JP3545673B2 - 光通信装置、光送信器および光受信器 - Google Patents

光通信装置、光送信器および光受信器 Download PDF

Info

Publication number
JP3545673B2
JP3545673B2 JP2000125783A JP2000125783A JP3545673B2 JP 3545673 B2 JP3545673 B2 JP 3545673B2 JP 2000125783 A JP2000125783 A JP 2000125783A JP 2000125783 A JP2000125783 A JP 2000125783A JP 3545673 B2 JP3545673 B2 JP 3545673B2
Authority
JP
Japan
Prior art keywords
optical
duobinary
signal
suppressed
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000125783A
Other languages
English (en)
Other versions
JP2001308792A (ja
Inventor
章 平野
宮本  裕
一茂 米永
憲史 佐藤
弘 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000125783A priority Critical patent/JP3545673B2/ja
Priority to DE60142814T priority patent/DE60142814D1/de
Priority to EP01400499A priority patent/EP1128580B1/en
Priority to US09/793,954 priority patent/US6865348B2/en
Publication of JP2001308792A publication Critical patent/JP2001308792A/ja
Application granted granted Critical
Publication of JP3545673B2 publication Critical patent/JP3545673B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ等の伝送媒体が有する波長分散、あるいはこれと非線形光学効果との相互作用によって生じる伝送品質の劣化を最小限に抑える光通信装置に関する。また、この光通信装置を構成する光送信器および光受信器に関する。
【0002】
【従来の技術】
光信号伝送では、その伝送媒体である光ファイバが有する波長分散、あるいはこれと非線形光学効果との相互作用による波形劣化が引き起こす伝送品質の劣化が問題となる。これは、光ファイバのもつ群速度分散が、光信号のもつ帯域幅に作用することによりその光パルス波形が崩れ、隣接タイムスロットとの間で干渉することにより起こる。
【0003】
この群速度分散による劣化を抑圧するために、例えば図16に示す光通信装置を用いた光デュオバイナリ伝送方式が提案されている(特開平9−236781号公報)。
【0004】
図16において、2値のデータ信号(バイナリ信号)は、符号変換回路71に入力されて3値のデュオバイナリ信号に変換される。このデュオバイナリ信号は2分岐してその一方が反転回路72で位相反転され、振幅調整回路73−1,73−2で帯域制限され、透過率が最小にバイアスされた二電極型のマッハツェンダ型光強度変調器74をプッシュプル駆動する。連続光光源75から出力される連続光は、この互いに位相が反転したデュオバイナリ信号に応じて強度変調され、光デュオバイナリ信号に変換されて光伝送媒体3に送出される。光伝送媒体3を介して伝送された光デュオバイナリ信号は、光検波回路81で直接検波され、その検波信号を識別回路82で識別再生し、反転回路83で位相反転することにより2値のデータ信号が復元される。
【0005】
このような光デュオバイナリ伝送方式では、光ファイバの波長分散に対して高い耐力が得られることが報告されている(K.Yonenaga et al., Electron. Lett., vol.31, pp.302−304, 1995) 。
【0006】
【発明が解決しようとする課題】
しかし、従来構成では、光ファイバ伝送路への入射光パワーを増大させると分散耐力が減少する問題があった。図17は、光デュオバイナリ伝送方式と、一般的なNRZおよびRZ符号形式を用いた伝送方式の分散耐力の計算機シミュレーション結果を示す。ここでは、いずれも局所分散が+2ps/nm/kmのシングルモードファイバ 100kmを光増幅器1台を介して2スパン伝送させた際のアイ開口劣化1dBの等高線を示す。なお、後述する本発明を用いた場合の分散耐力についても合わせて示している。
【0007】
図17において、入射光パワーが0dBmでは、NRZ符号形式はRZ符号形式に比べて約2倍の分散耐力を有し、光デュオバイナリ伝送方式はNRZ符号形式に比べて約4倍の分散耐力を有し、それぞれのもつ帯域幅から予測される通りの分散耐力を示している。また、このときの最適分散値はほぼ0ps/nm である。
【0008】
しかし、光ファイバ伝送路への入射光パワーを増大させると、光デュオバイナリ伝送方式の分散耐力は減少し、特に低光パワー領域で最適点であった総分散が0ps/nm の近傍において著しく劣化する。そして、入射光パワーが5dBmを越えた辺りで、アイ開口劣化が1dBを超過する。
【0009】
一方、NRZ・RZ符号形式では、最適分散値が入射光パワーを増大させるにつれて正分散側にシフトし、低光パワー(0dBm)において最適点であった0ps/nm は分散耐力マージンの端になり、分散耐力マージンは入射光パワーをさらに増大させると急激になくなる。これは、光ファイバ中の非線形光学効果により光信号に付加的に周波数チャープが加わるためである。また、分散耐力自体も、光デュオバイナリ伝送方式に比べて1/4から1/8と非常に小さいので、システム設計が厳しくなり、システム導入時の最適化も困難となる。
【0010】
このように、光デュオバイナリ伝送方式、NRZ・RZ符号形式を用いた伝送方式では、広い入射光パワー範囲において分散耐力の最適点が変動する。これは、光伝送システムの設計を複雑にし、迅速な導入および安定運用を妨げる要因になる。すなわち、光伝送システムの設計では、入射光パワーに依存して変動する最適分散値を考慮する必要が生じ、設計が複雑になる。
【0011】
また、光伝送システムの導入時には、光ファイバ伝送路の分散値を分散測定器により測定し、最適となる分散値(一般的には0ps/nm 、送信信号をチャープさせていれば多少ずれる)に設定してシステムを立ち上げることになる。この分散値の測定では、光ファイバの分散値の情報しか得られないので、伝送方式ごとに異なる上記の最適分散値のずれに追随させることは困難である。言い換えれば、従来方式では使用できる入射光パワーのダイナミックレンジが小さい。したがって、従来方式を用いた光伝送システムでは、ビットレートや伝送距離を制限する要因となる。
【0012】
また、光デュオバイナリ伝送方式、NRZ・RZ符号形式を用いた伝送方式のいずれにおいても、入射光パワーを増大させる際に分散耐力が急激に劣化する。これは、光伝送システムの安定運用に支障をきたす問題である。
【0013】
本発明は、広い入射光パワー範囲において高い分散耐力を安定に保ち、光伝送システムの設計を容易にし、光伝送システムの導入を迅速化し、安定運用を実現する光通信装置およびそれを構成する光送信器ならびに光受信器を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の光通信装置は、光デュオバイナリ信号を生成する光デュオバイナリ信号生成手段と、光デュオバイナリ信号に交番した位相差を加えてRZ化し、キャリア抑圧RZ化光デュオバイナリ信号に変換して送信する光変調手段から構成される光送信器と、キャリア抑圧RZ化光デュオバイナリ信号を伝送する光伝送媒体と、キャリア抑圧RZ化光デュオバイナリ信号を入力し、そのスペクトル成分中の2つの光デュオバイナリ成分を分割して出力する帯域分割手段と、2つの光デュオバイナリ成分の一方または両方を受信する光受信手段から構成される光受信器とを備える。
【0015】
これにより、光ファイバ等の光伝送媒体を伝送するキャリア抑圧RZ化光デュオバイナリ信号はRZパルスの形をとり、光ファイバ中の非線形光学効果による波形劣化を最小限に抑えることができる。また、光受信器の帯域分割手段では、キャリア抑圧RZ化光デュオバイナリ信号の2つの光デュオバイナリ成分を分割し、それぞれ個別に抽出して受信するので、ほぼ半分の光デュオバイナリ信号に近い帯域成分が光伝送媒体の波長分散の影響を受ける。したがって、光伝送媒体の波長分散による波形劣化をほぼ1/4に抑えることができる。
【0016】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の光通信装置(光送信器、光受信器)の第1の実施形態を示す。
【0017】
図において、本発明の光通信装置は、光デュオバイナリ信号をキャリア抑圧RZ化光デュオバイナリ信号に変換して送信する光送信器1と、光伝送媒体3を介して伝送されたキャリア抑圧RZ化光デュオバイナリ信号を帯域分割して受信する光受信器2により構成される。
【0018】
光送信器1は、従来と同様の光デュオバイナリ信号を生成する光デュオバイナリ信号生成手段70と、生成された光デュオバイナリ信号に交番した位相差を加えてRZ化し、キャリア抑圧RZ化光デュオバイナリ信号に変換する光変調手段10により構成される。
【0019】
光伝送媒体3には、分散シフトファイバ(DSF)、または 1.3μm帯のシングルモードファイバなどの石英系光ファイバが用いられる。なお、光ファイバ増幅器(光中継器)を含んでもよい。
【0020】
光受信器2は、伝送されたキャリア抑圧RZ化光デュオバイナリ信号のスペクトル成分中の2つの光デュオバイナリ成分を分離する帯域分割手段20と、2つの光デュオバイナリ成分の一方または両方を受信する光受信手段80により構成される。帯域分割手段20には、誘電体多層膜等で構成される光帯域通過型フィルタ、光ファイバまたは光導波路上に形成されたマッハツェンダ干渉計型の光フィルタ、アレイ導波路回折格子型フィルタ(AWG)などを用いることができる。光受信手段80は、図16に示すような光検波回路81、識別回路83、反転回路83からなり、帯域分割された光デュオバイナリ成分を光電変換、識別再生、位相反転することにより、元の2値のデータ信号を復元する。なお、反転回路83は、光送信器1の光デュオバイナリ信号生成手段70の符号変換回路の構成により不要な場合もある。
【0021】
図2は、光送信器1の構成例を示す。ただし、図2(a) は光送信器1の第1の構成例、図2(b) は後述する光送信器1の第2の構成例を示す。図2(a) において、光デュオバイナリ信号生成手段70は、符号変換回路71、位相反転回路72、振幅調整回路73−1,73−2、二電極型のマッハツェンダ型光変調器74、連続光光源75からなり、従来構成と同様に入力された2値のデータ信号(バイナリ信号)を符号変換回路71で3値のデュオバイナリ信号に変換し、さらにマッハツェンダ型光変調器74をプッシュプル駆動することにより光デュオバイナリ信号を生成する。光変調手段10は、二電極型のマッハツェンダ型光変調器11からなり、光デュオバイナリ信号生成手段70で生成された光デュオバイナリ信号のビットレートの半分の周波数のクロック信号(例えば正弦波)CLKでプッシュプル駆動することにより、キャリア抑圧RZ化光デュオバイナリ信号を生成する。
【0022】
以下、図3,4を参照して、本実施形態の動作について説明する。光デュオバイナリ信号生成手段70により、通常のNRZ符号に比較して約半分の帯域をもつ光デュオバイナリ信号が生成される。計算機シミュレーションにより得られた光波形(アイパターン)と、そのときの光スペクトルを図3(a) に示す。
【0023】
この光デュオバイナリ信号を光変調手段10(マッハツェンダ型光変調器11)に入力し、同期したクロック信号(CLK)でプッシュプル駆動して変調することにより、キャリア抑圧されたRZ信号(キャリア抑圧RZ化光デュオバイナリ信号)に変換される。このとき、駆動点を無変調時の透過率が最小の電圧とし、駆動するクロック信号の周波数を前段で生成された光デュオバイナリ信号のビットレートの半分とする。また、駆動振幅は、マッハツェンダ型光変調器11のVπの1〜3倍とする。このように駆動されるマッハツェンダ型光変調器11は、交番位相RZ化する機能を備えたゲート特性をもつ。この様子を図4に模式的に示す。
【0024】
図4(a) は前段の光デュオバイナリ信号生成手段70から出力される光デュオバイナリ信号であり、この光デュオバイナリ信号の位相に合わせて、図4(b) に示すようにマッハツェンダ型光変調器11のプッシュプル駆動のゲート位相を設定する。この操作により、図4(c) に示すビット間位相差をもつRZ信号が得られる。これがキャリア抑圧RZ化光デュオバイナリ信号の波形である。
【0025】
ここで、マッハツェンダ型光変調器11は、入力光デュオバイナリ信号のビットレートの半分の周波数のクロック信号でプッシュプル駆動されるが、この光変調器の折り返し特性により、得られるRZパルスは繰り返し周波数が入力光デュオバイナリ信号のビットレートに一致する。このときに得られる光波形(アイパターン)と光スペクトルを図3(b) に示す。これは、マッハツェンダ型光変調器11の駆動電圧を、その変調器のもつVπのちょうど2倍の振幅(peak−to−peak) の正弦波とした場合のものである。デューティ比が約2/3の光パルスに変換されている。このように光デュオバイナリ信号をRZ化することにより、光伝送媒体3中での非線形光学効果に対して強い耐性を得ることができる。また、この光スペクトルはキャリア成分が抑圧され、かつ2つの光デュオバイナリ成分により構成されている。
【0026】
光伝送媒体3を伝送されたキャリア抑圧RZ化光デュオバイナリ信号は、光受信器2の帯域分割手段20に入力され、上記の2つの光デュオバイナリ成分の一方が選択される。このときに得られる光波形(アイパターン)と光スペクトルを図3(c) に示す。この帯域分割により、光波形はほぼNRZ信号と同等となる。このような処理により、光ファイバの群速度分散による波形劣化を、伝送後の2つの光デュオバイナリ成分の一方のみに対するものに限定することができる。この効果により、図17に示したように高い入射光パワーに対して、広い分散耐力と、最適分散値が全分散値で零の近傍に維持される非線形光学効果に対する高い耐力とを両立することができる。なお、仮に伝送されたキャリア抑圧RZ化光デュオバイナリ信号を帯域分割せずに受信すると、光ファイバの群速度分散の影響を2つのデュオバイナリ成分全体の帯域として受けてしまうので、分散耐力が劣化する。
【0027】
(光送信器1の第2の構成例)
図1に示す光送信器1は、図2(b) に示すように、連続光光源75から出力される連続光を先に交番位相RZ化を行う光変調手段10(マッハツェンダ型光変調器11)に入力し、その出力光を光デュオバイナリ信号に変換するマッハツェンダ型光変調器74に入力する構成としてもよい。すなわち、前段のマッハツェンダ型光変調器11をクロック信号(CLK)でプッシュプル駆動し、後段のマッハツェンダ型光変調器74を振幅調整回路73−1,73−2から出力されるデュオバイナリ信号でプッシュプル駆動する。
【0028】
なお、この構成の場合には、連続光光源75と光変調手段10(マッハツェンダ型光変調器11)に代えて、2モード発振モードロックレーザを用いることができる。これにより、構成部品数も少なくなり、より簡単な光送信器1を構成することができる。
【0029】
(第2の実施形態)
図5は、本発明の光通信装置(光送信器)の第2の実施形態を示す。本実施形態の光送信器および光受信器の構成は、ともに図1に示す第1の実施形態と同様であるが、光送信器1の光変調手段10(マッハツェンダ型光変調器11)を駆動するクロック信号(CLK)の周波数が異なる。
【0030】
第1の実施形態では、光変調手段10を構成するマッハツェンダ型光変調器11を駆動するクロック信号(CLK)の周波数は、光デュオバイナリ信号生成手段70で生成される光デュオバイナリ信号のビットレートの半分とした。これにより生成されるキャリア抑圧RZ化光デュオバイナリ信号の2つの光デュオバイナリ成分の周波数差は、図6(a) に示すように光デュオバイナリ信号のビットレートをNbit/s としたときにNHzとなる。
【0031】
一般的には、光デュオバイナリ信号のビットレートをNbit/s としたときに、マッハツェンダ型光変調器11をプッシュプル駆動するクロック信号の周波数はmN/2Hz(mは正の整数)としてもよい。第2の実施形態は、光デュオバイナリ信号のビットレートと同じ周波数のクロック信号(m=2)でマッハツェンダ型光変調器11をプッシュプル駆動する場合を示す。これにより、図6(b) に示すように、生成されるキャリア抑圧RZ化光デュオバイナリ信号の2つの光デュオバイナリ成分の周波数差は、第1の実施形態に対して2倍(2NHz)にすることができる。したがって、光受信器2の帯域分割手段20で各光デュオバイナリ成分を抽出する際に、光フィルタの中心周波数および透過幅に対するマージンが大きくなり、安定動作が容易になる。
【0032】
(第3の実施形態)
図7は、本発明の光通信装置(光受信器)の第3の実施形態を示す。本実施形態の光送信器の構成は、第1の実施形態または第2の実施形態と同様であるが、光受信器の構成が両者と異なる。
【0033】
本実施形態の光受信器2は、帯域分割手段20で帯域分割した2つの光デュオバイナリ成分を受信する光受信手段80aを備えたことを特徴とする。光受信手段80aは、2つの光検波回路81−1,81−2、加算回路84、識別回路82、反転回路83により構成される。2つの光検波回路81−1,81−2は、例えばPIN型のフォトダイオードを用い、同じ出力極性をもつ。この電気信号を加算回路84で加算して識別回路82に入力する構成である。
【0034】
本実施形態の動作について図8を参照して説明する。光送信器1から送信されたキャリア抑圧RZ化光デュオバイナリ信号は、光伝送媒体3を介して光受信器2に受信され、帯域分割手段20で2つの光デュオバイナリ成分に分割され、それぞれ分離して出力される。2つの光デュオバイナリ成分は、光検波回路81−1,81−2でそれぞれ独立に電気信号に変換される。ここで、光検波回路81−1,81−2の出力振幅をそれぞれV1,V2 とする。加算回路84では、2つの電気信号を加算することにより、加算信号の振幅はV1 +V2 となって大きくすることができる。これにより、識別回路82への入力振幅が大きくなり、動作マージンが大きくなって安定した動作を実現することができる。
【0035】
(第4の実施形態)
図9は、本発明の光通信装置(光受信器)の第4の実施形態を示す。本実施形態の光送信器の構成は、第1の実施形態または第2の実施形態と同様であるが、光受信器の構成が両者と異なる。
【0036】
本実施形態の光受信器2は、帯域分割手段20で帯域分割した2つの光デュオバイナリ成分を受信する光受信手段80bを備えたことを特徴とする。光受信手段80bは、2つの光検波回路81−1,81−2、減算回路85、識別回路82、反転回路83により構成される。2つの光検波回路81−1,81−2は、例えばPIN型のフォトダイオードを用い、異なる出力極性をもつ。この電気信号を減算回路85で減算して識別回路82に入力する構成である。
【0037】
ここで、図10を参照して本実施形態の動作について説明する。光送信器1から送信されたキャリア抑圧RZ化光デュオバイナリ信号は、光伝送媒体3を介して光受信器2に受信され、帯域分割手段20で2つの光デュオバイナリ成分に分割され、それぞれ分離して出力される。2つの光デュオバイナリ成分は、光検波回路81−1,81−2でそれぞれ独立に電気信号に変換される。ここで、光検波回路81−1,81−2の出力振幅をそれぞれV1,V2 とする。ただし、2つの電気信号の極性は逆であり、一方が正極性(光が入射したときにプラスの電位)、他方が負極性(光が入射したときにマイナスの電位)となる。減算回路85では、2つの電気信号を減算することにより、減算信号の振幅はV1 −V2 となって大きくすることができる。これにより、識別回路82への入力振幅が大きくなり、動作マージンが大きくなって安定した動作を実現することができる。
【0038】
(第5の実施形態)
図11は、本発明の光通信装置(光受信器)の第5の実施形態を示す。本実施形態の光送信器の構成は、第1の実施形態または第2の実施形態と同様であるが、光受信器の構成が両者と異なる。
【0039】
本実施形態の光受信器2は、帯域分割手段20で帯域分割した2つの光デュオバイナリ成分を並列に受信する光受信手段80−1,80−2を備え、一方を現用系、他方を予備系として用いることを特徴とする。各光受信手段80−1,80−2は、それぞれ光検波回路、識別回路、反転回路により構成される。
【0040】
本実施形態の各光受信手段の動作は、第1の実施形態の光受信器2と同様である。帯域分割手段20で帯域分割された2つの光デュオバイナリ成分を各光受信手段80−1,80−2でそれぞれ受信することにより、一方が故障した場合でも他方の光受信手段により受信を継続することができ、システムの安定性および信頼性を高めることができる。
【0041】
(第6の実施形態)
図12は、本発明の光通信装置(光受信器)の第6の実施形態を示す。本実施形態の光送信器の構成は、第1の実施形態または第2の実施形態と同様であるが、光受信器の構成が両者と異なる。
【0042】
本実施形態の光受信器2は、帯域分割手段20で帯域分割した2つの光デュオバイナリ成分をモニタして帯域分割手段20を制御することを特徴とする。帯域分割手段20で帯域分割した2つの光デュオバイナリ成分は、それぞれ光分岐手段21−1,21−2でその一部を分岐し、光パワーモニタ回路22−1,22−2で光パワーを測定して制御回路23に入力する。制御回路23は、2つの光パワーの和が最大で、かつその差が最小となるように帯域分割手段20を制御する構成である。帯域分割手段20は、光ファイバまたは光導波路上に形成されたマッハツェンダ干渉計型の光フィルタを用いる。光分岐手段21−1,21−2は、光ファイバ型カプラまたは部分反射型ミラーを用いた光ビームスプリッタなどを用いる。光パワーモニタ回路22−1,22−2は、光電変換回路等を用いた光パワーを測定する手段である。
【0043】
なお、光受信手段80cは、第1の実施形態のように帯域分割した2つの光デュオバイナリ成分の一方のみを受信する構成、第3および第4の実施形態のように2つの光デュオバイナリ成分をそれぞれ電気信号に変換し、加減算して識別する構成、第5の実施形態のように2つの光デュオバイナリ成分をそれぞれ電気信号に変換し、現用系および予備系として利用する構成のいずれでもよい。
【0044】
また、帯域分割手段20としてアレイ導波路回折格子型フィルタ(AWG)を用いた場合には、帯域分割した2つの光デュオバイナリ成分の光パワーの和が最大となるように帯域分割手段20を制御する構成となる。これは、AWGが分波する周波数間隔(グリッド間隔)が固定となるので、2つの光デュオバイナリ成分の光パワーの差が最小となるように制御することが不可能だからである。したがって、AWGとして、キャリア抑圧RZ化光デュオバイナリ信号のビットレートに一致したグリッグ間隔のものを用いた場合には、2つの光デュオバイナリ成分の一方のみの光パワーをモニタし、その値が最大となるように制御してもよい。
【0045】
(第7の実施形態)
図13は、本発明の光通信装置の第7の実施形態を示す。本実施形態は、以上示した本発明の光送信器1および光受信器2を伝送波長ごとに複数組備え、複数の波長のキャリア抑圧RZ化光デュオバイナリ信号を波長多重伝送する構成を特徴とする。これにより、伝送容量を増大させることができる。
【0046】
光送信器1−1〜1−nは、それぞれ光デュオバイナリ信号生成手段70および光変調手段10により構成され、それぞれ異なる波長のキャリア抑圧RZ化光デュオバイナリ信号を生成する。各波長のキャリア抑圧RZ化光デュオバイナリ信号は光合波手段4で合波され、光伝送媒体3を介して伝送されて光分波手段5で各波長のキャリア抑圧RZ化光デュオバイナリ信号に分波され、それぞれ対応する光受信器2−1〜2−nに受信される。光受信器2−1〜2−nは、帯域分割手段20および光受信手段80cにより構成される。
【0047】
光受信手段80cは、第1の実施形態のように帯域分割した2つの光デュオバイナリ成分の一方のみを受信する構成、第3および第4の実施形態のように2つの光デュオバイナリ成分をそれぞれ電気信号に変換し、加減算して識別する構成、第5の実施形態のように2つの光デュオバイナリ成分をそれぞれ電気信号に変換し、現用系および予備系として利用する構成のいずれでもよい。
【0048】
(第8の実施形態)
図14は、本発明の光通信装置(光送信器)の第8の実施形態を示す。本実施形態の光送信器1には、キャリア抑圧RZ化光デュオバイナリ信号を生成する際に発生した余分な高調波成分を抑圧する光帯域制限手段12を備えたことを特徴とする。光受信器2は、以上示した各実施形態のいずれかの構成をとる。
【0049】
本実施形態の効果について図15を参照して説明する。光送信器1の光変調手段10では、図15(a) に示すようにキャリア抑圧RZ化光デュオバイナリ信号を生成する際に高調波成分が発生する。光帯域制限手段12の透過帯域として、図15(b) に示すようなキャリア抑圧RZ化光デュオバイナリ信号の帯域幅に合わせたものを用いることにより、図15(c) に示すように高調波成分を効果的に抑圧することができる。これにより、波長多重の際の帯域利用効率を向上させることができる。
【0050】
なお、第7の実施形態の波長多重伝送システムでは、光合波手段4としてアレイ導波路回折格子型フィルタ(AWG)を用い、その透過帯域幅を本実施形態の光帯域制限手段12と同等に設定することにより、各波長のキャリア抑圧RZ化光デュオバイナリ信号の高調波成分を一括して抑圧することができる。
【0051】
【発明の効果】
以上説明したように、本発明の光通信装置では、光ファイバ等の光伝送媒体を伝送するキャリア抑圧RZ化光デュオバイナリ信号はRZパルスの形をとり、光ファイバ中の非線形光学効果による波形劣化を最小限に抑えることができる。
【0052】
また、光受信器の帯域分割手段で、キャリア抑圧RZ化光デュオバイナリ信号の2つの光デュオバイナリ成分を分割し、それぞれ個別に抽出して受信することにより、ほぼ半分の光デュオバイナリ信号に近い帯域成分が光伝送媒体の波長分散の影響を受ける。したがって、光伝送媒体の波長分散による波形劣化をほぼ1/4に抑えることができる。
【0053】
また、図17に示すように、本発明により実用レベルの入射光パワーにおいて、最も広い分散耐力と、光パワーの変動に対して最適値が変動しない特徴を合わせもつシステムを構成することができる。すなわち、本発明の光通信装置(光送信器および光受信器)は、光伝送媒体の非線形光学効果および波長分散の相互作用による伝送品質の劣化に対して強く特性をもつことができる。これにより、従来の光デュオバイナリ、NRZ、RZ等の信号方式を用いた光通信装置に比べて、より長距離かつ大容量、さらに信頼性の高い光伝送システムを迅速に構築することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す図。
【図2】光送信器1の構成例を示す図。
【図3】第1の実施形態の動作を説明する図。
【図4】キャリア抑圧RZ化光デュオバイナリ信号の生成原理を説明する図。
【図5】本発明の第2の実施形態を示す図。
【図6】第1の実施形態と第2の実施形態の効果の違いを説明する図。
【図7】本発明の第3の実施形態を示す図。
【図8】第3の実施形態の動作を説明する図。
【図9】本発明の第4の実施形態を示す図。
【図10】第4の実施形態の動作を説明する図。
【図11】本発明の第5の実施形態を示す図。
【図12】本発明の第6の実施形態を示す図。
【図13】本発明の第7の実施形態を示す図。
【図14】本発明の第8の実施形態を示す図。
【図15】第8の実施形態の効果を説明する図。
【図16】光デュオバイナリ伝送方式を用いた従来の光通信装置の構成を示す図。
【図17】分散耐力の計算機シミュレーション結果を示す図。
【符号の説明】
1 光送信器
2 光受信器
3 光伝送媒体
4 光合波手段
5 光分波手段
10 光変調手段
11 マッハツェンダ型光変調器
12 光帯域制限手段
20 帯域分割手段
21 光分岐手段
22 光パワーモニタ回路
23 制御回路
70 光デュオバイナリ信号生成手段
71 符号変換回路
72 反転回路
73 振幅調整回路
74 マッハツェンダ型光変調器
75 連続光光源
80 光受信手段
81 光検波回路
82 識別回路
83 反転回路
84 加算回路
85 減算回路

Claims (10)

  1. 光デュオバイナリ信号を生成する光デュオバイナリ信号生成手段と、前記光デュオバイナリ信号に交番した位相差を加えてRZ化し、キャリア抑圧RZ化光デュオバイナリ信号に変換して送信する光変調手段から構成される光送信器と、
    前記キャリア抑圧RZ化光デュオバイナリ信号を入力し、そのスペクトル成分中の2つの光デュオバイナリ成分を分割して出力する帯域分割手段と、前記2つの光デュオバイナリ成分の一方または両方を受信する光受信手段から構成される光受信器と
    を備えたことを特徴とする光通信装置。
  2. 互いに異なる送信波長のキャリア抑圧RZ化光デュオバイナリ信号を生成する複数の請求項1に記載の光送信器と、
    前記複数の波長のキャリア抑圧RZ化光デュオバイナリ信号を合波して送信する光合波手段と、
    前記光合波手段から送信された複数の波長のキャリア抑圧RZ化光デュオバイナリ信号を入力し、各波長に分波する光分波手段と、
    各波長のキャリア抑圧RZ化光デュオバイナリ信号をそれぞれ受信する複数の請求項1に記載の光受信器と
    を備えたことを特徴とする光通信装置。
  3. 請求項1または請求項2に記載の光通信装置の光送信器において、
    前記光変調手段は、前記光デュオバイナリ信号のビットレートをNbit/s としたときに、前記光デュオバイナリ信号に周波数mN/2Hz(mは正の整数)で交番した位相差を加え、繰り返し周波数mNHzのRZパルスとしたキャリア抑圧RZ化光デュオバイナリ信号に変換する構成である
    ことを特徴とする光送信器。
  4. 請求項1または請求項2に記載の光通信装置の光送信器において、
    前記光変調手段から出力されるキャリア抑圧RZ化光デュオバイナリ信号の高調波成分を抑圧する光帯域制限手段を備えた
    ことを特徴とする光送信器。
  5. 請求項2に記載の光通信装置において、
    前記光合波手段は、前記光変調手段から出力されるキャリア抑圧RZ化光デュオバイナリ信号の高調波成分を抑圧する光帯域制限手段の機能を含む構成である
    ことを特徴とする光通信装置。
  6. 請求項1または請求項2に記載の光通信装置の光受信器において、
    前記光受信手段は、同一の出力極性をもつ光電変換手段で前記2つの光デュオバイナリ成分をそれぞれ電気信号に変換し、その電気信号を加算して識別再生する構成である
    ことを特徴とする光受信器。
  7. 請求項1または請求項2に記載の光通信装置の光受信器において、
    前記光受信手段は、互いに異なる出力極性をもつ光電変換手段で前記2つの光デュオバイナリ成分をそれぞれ電気信号に変換し、その電気信号を減算して識別再生する構成である
    ことを特徴とする光受信器。
  8. 請求項1または請求項2に記載の光通信装置の光受信器において、
    前記光受信手段は、前記2つの光デュオバイナリ成分をそれぞれ個別に受信する構成であり、そのうちの一方を冗長系とする
    ことを特徴とする光受信器。
  9. 請求項1または請求項2に記載の光通信装置の光受信器において、
    前記光受信手段は、前記2つの光デュオバイナリ成分の一方の光パワーをモニタし、その光パワーが最大になるように前記帯域分割手段を制御する構成である
    ことを特徴とする光受信器。
  10. 請求項1または請求項2に記載の光通信装置の光受信器において、
    前記光受信手段は、前記2つの光デュオバイナリ成分の各光パワーをモニタし、その2つの光パワーの和が最大で、かつその差が最小または0となるように前記帯域分割手段を制御する構成である
    ことを特徴とする光受信器。
JP2000125783A 2000-02-28 2000-04-26 光通信装置、光送信器および光受信器 Expired - Fee Related JP3545673B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000125783A JP3545673B2 (ja) 2000-04-26 2000-04-26 光通信装置、光送信器および光受信器
DE60142814T DE60142814D1 (de) 2000-02-28 2001-02-27 Optisches Übertragungsverfahren, optischer Sender und optischer Empfänger
EP01400499A EP1128580B1 (en) 2000-02-28 2001-02-27 Optical transmission method, optical transmitter and optical receiver
US09/793,954 US6865348B2 (en) 2000-02-28 2001-02-28 Optical transmission method, optical transmitter, optical receiver, and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125783A JP3545673B2 (ja) 2000-04-26 2000-04-26 光通信装置、光送信器および光受信器

Publications (2)

Publication Number Publication Date
JP2001308792A JP2001308792A (ja) 2001-11-02
JP3545673B2 true JP3545673B2 (ja) 2004-07-21

Family

ID=18635674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125783A Expired - Fee Related JP3545673B2 (ja) 2000-02-28 2000-04-26 光通信装置、光送信器および光受信器

Country Status (1)

Country Link
JP (1) JP3545673B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110913B2 (ja) 2002-10-11 2008-07-02 三菱電機株式会社 光送信器
KR100492971B1 (ko) * 2002-10-31 2005-06-07 삼성전자주식회사 듀오바이너리 광 전송장치
KR100469709B1 (ko) 2002-11-22 2005-02-02 삼성전자주식회사 듀오바이너리 광 전송장치
KR100703267B1 (ko) 2004-11-19 2007-04-03 삼성전자주식회사 색분산 내성이 강화된 이진 데이터 전기신호를 사용하는듀오바이너리 광송신기
JP4563944B2 (ja) * 2006-01-31 2010-10-20 富士通株式会社 光送信器

Also Published As

Publication number Publication date
JP2001308792A (ja) 2001-11-02

Similar Documents

Publication Publication Date Title
EP1271814B1 (en) High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
EP1128580B1 (en) Optical transmission method, optical transmitter and optical receiver
EP2175574B1 (en) Transmission system comprising a CS-RZ DPSK optical transmitter
US6763197B1 (en) Optical transmitter and optical transmitter control method using variable duty ratio setting and alternate phase inversion for optical clock pulses
EP1298819A2 (en) Apparatus and method for optical modulation
US20060013596A1 (en) Bandwidth limited frequency shift keying modulation format
US20020141694A1 (en) Methods of achieving optimal communications performance
CA2385545A1 (en) Method and system to reduce fwm penalty in nrz wdm systems
JP3371857B2 (ja) 光伝送装置
JP3708503B2 (ja) 高精度波長分散測定方法およびそれを用いた自動分散補償型光リンクシステム
EP1404036B1 (en) Duobinary optical transmission apparatus
KR100493095B1 (ko) 광 전송 시스템
WO2011101919A1 (ja) 光送信機
EP1416654B1 (en) Duobinary optical transmission
JP2004312678A (ja) デュオバイナリ光伝送装置
EP1424795B1 (en) Optical transmission system using optical phase modulator
JP3545673B2 (ja) 光通信装置、光送信器および光受信器
US7305189B2 (en) Phase modulation for an optical transmission system
JP2005020277A (ja) 光通信方法、光送信器及び光受信器
JPWO2016092666A1 (ja) 光送信器
US7379671B2 (en) Optical transmitter
KR100480283B1 (ko) 듀오바이너리 광 전송장치
KR100469740B1 (ko) 듀오바이너리 광 전송장치
EP1473856B1 (en) Duobinary optical transmission apparatus
EP1355435B1 (en) Phase modulation for an optical transmission system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees