 N / mm 2 or more and the yield The ratio was found to be 80% or less. That, Ar 3 ~ (Ar 3 -100 ) ℃ and then, a predetermined ferrite fraction by the waiting time and 10 1.3-0.00 6 × Δ T ≦ t ≦ 150 seconds ferrite is precipitated in a relatively short time standby temperature The remaining austenite is made into martensite or a mixed structure of martensite and bainite by further accelerated cooling, and finally tempered at a temperature of more than 630 ° C. and less than one point of Ac to finally ferrite + tempered martensite. A yield ratio of ≦ 80% is achieved as a mixed structure or a mixed structure of ferrite + tempered martensite + bainite. The upper limit of the standby time is 150 seconds so as not to impair productivity. If the standby temperature is higher than Ar 3 , no ferrite is generated during standby and a low yield ratio of 80% or less cannot be obtained. On the other hand, when the standby temperature is lower than (Ar 3 -100) ° C., even in a short standby time, ferrite is excessively generated, so that it is difficult to secure strength. Therefore, from the viewpoint of ensuring strength and low yield ratio, the standby temperature is Ar 3 ~ (Ar 3 -100) ℃, and the waiting time is 10 1.3-0.00 6 × Δ T ≦ t ≦ 150 seconds. The cooling standby temperature shown here is the average temperature of the steel sheet, and may be higher than the surface temperature at the time of recuperation described in the above item g.
[0039]
j. Accelerated cooling stop temperature after standby: less than 400 ° C. If the accelerated cooling stop temperature after standby is 400 ° C. or higher, martensite is not generated even when accelerated cooling is performed, and sufficient strength as a high-tensile steel cannot be obtained. Therefore, the accelerated cooling stop temperature after standby is less than 400 ° C.
[0040]
k. Accelerated cooling rate and tempering temperature after standby: After cooling at 2 ° C / sec or more, if the accelerated cooling rate after tempering standby is higher than 630 ° C and less than 1 point of Ac and less than 2 ° C / sec, untransformed austenite after standby Therefore, martensite or bainite transformation hardly occurs, and a low yield ratio of 80% or less cannot be obtained. Therefore, the accelerated cooling rate after the standby is 2 ° C./sec or more. Tempering after rolling / cooling is performed to improve the toughness of martensite and to reduce the difference in material in the thickness direction that occurs when the cooling rate after standby is high. When the tempering temperature is 630 ° C. or lower, this effect is not sufficient, and particularly, the difference in the material in the thickness direction is not eliminated. On the other hand, if the tempering temperature exceeds one point of Ac, part or all of martensite or bainite reversely transforms to austenite, so that strength as a high-tensile steel cannot be obtained. Therefore, when the accelerated cooling rate after standby is 2 ° C./sec or more, the tempering temperature exceeds 630 ° C. and is equal to or less than one Ac point.
[0041]
(2-1) Manufacturing Conditions of Embodiment 2 (Manufacturing Method)
After reduction ratio in the temperature range of heating after Ar 3 or more steel adjusted to component composition range of the above 1000 ° C. is carried out rolling more than 50% of the heat, followed by the Ar 3 or more than 2 ° C. / sec start the accelerated cooling at a cooling rate, the surface temperature of (Ar 3 -200) ℃ once interrupted cooling below, after the surface temperature of heated condensate to 650 ° C. or higher Ac 1 or less, or more 2 ° C. / sec again After accelerated cooling to a temperature range of average temperature Ar 3 to (Ar 3 -100) ° C. at a cooling rate, and a standby time satisfying the following expression (1): t seconds in the temperature range, an average temperature of 400 is obtained. Accelerated cooling is performed at a cooling rate of 2 to 15 ° C./sec to a temperature range of less than 100 ° C., and thereafter, tempering is performed at a temperature exceeding 500 ° C. and 1 Ac or less.
[0042]
10 1.3-0.00 6 × ΔT ≦ t ≦ 150 (1)
Here, ΔT (° C.): temperature difference (= Ar 3 −T) between Ar 3 and average temperature T (° C.) during standby, t (second): standby time a. Heating temperature of steel: 1000 ° C. or higher.
[0043]
b. Hot rolling end temperature: Ar 3 or more The same as the limitation reason of the first aspect.
[0044]
c. Ar 3 or more reduction ratio: 50% or more Same as the limitation reason of the first embodiment.
[0045]
d. Accelerated cooling start temperature: Ar 3 or more The same as the limitation reason of the first aspect.
[0046]
e. Accelerated cooling rate from Ar 3 or more: 2 ° C./sec or more Same as the limitation reason of the first embodiment.
[0047]
f. Surface temperature at the time of cooling interruption: (Ar 3 −200) ° C. or lower Same as the limitation reason of the first embodiment.
[0048]
g. Surface temperature at the time of reheating: 650 ° C. or more and Ac 1 or less The same as the limitation reason of the first aspect.
[0049]
h. Accelerated cooling rate after reheating: 2 ° C./sec or more The same as the limitation reason of the first embodiment.
[0050]
i. Temperature during cooling standby: Ar 3 to (Ar 3 -100) ° C., and standby time t:
10 1.3-0.00 6 × similar to reasons for limiting Δ T ≦ t ≦ 150 seconds aspects 1.
[0051]
j. Accelerated cooling stop temperature after standby: less than 400 ° C. Same as the reason for limitation in aspect 1.
[0052]
k. Accelerated cooling rate and tempering temperature after standby: After cooling at 2 to 15 ° C./sec, the accelerated cooling rate after tempering standby at more than 500 ° C. and one point or less of Ac is limited to 2 to 15 ° C./sec. Since the degree of surface hardness increase is small and the material difference in the thickness direction is small, it is possible to lower the tempering temperature as compared with the condition of aspect 1. When the tempering temperature is 500 ° C. or lower, martensite is not sufficiently tempered, and good toughness cannot be obtained. On the other hand, if the tempering temperature exceeds one point of Ac, part or all of martensite or bainite reversely transforms to austenite, so that strength as a high-tensile steel cannot be obtained. Therefore, when the accelerated cooling rate after the standby is 2 to 15 ° C./sec, the tempering temperature exceeds 500 ° C. and is equal to or less than one Ac point.
[0053]
As described above, the strength of 490 N / mm 2 or more and the yield ratio of 80% or less are obtained without impairing the productivity by adopting the above-mentioned component system and the rolling / accelerated cooling conditions and the tempering conditions, and the material difference in the thickness direction is reduced. It is possible to manufacture small high-tensile steel materials.
[0054]
Hereinafter, examples of the present invention will be described to demonstrate the effects of the present invention.
[0055]
【Example】
The mechanical properties of steels manufactured by changing the component system, rolling and accelerated cooling conditions were investigated. Table 1 shows the chemical composition of the test steel and the transformation points of Ar 3 and Ac 1. Table 2 shows the production conditions of the test steel, the results of the tensile test and the Charpy impact test, and the difference in Vickers hardness between the surface and the center of the plate thickness. (AL: inventive steel, MX: comparative steel).
[0056]
The steels A to L of the present invention, both of which have a component system and production conditions within the scope of the present invention, have a sufficient tensile strength (TS) of 490 N / mm 2 or more, a yield ratio (YR) of 80% or less, and excellent toughness (vE0). ), And the hardness difference (ΔHv) at the center of the thickness of the surface is as small as about 12 to 25. On the other hand, the comparative steels M and P whose surface temperature at the time of reheating is out of the range of the present invention, and the comparative steel U whose tempering temperature is lower than the range of claim 1 of the present invention, have both the surface and the center of the plate thickness. The hardness difference ΔHv is 40 or more, and the material difference in the thickness direction is large. Further, Comparative Steel X having a surface temperature at the time of cooling interruption higher than the range of the present invention and Comparative Steel O having an average temperature at the time of cooling standby lower than the range of the present invention both have a tensile strength of 490 N / mm 2 or less. The strength as tensile steel cannot be obtained. Further, Comparative Steel V whose average temperature during cooling standby is higher than the range of the present invention, Comparative Steel W whose cooling standby time is shorter than the range of the present invention, Comparative Steels N and R whose component systems are out of the range of the present invention, In each case, the YR exceeds 80%, and a low yield ratio cannot be obtained. Further, the comparative steel T having a reduction ratio of Ar 3 or more outside the range of the present invention and the comparative steel S having an accelerated cooling rate smaller than the range of the present invention are all inferior in toughness as compared with other steels. Further, the comparative steel Q having a tempering temperature lower than the range of the present invention has a hardness difference ΔHv of 40 or more between the surface and the center of the plate thickness, a large difference in material in the plate thickness direction, and poor toughness.
[0057]
[Table 1]
Figure 0003546721
[0058]
[Table 2]
Figure 0003546721
[0059]
[Effects of the present invention]
According to the present invention, by specifying the steel composition and the manufacturing conditions, it is possible to manufacture a low yield ratio high tensile strength steel material used for high-rise buildings, etc., for a long time after rolling and before accelerated cooling. Since there is no need to perform complicated heat treatment such as standby or quenching-two-phase quenching-tempering, productivity and economic efficiency can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a view showing the influence of standby temperature and standby time on characteristics (strength, YR) of a steel material according to an embodiment of the present invention.

Claims (3)

鋼成分として、重量%で、C:0.02〜0.18%と、Si:0.05〜0.5%と、Mn:0.6〜1.7%と、Al:0.08%以下、残部がFeおよび不可避不純物からなる鋼材を1000℃以上に加熱後Ar3 以上の温度域において圧下率が50%以上の熱間圧延を行う工程と、
熱間圧延された鋼材をAr3 以上から2℃/秒以上の冷却速度で加速冷却を開始して、表面温度が(Ar3 −200)℃以下で一旦冷却を中断し、表面温度が650℃以上Ac1 以下に復熱した後、再び2℃/秒以上の冷却速度で平均温度Ar3 〜(Ar3 −100)℃の温度範囲まで加速冷却し、当該温度域において下記(1)式を満たす待機時間:t秒の待機を行う工程と、
待機された鋼材を平均温度が400℃未満の温度域まで2℃/秒以上の冷却速度で加速冷却を行い、その後630℃越えAc1 点以下の温度で焼戻す工程と、
を備えたことを特徴とする、板厚方向材質差の小さい低降伏比高張力鋼材の製造方法。
10 1.3-0.00 6×Δ T ≦t≦150 …(1)
ここで、ΔT(℃):Ar3 と待機時の平均温度T(℃)の温度差(=Ar3−T)、t(秒):待機時間
As steel components, in weight%, C: 0.02 to 0.18%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.7%, and Al: 0.08% Hereinafter , a step of heating a steel material having a balance of Fe and unavoidable impurities to 1000 ° C. or more, and then performing hot rolling with a draft of 50% or more in a temperature range of Ar 3 or more,
The accelerated cooling of the hot-rolled steel material is started at a cooling rate of 2 ° C./sec or more from Ar 3 or more, and the cooling is interrupted once the surface temperature is (Ar 3 −200) ° C. or less, and the surface temperature is 650 ° C. After the heat is restored to the temperature of Ac 1 or less, accelerated cooling is performed again at a cooling rate of 2 ° C./sec or more to a temperature range of average temperature Ar 3 to (Ar 3 −100) ° C., and the following equation (1) is obtained in the temperature range. Waiting time to be satisfied: a step of performing waiting for t seconds;
A step of performing accelerated cooling of the waiting steel material at a cooling rate of 2 ° C./sec or more to a temperature range in which the average temperature is less than 400 ° C., and thereafter tempering at a temperature of 630 ° C. or more and an Ac 1 point or less;
A method for producing a low-yield-ratio high-strength steel material having a small difference in material in the thickness direction, comprising:
10 1.3-0.00 6 × Δ T ≦ t ≦ 150 (1)
Here, ΔT (° C.): temperature difference between Ar 3 and average temperature T (° C.) during standby (= Ar 3 −T), t (second): standby time
鋼成分として、重量%で、C:0.02〜0.18%と、Si:0.05〜0.5%と、Mn:0.6〜1.7%と、Al:0.08%以下、残部がFeおよび不可避不純物からなる含有する鋼材を1000℃以上に加熱後Ar3 以上の温度域において圧下率が50%以上の熱間圧延を行う工程と、
熱間圧延された鋼材をAr3 以上から2℃/秒以上の冷却速度で加速冷却を開始して、表面温度が(Ar3 −200)℃以下で一旦冷却を中断し、表面温度が650℃以上Ac1 以下に復熱した後、再び2℃/秒以上の冷却速度で平均温度Ar3 〜(Ar3 −100)℃の温度範囲まで加速冷却し、当該温度域において下記(1)式を満たす待機時間:t秒の待機を行う工程と、
待機された鋼材を平均温度が400℃未満の温度域まで2〜15℃/秒の冷却速度で加速冷却を行い、その後500℃越えAc1 点以下の温度で焼戻す工程と、
を備えたことを特徴とする、板厚方向材質差の小さい低降伏比高張力鋼材の製造方法。
10 1.3-0.00 6×Δ T ≦t≦150 …(1)
ここで、ΔT(℃):Ar3 と待機時の平均温度T(℃)の温度差(=Ar3−T)、t(秒):待機時間
As steel components, in weight%, C: 0.02 to 0.18%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.7%, and Al: 0.08% Hereinafter , a step of heating a steel material containing the remainder consisting of Fe and inevitable impurities to 1000 ° C. or more, and then performing hot rolling with a draft of 50% or more in a temperature range of Ar 3 or more,
The accelerated cooling of the hot-rolled steel material is started at a cooling rate of 2 ° C./sec or more from Ar 3 or more, and the cooling is interrupted once the surface temperature is (Ar 3 −200) ° C. or less, and the surface temperature is 650 ° C. After the heat is restored to the temperature of Ac 1 or less, accelerated cooling is performed again at a cooling rate of 2 ° C./sec or more to a temperature range of average temperature Ar 3 to (Ar 3 −100) ° C., and the following equation (1) is obtained in the temperature range. Waiting time to be satisfied: a step of performing waiting for t seconds;
A step of performing accelerated cooling of the waiting steel material at a cooling rate of 2 to 15 ° C./sec to a temperature range in which the average temperature is less than 400 ° C., and thereafter tempering at a temperature of 500 ° C. or more and an Ac 1 point or less;
A method for producing a low-yield-ratio high-strength steel material having a small difference in material in the thickness direction, comprising:
10 1.3-0.00 6 × Δ T ≦ t ≦ 150 (1)
Here, ΔT (° C.): temperature difference between Ar 3 and average temperature T (° C.) during standby (= Ar 3 −T), t (second): standby time
鋼成分として、重量%でさらに、Cu:0.05〜1.0%、Ni:0.05〜0.8%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.1%、V:0.005〜0.1%及びTi:0.005〜0.03%の群から選択された1種または2種以上を含有することを特徴とする、請求項1または2に記載の板厚方向材質差の小さい低降伏比高張力鋼材の製造方法。Further, as steel components, by weight%, Cu: 0.05-1.0%, Ni: 0.05-0.8%, Cr: 0.05-1.0%, Mo: 0.05-1. 0%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.03% The method for producing a low-yield-ratio high-tensile steel material according to claim 1 or 2, wherein the difference in material in the thickness direction is small.
JP30096098A 1998-10-22 1998-10-22 Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction Expired - Fee Related JP3546721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30096098A JP3546721B2 (en) 1998-10-22 1998-10-22 Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30096098A JP3546721B2 (en) 1998-10-22 1998-10-22 Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction

Publications (2)

Publication Number Publication Date
JP2000129350A JP2000129350A (en) 2000-05-09
JP3546721B2 true JP3546721B2 (en) 2004-07-28

Family

ID=17891157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30096098A Expired - Fee Related JP3546721B2 (en) 1998-10-22 1998-10-22 Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction

Country Status (1)

Country Link
JP (1) JP3546721B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640614B2 (en) * 2010-09-30 2014-12-17 Jfeスチール株式会社 High-strength steel pipe for line pipe, its manufacturing method, and high-strength steel pipe using high-strength steel sheet for line pipe
CN103014509A (en) * 2012-12-30 2013-04-03 南阳汉冶特钢有限公司 Novel low-cost Q345GJC/D steel plate for high-rise buildings and production method of steel plate
CN109219670B (en) * 2016-08-09 2020-09-04 杰富意钢铁株式会社 High-strength thick steel plate and method for producing same

Also Published As

Publication number Publication date
JP2000129350A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
WO2002022904A1 (en) Super high tensile cold-rolled steel plate and method for production thereof
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP3546721B2 (en) Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction
JP2000239743A (en) Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction
JP3468072B2 (en) Manufacturing method of low yield ratio section steel
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JPH0941077A (en) High tensile strength steel plate excellent in crack propagating arrest characteristic and its production
JP3911834B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JP3666458B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2000178644A (en) Production of low yield ratio high tensile strength steel small in difference in material in plate thickness direction
JPH0143005B2 (en)
JP4218114B2 (en) Manufacturing method of low yield ratio refractory steel
JPH10310821A (en) Manufacture of high tensile strength steel tube for construction use
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JPH08225883A (en) Production of high tensile strength steel plate excellent in strength and toughness
JP3920523B2 (en) High-tensile steel plate with excellent weldability and base metal toughness
JPH0920921A (en) Production of high toughness steel plate by means of separation
JP2000282141A (en) Manufacture of high tensile strength steel product with low yield ratio
JP2023079163A (en) H-section steel and method of manufacturing same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees