JP3546297B2 - Method of reducing center segregation in continuous cast slab - Google Patents

Method of reducing center segregation in continuous cast slab Download PDF

Info

Publication number
JP3546297B2
JP3546297B2 JP31802399A JP31802399A JP3546297B2 JP 3546297 B2 JP3546297 B2 JP 3546297B2 JP 31802399 A JP31802399 A JP 31802399A JP 31802399 A JP31802399 A JP 31802399A JP 3546297 B2 JP3546297 B2 JP 3546297B2
Authority
JP
Japan
Prior art keywords
slab
center
light reduction
center segregation
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31802399A
Other languages
Japanese (ja)
Other versions
JP2001138021A (en
Inventor
幹雄 鈴木
勝彦 村上
浩 淡路谷
眞司 三田尾
悟史 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP31802399A priority Critical patent/JP3546297B2/en
Publication of JP2001138021A publication Critical patent/JP2001138021A/en
Application granted granted Critical
Publication of JP3546297B2 publication Critical patent/JP3546297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造鋳片の中心部に発生する成分偏析を鋳造工程において低減する方法に関するものである。
【0002】
【従来の技術】
鋼の凝固過程における最終凝固部では、炭素、燐、硫黄等の溶質元素は未凝固相に濃縮される。この濃縮された溶鋼が流動し、集積して凝固すると、溶鋼の初期濃度に比べ格段に高濃度となって成分偏析部が生成される。鋼が凝固すると体積収縮が起こり、この凝固収縮に伴い、連続鋳造の場合には鋳片の引き抜き方向へ溶鋼が吸引されて流動する。連続鋳造鋳片の凝固末期の未凝固相には十分な量の溶鋼が存在しないので、最終凝固部であるデンドライト樹間の濃化溶鋼が流動をおこし、それが鋳片中心部に集積して凝固し、所謂中心偏析が生成される。
【0003】
中心偏析は鋼製品の品質を劣化させる。例えば、石油輸送用及び天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れが発生し、又、飲料水用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現する。そのため、鋳造工程から圧延工程に至るまで、中心偏析を低減する対策が多数提案されている。
【0004】
そのなかで、安価に且つ効果的に鋳片の中心偏析を低減する手段として、例えば特開平8−132203号公報や特開平8−192256号公報に開示されるように、未凝固鋳片を圧下する(以下「軽圧下」と呼ぶ)方法が提案されている。この軽圧下方法は、鋳片の凝固収縮量に見合った圧下速度で鋳片を徐々に圧下して未凝固相の体積を減少させ、デンドライト樹間の濃化溶鋼の流動を起こさないようにして中心偏析を防止することを目的としている。
【0005】
【発明が解決しようとする課題】
しかしながら、軽圧下方法では圧下速度が速すぎると、デンドライト樹間の濃化溶鋼は鋳造方向とは逆方向に絞り出されて、鋳片中心部には炭素、燐、硫黄等の溶質元素濃度が少ない偏析(この場合は負偏析という)が生成し、一方、圧下速度が遅すぎると、デンドライト樹間の濃化溶鋼の流動を抑制できずに中心偏析が生成する。このように軽圧下方法により濃化溶鋼の流動を防止するための最適条件は非常に限定された条件となる。
【0006】
又、スラブ鋳片のような扁平比の大きい鋳片では鋳片幅方向の凝固殻厚みは不均一になり易く、鋳片幅方向の凝固の遅れた部分では、周囲のすでに中心部まで凝固した部分が抵抗となって所定量の圧下速度で圧下されず、中心偏析が均一に低減されないという問題点がある。
【0007】
更に、連続鋳造では鋳片の支持を複数対のロールで行っており、鋳片はロールとロールの間では支持されていないので、凝固殻に作用する溶鋼静圧によりロール間では凝固殻の膨れ(以下「バルジング」と記す)が発生し、このバルジングによる未凝固相の体積変化に伴って溶鋼が流動するため、ロール間で発生するバルジングも中心偏析の原因の1つとなる。そして、軽圧下方法では、ロールを用いているためにロール間ではバルジングが発生し、このバルジングによる中心偏析を防ぎきれないという問題点もある。
【0008】
一方、需要家からの鋼材品質に対する要求は厳格化を増し、中心偏析の更なる低減化が望まれている。
【0009】
本発明は上記事情に鑑みなされたもので、その目的とするところは、軽圧下方法により連続鋳造鋳片の中心偏析を低減する際に、軽圧下方法の最適条件を拡大することが可能で、且つ、ロール間のバルジングを低減することが可能であり、近年の厳しい品質要求にも対処可能な鋳片を製造することのできる中心偏析低減方法を提供することである。
【0010】
【課題を解決するための手段】
本発明による連続鋳造鋳片の中心偏析低減方法は、鋳片厚み方向中心部の固相率が0.4以下の時点から鋳片の軽圧下を開始して、鋳片厚み方向中心部が凝固完了するまで軽圧下を継続し、且つ、軽圧下しつつ鋳片厚み方向中心部が凝固完了するまで鋳片表面を強冷却して、この冷却による鋳片の熱収縮速度を0.25〜1.0mm/minの範囲に制御することを特徴とするものである。その際、熱収縮速度と軽圧下速度との和を0.8〜1.8mm/minの範囲に制御することで、中心偏析低減効果を一層発揮させることができる。
【0011】
本発明では、連続鋳造鋳片を軽圧下しながら、鋳片厚み方向中心部が凝固完了するまで鋳片表面を強冷却する。内部に未凝固相を有する連続鋳造鋳片の表面を強冷却することにより、鋳片表面部のみを冷却することができる。例えば、厚みが250mmで、表面温度が1000℃の鋳片を60秒間強冷却して鋳片表面温度を500℃にした時の、伝熱計算により求めた鋳片内部の温度分布を図1に示す。
【0012】
図1に示すように、強冷却することによる熱拡散の影響が現れるのは鋳片表面から約40mmの範囲までであり、それより内部では鋼の熱伝導率が低いために温度が低下しにくい。図1の場合、強冷却により温度低下した部分の平均温度は約880℃であり、冷却前の同じ部分の平均温度は約1080℃であるので、60秒間に約200℃の温度低下が起こったことになる。そして、鋼の熱収縮率はおおよそ2×10-5(/℃)であるので、厚み250mmの鋳片は約1.0mm/minの熱収縮速度で、総熱収縮量が1mmで収縮することになる。即ち、強冷却による鋳片凝固殻の熱収縮により未凝固相の体積を減少させ、未凝固相の流動を抑えることができる。この効果は、鋳片断面形状が円形の場合や正方形に近くなるほど顕著になり、スラブ鋳片のように鋳片断面形状が扁平比の大きい長方形では鋳片短辺側でその効果が発揮される。
【0013】
更に、鋳片を強冷却することで鋳片表層部の温度が低下して、鋳片凝固殻の強度が高まるため、ロール間のバルジングが少なくなり、ロール間バルジングによる未凝固相の流動を抑えることができる。
【0014】
このように、本発明では未凝固鋳片を軽圧下すると共に、鋳片が凝固完了するまで鋳片表面を強冷却するので、軽圧下による濃化溶鋼の流動抑制効果と熱収縮による濃化溶鋼の流動抑制効果とが重なり合って発揮されると共に、ロール間バルジングも少なくなり、中心偏析を効果的に低減することができる。
【0015】
更に、スラブ鋳片のような扁平比の大きい鋳片において、仮に鋳片幅方向で凝固遅れが発生しても、本発明の鋳造方法によれば凝固の遅れた部分でも鋳片の熱収縮が作用し、濃化溶鋼の流動が防止されるので、中心偏析を防止することが可能となる。
【0016】
鋳片の軽圧下は、鋳片厚み方向中心部の固相率が0.4以下の時点から開始して凝固が完了するまで行う。鋳片厚み方向中心部の固相率が0.4を越えてから軽圧下を開始しても、それ以前に流動した濃化溶鋼により中心偏析が発生し、軽圧下の効果を十分に発揮させることができない。
【0017】
強冷却による熱収縮速度は0.25〜1.0mm/minの範囲に制御する必要がある。熱収縮速度が0.25mm/min未満では熱収縮の効果が少なく、中心偏析の低減効果が十分でない。一方、熱収縮速度が1.0mm/minを越えるように鋳片を冷却するためには、極めて過激な冷却が必要になり、この冷却により表面割れ等の鋳片表面欠陥が発生する虞があり、実用的でない。
【0018】
又、熱収縮速度と軽圧下速度との和を0.8〜1.8mm/minの範囲に制御することが好ましい。これらの和が0.8mm/min未満では、凝固収縮に伴う濃化溶鋼の流動を十分に阻止することができず、一方、これらの和が1.8mm/minを越えると、濃化溶鋼は鋳造方向とは逆方向に絞り出され、鋳片中心部には負偏析が生成されることがあるからである。
【0019】
【発明の実施の形態】
以下、本発明を図面を参照して説明する。図2は、本発明の実施の形態の例を示す図であって、スラブ連続鋳造機の側面概要図である。
【0020】
図2に示すように、浸漬ノズル5を介して鋳型6内に鋳造された溶鋼は、鋳型6内で冷却されて凝固殻3を形成し、内部に未凝固相2を有する鋳片1として、鋳型6の下方に設けたサポートロール7、ガイドロール8、及びピンチロール9に支持されつつ、ピンチロール9の駆動力により鋳型6の下方に連続的に引き抜かれる。鋳片1は、これらのロールを通過する間、水スプレー又はエアーミストスプレーから構成される二次冷却帯(図示せず)で冷却され、凝固殻3の厚みを増大して、やがて内部までの凝固を完了する。
【0021】
連続鋳造機の引き抜き方向下流側には、複数対のロール群からなる軽圧下帯4が設置されており、そして軽圧下帯4の各ロール間には鋳片1を強冷却するための水スプレー10が配置されている。
【0022】
種々の鋳造条件において予め伝熱計算等により凝固殻3の厚み及び鋳片厚み方向中心部の固相率を求めておき、軽圧下帯4に入る時点の鋳片厚み方向中心部の固相率が0.4以下になるように、鋳片引き抜き速度及び二次冷却強度等の鋳造条件を調整する。軽圧下帯4の鋳造方向長さは、軽圧下帯4内に入った鋳片1が軽圧下帯4内で鋳片厚み方向中心部まで凝固可能なように、その長さを設定する。軽圧下帯4に入る時の鋳片厚み方向中心部の固相率は0.4以下であれば幾らであっても良い。
【0023】
軽圧下帯4では水スプレーノズル10からスプレー水を噴霧して鋳片1が凝固完了するまで鋳片1を急冷する。急冷開始時期は軽圧下開始時期と同一にすることが好ましいが、数秒〜十数秒程度の遅れがあっても又数秒〜十数秒程度速くなっても構わない。そして、この急冷却による冷却開始から凝固完了までの鋳片1の熱収縮速度を0.25〜1.0mm/minの範囲に制御する。これは、鋳片1の強冷却開始から凝固完了までの所要時間に基づき、熱収縮速度が0.25〜1.0mm/minの範囲となる総熱収縮量を求め、求めた総熱収縮量となるように、急冷却開始時の鋳片表面温度及び鋼の熱収縮率に基づいて強冷却後の鋳片表面温度を算出し、算出した表面温度となる冷却強度で強冷却すれば良い。但しこの計算は伝熱計算を伴う複雑な計算であるので、予め種々の鋳造条件で伝熱計算を行い、上記熱収縮速度の範囲となる冷却条件を定めておくことが好ましい。
【0024】
更に、熱収縮速度と軽圧下速度との和を0.8〜1.8mm/minの範囲に制御することが好ましい。これは、例えば軽圧下速度が1.0mm/minの場合には、熱収縮速度を0.25〜0.8mm/minの範囲に制御すれば良く、上述の方法と同様にして冷却条件を定めれば良い。逆に、熱収縮速度を設定した場合には、熱収縮速度と軽圧下速度との和が0.8〜1.8mm/minとなるように、軽圧下速度を決めれば良い。
【0025】
このようにして鋳造することで、鋳片1の凝固収縮に伴う濃化溶鋼の流動を阻止することが可能となり、鋳片1の中心偏析を大幅に低減することができる。特にスラブ鋳片の場合、鋳片短辺側は軽圧下の効果が少なく、中心偏析が発生し易いが、本発明によりスラブ幅方向均等に中心偏析を低減することが可能となる。
【0026】
尚、上記説明はスラブ連続鋳造機に関する説明であるが、本発明はスラブ鋳片に限定されるものでなく、ブルーム連続鋳造機やビレット連続鋳造機にも適用でき、又、鋳片の形状も矩形型に限るものではなく円形であっても良い。更に、鋳片の強冷却用として水スプレーを用いているが、エアーミストスプレー等他の冷却方法であっても良い。
【0027】
【実施例】
図2示すスラブ連続鋳造機を用い、軽圧下開始時期、熱収縮速度、及び軽圧下速度を変化させて鋳造したスラブ鋳片からサンプルを採取し、各サンプルの中心偏析を調査して、強冷却開始時期、熱収縮速度、及び軽圧下速度の中心偏析に及ぼす影響を調査した。用いた連続鋳造機は、鋳型直下に2.8mの垂直部を有し、それに続く湾曲部の半径が10mである垂直曲げ型のスラブ連続鋳造機である。軽圧下帯を鋳型内溶鋼湯面から18〜32mの範囲に設置し、炭素濃度が0.08〜0.10wt%の中炭素鋼を、厚み250mm、幅2100mmの鋳片として引き抜き速度1.4m/minで鋳造した。そして、鋳片厚み方向中心部の固相の晶出開始位置が鋳型内溶鋼湯面から約20mとなり、鋳片厚み方向中心部の完全凝固位置が鋳型内溶鋼湯面から約28mとなるように、軽圧下帯に入る以前の二次冷却強度を調整した。中心偏析は炭素濃度分布に基づき判定した。
【0028】
図3は、鋳片厚み方向中心部の計算固相率が0.02、0.1、0.2、0.3、0.4、0.5、0.6となる時点から完全凝固するまで軽圧下しつつ強冷却した時の中心偏析の調査結果である。この場合、軽圧下帯では鋳片厚み方向中心部の計算固相率が前記所定値となるまでは軽圧下せずに鋳片を支持するのみとし、軽圧下後のロール勾配を0.7mm/m、即ち、軽圧下速度に換算すると0.98mm/minとした。又、強冷却開始時の鋳片表面温度は約1000℃であり、凝固完了までの総熱収縮量が約2mmとなるように、強冷却における冷却速度を調整した。図3に示すように鋳片厚み方向中心部の固相率が0.4以下で軽圧下を開始した場合には中心偏析の低減効果があるが、0.5以上の固相率で軽圧下を開始した場合には中心偏析の改善効果は少なかった。
【0029】
図4は、軽圧下帯の全てのロールのロール勾配を0.7mm/mとして軽圧下しつつ(軽圧下速度;0.98mm/min)、鋳片厚み方向中心部の固相率が0.2の位置から強冷却を開始し、冷却強度を変更して熱収縮速度を変化させ、熱収縮速度の中心偏析に及ぼす影響を調査した結果を示す図である。図4に示すように、熱収縮速度が0.25〜1.0mm/minの範囲では、中心偏析の改善効果が大きいことが判明した。
【0030】
図5は、熱収縮速度及び軽圧下速度を組合せて変更した時の熱収縮速度及び軽圧下速度の和が中心偏析に及ぼす影響を調査した結果を示す図である。図5に示すように、中心偏析は熱収縮速度と軽圧下速度との和を0.8〜1.8mm/minとした時に最も改善されることが判明した。そして、軽圧下だけでは低減することが困難である鋳片幅方向短辺側の中心偏析も本発明により完全に低減できることが判明した。
【0031】
【発明の効果】
本発明では、鋳片を軽圧下すると共に鋳片表面を強冷却するので、軽圧下による濃化溶鋼の流動抑制効果と熱収縮による濃化溶鋼の流動抑制効果とが重なり合って発揮され、且つ、ロール間バルジングが少なくなるので、中心偏析を大幅に低減することができる。又、スラブ鋳片のように扁平比の大きい鋳片の凝固の遅れた部分でも、鋳片の熱収縮が作用して濃化溶鋼の流動が防止されるので、中心偏析を防止することができ、その結果、近年の厳しい品質要求にも対処可能な鋳片を安定して製造することができる。
【図面の簡単な説明】
【図1】表面温度が1000℃の鋳片を60秒間強冷却して鋳片表面温度を500℃にした時の伝熱計算により求めた鋳片内部の温度分布を示す図である。
【図2】本発明の実施の形態の例を示す図であって、スラブ連続鋳造機の側面概要図である。
【図3】軽圧下開始時期と中心偏析との関係の調査結果を示す図である。
【図4】熱収縮速度と中心偏析との関係の調査結果を示す図である。
【図5】熱収縮速度及び軽圧下速度の和と中心偏析との関係の調査結果を示す図である。
【符号の説明】
1 鋳片
2 未凝固相
3 凝固殻
4 軽圧下帯
5 浸漬ノズル
6 鋳型
7 サポートロール
8 ガイドロール
9 ピンチロール
10 水スプレーノズル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reducing component segregation occurring in the center of a continuously cast slab of steel in a casting process.
[0002]
[Prior art]
In the final solidification part in the steel solidification process, solute elements such as carbon, phosphorus and sulfur are concentrated in the unsolidified phase. When the concentrated molten steel flows, accumulates and solidifies, the concentration becomes much higher than the initial concentration of the molten steel, and a component segregation portion is generated. When the steel is solidified, volume shrinkage occurs. With this solidification shrinkage, in the case of continuous casting, the molten steel is sucked and flows in the direction of drawing the slab. Since there is no sufficient amount of molten steel in the unsolidified phase at the end of solidification of continuous cast slabs, the concentrated molten steel between the dendrite trees, which is the final solidification part, flows and accumulates at the center of the slab. It solidifies, producing so-called center segregation.
[0003]
Center segregation degrades the quality of steel products. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking occurs from the center segregation as a starting point due to the action of sour gas, and in deep drawn materials used for can products for drinking water, Anisotropy appears in workability due to segregation of components. Therefore, many measures have been proposed to reduce center segregation from the casting process to the rolling process.
[0004]
Among them, as a means for inexpensively and effectively reducing the center segregation of the slab, as disclosed in, for example, JP-A-8-132203 and JP-A-8-192256, the unsolidified slab is reduced. (Hereinafter referred to as “light pressure reduction”) has been proposed. This light rolling method is to reduce the volume of the unsolidified phase by gradually rolling down the slab at a rolling speed commensurate with the solidification shrinkage of the slab, so as not to cause the flow of the concentrated molten steel between the dendrite trees. The purpose is to prevent center segregation.
[0005]
[Problems to be solved by the invention]
However, if the rolling speed is too fast in the light rolling method, the concentrated molten steel between dendrite trees is squeezed out in the direction opposite to the casting direction, and solute element concentrations such as carbon, phosphorus, and sulfur are found in the center of the slab. A small amount of segregation (in this case, referred to as negative segregation) is generated. On the other hand, when the rolling speed is too slow, the flow of the concentrated molten steel between the dendrite trees cannot be suppressed and central segregation is generated. As described above, the optimal conditions for preventing the flow of the concentrated molten steel by the light reduction method are very limited.
[0006]
In addition, in a slab having a large aspect ratio such as a slab slab, the solidification shell thickness in the slab width direction is likely to be uneven, and in the portion where the solidification in the slab width direction is delayed, the surrounding has already solidified to the center. There is a problem that the portion becomes a resistance and is not reduced at a predetermined amount of reduction speed, and the center segregation is not uniformly reduced.
[0007]
Furthermore, in continuous casting, the cast slab is supported by a plurality of pairs of rolls, and the cast slab is not supported between the rolls, so that the molten steel static pressure acting on the solidified shell causes the solidified shell to swell between the rolls. (Hereinafter, referred to as “bulging”), and the molten steel flows along with the volume change of the unsolidified phase due to the bulging. Therefore, bulging generated between rolls is also one of the causes of center segregation. In the light reduction method, bulging occurs between the rolls because the rolls are used, and there is a problem that the center segregation due to the bulging cannot be prevented.
[0008]
On the other hand, demands on steel quality from customers are becoming more stringent, and further reduction of center segregation is desired.
[0009]
The present invention has been made in view of the above circumstances, and its purpose is to reduce the center segregation of the continuous cast slab by the light reduction method, it is possible to expand the optimal conditions of the light reduction method, Further, it is an object of the present invention to provide a center segregation reduction method capable of reducing bulging between rolls and capable of producing a cast piece capable of meeting recent severe quality requirements.
[0010]
[Means for Solving the Problems]
The method for reducing center segregation of a continuous cast slab according to the present invention is to start light reduction of the slab from the time when the solid phase ratio at the center of the slab thickness direction is 0.4 or less, and the center of the slab thickness direction is solidified. The slab surface is gently cooled until completion, and the slab surface is strongly cooled until the center of the slab thickness direction is solidified while the slab is being lightly reduced. It is characterized in that it is controlled within a range of 0.0 mm / min. At this time, by controlling the sum of the heat shrinkage speed and the light reduction speed in the range of 0.8 to 1.8 mm / min, the effect of reducing center segregation can be further exhibited.
[0011]
In the present invention, the slab surface is strongly cooled while lightly reducing the continuously cast slab until the center of the slab thickness direction is completely solidified. By strongly cooling the surface of the continuous cast slab having an unsolidified phase therein, only the slab surface portion can be cooled. For example, FIG. 1 shows a temperature distribution inside a slab obtained by heat transfer calculation when a slab having a thickness of 250 mm and a surface temperature of 1000 ° C. is strongly cooled for 60 seconds to make the slab surface temperature 500 ° C. Show.
[0012]
As shown in FIG. 1, the effect of heat diffusion due to strong cooling appears up to a range of about 40 mm from the slab surface, and the temperature is less likely to decrease due to the low thermal conductivity of steel inside the slab. . In the case of FIG. 1, the average temperature of the portion where the temperature has been lowered by the strong cooling is about 880 ° C., and the average temperature of the same portion before cooling is about 1080 ° C., so that the temperature dropped about 200 ° C. in 60 seconds. Will be. Since the heat shrinkage of steel is approximately 2 × 10 −5 (/ ° C.), a 250 mm thick slab shrinks at a heat shrink rate of about 1.0 mm / min and a total heat shrinkage of 1 mm. become. That is, the volume of the unsolidified phase can be reduced by the heat shrinkage of the cast solidified shell due to the strong cooling, and the flow of the unsolidified phase can be suppressed. This effect becomes more remarkable when the slab cross-sectional shape is circular or closer to a square, and the effect is exerted on the short side of the slab in a rectangular shape having a large aspect ratio such as a slab slab. .
[0013]
Furthermore, the temperature of the surface layer of the slab is lowered by strongly cooling the slab, and the strength of the solidified shell of the slab is increased, so that bulging between the rolls is reduced, and the flow of the unsolidified phase due to bulging between the rolls is suppressed. be able to.
[0014]
As described above, according to the present invention, the unsolidified slab is lightly reduced, and the slab surface is strongly cooled until the slab is completely solidified. And the effect of suppressing the flow is exerted on each other, the bulging between the rolls is reduced, and the center segregation can be effectively reduced.
[0015]
Furthermore, in a slab having a large aspect ratio such as a slab slab, even if a solidification delay occurs in the slab width direction, according to the casting method of the present invention, the heat shrinkage of the slab also occurs in a portion where the solidification is delayed. It acts to prevent the flow of the concentrated molten steel, so that center segregation can be prevented.
[0016]
The light reduction of the slab is performed from the time when the solid phase ratio at the center of the slab thickness direction is 0.4 or less and is continued until solidification is completed. Even if light reduction is started after the solid phase ratio in the center of the slab thickness direction exceeds 0.4, central segregation occurs due to the concentrated molten steel that has flowed before that, and the effect of light reduction can be fully exhibited. I can't.
[0017]
It is necessary to control the heat shrink rate by strong cooling in the range of 0.25 to 1.0 mm / min. When the heat shrinkage speed is less than 0.25 mm / min, the effect of heat shrinkage is small, and the effect of reducing center segregation is not sufficient. On the other hand, in order to cool the slab so that the heat shrinkage rate exceeds 1.0 mm / min, extremely extreme cooling is required, and this cooling may cause slab surface defects such as surface cracks. , Not practical.
[0018]
Further, it is preferable to control the sum of the heat shrink speed and the light reduction speed in a range of 0.8 to 1.8 mm / min. If the sum of these is less than 0.8 mm / min, the flow of the concentrated molten steel due to solidification shrinkage cannot be sufficiently prevented, while if the sum of these exceeds 1.8 mm / min, the concentrated molten steel cannot This is because squeezing is performed in a direction opposite to the casting direction, and negative segregation may be generated at the center of the slab.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. FIG. 2: is a figure which shows the example of embodiment of this invention, and is a side schematic diagram of a slab continuous casting machine.
[0020]
As shown in FIG. 2, the molten steel cast in the mold 6 through the immersion nozzle 5 is cooled in the mold 6 to form a solidified shell 3, and as a cast piece 1 having an unsolidified phase 2 therein, While being supported by the support roll 7, the guide roll 8, and the pinch roll 9 provided below the mold 6, it is continuously pulled below the mold 6 by the driving force of the pinch roll 9. While passing through these rolls, the slab 1 is cooled by a secondary cooling zone (not shown) composed of water spray or air mist spray to increase the thickness of the solidified shell 3 and eventually reach the inside. Complete coagulation.
[0021]
On the downstream side of the continuous casting machine in the drawing direction, a light pressure lower zone 4 composed of a plurality of pairs of rolls is provided, and a water spray for strongly cooling the slab 1 is provided between the rolls of the light pressure lower zone 4. 10 are arranged.
[0022]
Under various casting conditions, the thickness of the solidified shell 3 and the solid fraction at the center in the thickness direction of the slab are determined in advance by heat transfer calculation, etc. Is adjusted to 0.4 or less, casting conditions such as slab withdrawal speed and secondary cooling strength are adjusted. The length in the casting direction of the light reduction zone 4 is set so that the slab 1 entering the light reduction zone 4 can be solidified in the light reduction zone 4 to the center of the slab thickness direction. The solid fraction at the center of the slab thickness direction when entering the low-pressure lower zone 4 may be any value as long as it is 0.4 or less.
[0023]
In the low pressure lower zone 4, spray water is sprayed from the water spray nozzle 10 to rapidly cool the slab 1 until the slab 1 is completely solidified. The quenching start timing is preferably the same as the light pressure start timing, but may be delayed for several seconds to several tens of seconds or may be several seconds to several tens of seconds earlier. Then, the heat shrinkage rate of the slab 1 from the start of cooling by the rapid cooling to the completion of solidification is controlled in the range of 0.25 to 1.0 mm / min. This is based on the time required from the start of strong cooling to the completion of solidification of the slab 1 to determine the total heat shrinkage at which the heat shrinkage rate is in the range of 0.25 to 1.0 mm / min. Thus, the slab surface temperature after strong cooling may be calculated based on the slab surface temperature at the start of rapid cooling and the heat shrinkage of the steel, and the cooling may be performed at a cooling intensity that is the calculated surface temperature. However, since this calculation is a complicated calculation involving heat transfer calculation, it is preferable to perform heat transfer calculation under various casting conditions in advance and determine cooling conditions that fall within the range of the heat shrinkage rate.
[0024]
Further, it is preferable to control the sum of the heat shrink speed and the light reduction speed in a range of 0.8 to 1.8 mm / min. For example, when the light reduction speed is 1.0 mm / min, the heat shrink speed may be controlled in the range of 0.25 to 0.8 mm / min, and the cooling conditions are determined in the same manner as described above. Just do it. Conversely, when the heat contraction speed is set, the light reduction speed may be determined so that the sum of the heat contraction speed and the light reduction speed is 0.8 to 1.8 mm / min.
[0025]
By casting in this manner, it is possible to prevent the flow of the concentrated molten steel accompanying the solidification shrinkage of the slab 1, and it is possible to significantly reduce the center segregation of the slab 1. Particularly in the case of slab slabs, the effect of light reduction is small on the short side of the slab and center segregation is likely to occur, but the present invention makes it possible to reduce center segregation evenly in the slab width direction.
[0026]
Although the above description relates to a slab continuous casting machine, the present invention is not limited to a slab slab, and can be applied to a bloom continuous casting machine and a billet continuous casting machine. The shape is not limited to a rectangular shape and may be a circle. Furthermore, although a water spray is used for strong cooling of the slab, other cooling methods such as an air mist spray may be used.
[0027]
【Example】
Using the continuous slab casting machine shown in FIG. 2, samples were taken from the slab slab which was cast while changing the light reduction start time, the heat shrinkage speed, and the light reduction speed, and the center segregation of each sample was investigated, and the strong cooling was performed. The effects of start time, heat shrinkage rate, and light reduction rate on center segregation were investigated. The continuous casting machine used is a vertical bending type slab continuous casting machine having a vertical portion of 2.8 m immediately below the mold and a radius of a curved portion following the vertical portion of 10 m. A low pressure lowering zone is set within a range of 18 to 32 m from the molten steel surface in the mold, and a carbon concentration of 0.08 to 0.10 wt% is drawn as a slab 250 mm thick and 2100 mm wide at a drawing speed of 1.4 m. / Min. Then, the crystallization start position of the solid phase in the center of the slab thickness direction is about 20 m from the molten steel surface in the mold, and the fully solidified position in the center of the slab thickness direction is about 28 m from the molten steel surface in the mold. The secondary cooling strength before entering the low pressure zone was adjusted. The center segregation was determined based on the carbon concentration distribution.
[0028]
FIG. 3 shows that when the calculated solid fraction at the center in the thickness direction of the slab becomes 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, it is completely solidified. It is the result of investigation of the center segregation at the time of strong cooling while reducing the pressure slightly. In this case, in the light reduction zone, only the slab is supported without light reduction until the calculated solid phase ratio at the center of the slab thickness direction reaches the predetermined value, and the roll gradient after light reduction is 0.7 mm / m, that is, 0.98 mm / min when converted to a light reduction speed. The cooling speed in the strong cooling was adjusted so that the slab surface temperature at the start of the strong cooling was about 1000 ° C. and the total heat shrinkage until the solidification was completed was about 2 mm. As shown in FIG. 3, when the solid phase ratio at the center of the slab thickness direction is less than 0.4 and light reduction is started, there is an effect of reducing center segregation. When the process was started, the effect of improving the center segregation was small.
[0029]
FIG. 4 shows that the roll gradient of all the rolls in the light reduction zone is 0.7 mm / m while the pressure is reduced (light reduction speed: 0.98 mm / min) while the solid phase ratio at the center of the slab thickness direction is 0.1 mm. FIG. 4 is a diagram showing the results of investigating the effect of the heat shrinkage rate on the center segregation by starting strong cooling from the position 2 and changing the cooling strength to change the heat shrinkage rate. As shown in FIG. 4, when the heat shrinkage rate was in the range of 0.25 to 1.0 mm / min, it was found that the effect of improving center segregation was large.
[0030]
FIG. 5 is a diagram showing the results of investigating the effect of the sum of the heat shrinkage speed and the light reduction speed on the center segregation when the heat contraction speed and the light reduction speed are changed in combination. As shown in FIG. 5, it was found that the center segregation was most improved when the sum of the heat shrinkage rate and the light reduction rate was set to 0.8 to 1.8 mm / min. It has been found that the present invention can also completely reduce the center segregation on the short side in the slab width direction, which is difficult to reduce only by light pressure reduction.
[0031]
【The invention's effect】
In the present invention, since the surface of the slab is strongly cooled while the slab is lightly reduced, the effect of suppressing the flow of the concentrated molten steel by light reduction and the effect of suppressing the flow of the concentrated molten steel by heat shrinkage are exhibited, and Since bulging between rolls is reduced, center segregation can be significantly reduced. In addition, even in a portion where the solidification of a slab having a large aspect ratio is delayed, such as a slab slab, the heat shrinkage of the slab acts to prevent the flow of the concentrated molten steel, so that the center segregation can be prevented. As a result, it is possible to stably produce a slab which can cope with recent severe quality requirements.
[Brief description of the drawings]
FIG. 1 is a diagram showing a temperature distribution inside a slab obtained by a heat transfer calculation when a slab having a surface temperature of 1000 ° C. is strongly cooled for 60 seconds to make the slab surface temperature 500 ° C.
FIG. 2 is a view showing an example of an embodiment of the present invention, and is a schematic side view of a continuous slab casting machine.
FIG. 3 is a graph showing the results of an investigation on the relationship between the start time of light reduction and center segregation.
FIG. 4 is a diagram showing the results of an investigation on the relationship between the heat shrinkage rate and the center segregation.
FIG. 5 is a graph showing the results of an investigation of the relationship between the center of segregation and the sum of the heat shrinkage speed and the light reduction speed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cast piece 2 Unsolidified phase 3 Solidified shell 4 Low pressure zone 5 Immersion nozzle 6 Mold 7 Support roll 8 Guide roll 9 Pinch roll 10 Water spray nozzle

Claims (2)

鋳片厚み方向中心部の固相率が0.4以下の時点から鋳片の軽圧下を開始して、鋳片厚み方向中心部が凝固完了するまで軽圧下を継続し、且つ、軽圧下しつつ鋳片厚み方向中心部が凝固完了するまで鋳片表面を強冷却して、この冷却による鋳片の熱収縮速度を0.25〜1.0mm/minの範囲に制御することを特徴とする連続鋳造鋳片の中心偏析低減方法。Start light reduction of the slab from the point where the solid phase ratio at the center of the slab thickness direction is 0.4 or less, continue the light reduction until the center of the slab thickness direction solidifies, and The slab surface is strongly cooled until the center of the slab thickness direction is completely solidified, and the heat shrinkage rate of the slab by this cooling is controlled in the range of 0.25 to 1.0 mm / min. A method for reducing center segregation in continuous cast slabs. 前記熱収縮速度と軽圧下速度との和を0.8〜1.8mm/minの範囲に制御することを特徴とする請求項1に記載の連続鋳造鋳片の中心偏析低減方法。The method according to claim 1, wherein the sum of the heat shrink speed and the light reduction speed is controlled in a range of 0.8 to 1.8 mm / min.
JP31802399A 1999-11-09 1999-11-09 Method of reducing center segregation in continuous cast slab Expired - Fee Related JP3546297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31802399A JP3546297B2 (en) 1999-11-09 1999-11-09 Method of reducing center segregation in continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31802399A JP3546297B2 (en) 1999-11-09 1999-11-09 Method of reducing center segregation in continuous cast slab

Publications (2)

Publication Number Publication Date
JP2001138021A JP2001138021A (en) 2001-05-22
JP3546297B2 true JP3546297B2 (en) 2004-07-21

Family

ID=18094643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31802399A Expired - Fee Related JP3546297B2 (en) 1999-11-09 1999-11-09 Method of reducing center segregation in continuous cast slab

Country Status (1)

Country Link
JP (1) JP3546297B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE466073T1 (en) 2003-12-26 2010-05-15 Makoto Asashima BASAL MEDIUM FOR CULTIVATION OF ES CELLS
JP4803108B2 (en) * 2007-05-21 2011-10-26 住友金属工業株式会社 High strength hot-rolled steel sheet and manufacturing method thereof
JP5157664B2 (en) * 2008-06-16 2013-03-06 Jfeスチール株式会社 Continuous casting method of round slabs for seamless steel pipes
JP5131229B2 (en) * 2009-03-06 2013-01-30 新日鐵住金株式会社 Slab continuous casting method
JP5402308B2 (en) * 2009-06-26 2014-01-29 Jfeスチール株式会社 Continuous casting method of high carbon steel

Also Published As

Publication number Publication date
JP2001138021A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
JP2010082638A (en) Method for producing continuously cast slab
JP3546297B2 (en) Method of reducing center segregation in continuous cast slab
JP3511973B2 (en) Continuous casting method
JP4507887B2 (en) Steel continuous casting method
JP5045408B2 (en) Manufacturing method of continuous cast slab
JP3401785B2 (en) Cooling method of slab in continuous casting
JP4998734B2 (en) Manufacturing method of continuous cast slab
FR2591135A1 (en) IMPROVED METHOD OF ADJUSTING CONTINUOUS CASTING CONDITIONS.
JPS6372457A (en) Continuous casting method for steel
JP2010104991A (en) Continuous casting method and continuous casting machine for steel
JP2008290113A (en) Continuous casting method of steel
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPH04313454A (en) Continuous casting method
JP2019030892A (en) Continuous casting method for steel
JP5915453B2 (en) Steel continuous casting method
JP3846676B2 (en) Steel continuous casting method
JP2561180B2 (en) Continuous casting method
JP2982622B2 (en) Cooling method of slab in continuous casting
JPH09225612A (en) Continuous casting method
JP2001259809A (en) Continuous casting method
JP3394730B2 (en) Continuous casting method of steel slab
JPH04313453A (en) Continuous casting method
JPS6127151A (en) Continuous casting method and direct rolling method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Ref document number: 3546297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees