JP3543692B2 - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
JP3543692B2
JP3543692B2 JP24761599A JP24761599A JP3543692B2 JP 3543692 B2 JP3543692 B2 JP 3543692B2 JP 24761599 A JP24761599 A JP 24761599A JP 24761599 A JP24761599 A JP 24761599A JP 3543692 B2 JP3543692 B2 JP 3543692B2
Authority
JP
Japan
Prior art keywords
circuit
ozone
generation
determination
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24761599A
Other languages
Japanese (ja)
Other versions
JP2001072401A (en
Inventor
忠利 杉浦
勝廣 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP24761599A priority Critical patent/JP3543692B2/en
Publication of JP2001072401A publication Critical patent/JP2001072401A/en
Application granted granted Critical
Publication of JP3543692B2 publication Critical patent/JP3543692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、スイッチング回路により高電圧発生用昇圧トランスの1次巻線の電流を断続させて2次巻線に高電圧を発生させ、該高電圧をオゾン発生用電極板に印加してオゾンを発生させるオゾン発生装置に関するものである。
【0002】
【従来の技術】
図4に示すように、高電圧発生用昇圧トランスaの1次側の電流スイッチング回路bを構成する素子の短絡及び2次側のオゾン発生用電極板cの短絡に対しては、電源経路dに介装したヒューズeの溶断によりオゾン発生装置の安全性を確保している。
【0003】
【発明が解決しようとする課題】
しかしながら、ヒューズの性能は温度や通過電流の影響を受けるため、使用するヒューズに対する最適な溶断電流値の選定が容易ではないという問題点がある。また、上記従来のオゾン発生装置は、高電圧発生用昇圧トランスの2次側回路(オゾン発生用電極板を含む)の断線や、オゾン発生用電極板の消耗による劣化が検出できない。
本発明は上記した問題点を解決するためになされたもので、高電圧発生用昇圧トランスの2次側回路の異常を検出して直ちにオゾンの発生を停止する安全性の高いオゾン発生装置を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記の目的を達成するための本発明のオゾン発生装置は、スイッチング回路により高電圧発生用昇圧トランスの1次巻線の電流を断続させて2次巻線に高電圧を発生させ、該高電圧をオゾン発生用電極板に印加してオゾンを発生させるオゾン発生装置に於いて、前記高電圧発生用昇圧トランスに設けた検出用3次巻線と、該検出用3次巻線に生ずる交流出力を直流出力に変換する交流・直流変換回路と、変換された直流出力電圧と2次側回路の負荷の相関関係に基づいて、該2次側回路の異常を判定する判定手段と、該判定手段の異常判定によりオゾンの発生を停止させるオゾン発生停止信号を出力する停止信号出力手段を有する2次側負荷判定回路と、を備えたことを特徴とする。
【作用及び発明の効果】
【0005】
上記構成のオゾン発生装置は、検出用3次巻線に生ずる交流出力が交流・直流変換回路により直流出力に変換され、変換された直流出力電圧と2次側回路の負荷との相関関係に基づいて、2次側負荷判定回路の判定手段が2次側回路の異常を判定する。そして、該判定手段の異常判定により、停止信号出力手段の出力するオゾン発生停止信号によりオゾンの発生を停止させる。このオゾン発生装置は、検出用3次巻線の直流出力電圧と2次側回路の負荷の相関関係に基づいて、直流出力電圧に対して所定の判定電圧を設定することにより、高電圧発生用昇圧トランスの2次巻線とオゾン発生用電極板を接続する電線の断線、短絡及びオゾン発生用電極板の内部短絡、断線、外的要因によるリーク等の異常を瞬時に判定でき、オゾン発生を停止させることができるから、安全性の高いオゾン発生装置を提供できる。また、付随的効果として、オゾン発生用電極板の消耗による劣化が疑似断線として検出できるとともに、1次側のスイッチング素子の短絡や断線も検出できる。
【0006】
【発明の実施の形態】
本発明の実施形態を添付図面を参照して説明する。図1はオゾン発生装置1のブロック図、図2は高電圧発生用昇圧トランス(以下単にトランスという)の2次側負荷判定回路のブロック図、図3は検出用3次巻線の直流出力電圧と2次側回路の負荷の相関関係を示した説明図である。トランス2は、1巻線2a、2次巻線2b及び検出用3次巻線2cを有する。検出用3次巻線2cは、トランス2内の磁束を検出するためのものである。1次巻線2aには、スイッチング素子(図示しない)により構成された電流スイッチング回路3に接続されている。そして、この電流スイッチング回路3には、オゾン発生スイッチ4を接続したスイッチング信号発生回路5が接続されている。電流スイッチング回路3とスイッチング信号発生回路5は、ヒューズ6を介装した接続線7により直流電源回路8に接続されている。
【0007】
トランス2の2次巻線2bは、オゾン発生用電極板9に接続されている。また、検出用3次巻線2cは、トランス2の2次側負荷判定回路10に接続されている。この2次側負荷判定回路10は、図2に示すように交流出力を直流(脈流)に変換する整流回路11と、該脈流を平滑化して完全な直流出力に変換するフィルタ回路12から構成される交流・直流変換回路13、第1比較回路21、第2比較回路22、断線判定電圧設定回路23、過負荷・短絡判定電圧設定回路24、論理回路25、判定時間設定回路26及び停止信号発生回路27から構成されている。
【0008】
論理回路25は、第1比較回路21及び第2比較回路22の出力を所定の処理プログラムに従って処理して、停止信号発生回路27に判定信号を出力する。判定時間設定回路26は、オゾン発生スイッチ4のオン直後の論理回路25の不安定な状態が安定するまでの時間を設定するものである。また、停止信号発生回路27は、該処理信号に基づいてオゾン発生停止信号をスイッチング信号発生回路5に出力する。
【0009】
上記構成のオゾン発生装置1は、オゾン発生スイッチ4がオンされると、スイッチング信号発生回路5からのスイッチング信号により、電流スイッチング回路3が駆動され、該電流スイッチング回路3に接続されたトランス2の1次巻線2aの電流を断続させる。これにより、2次巻線2bにオゾン発生に必要な高電圧を発生させ、該高電圧をオゾン発生用電極板9に印加してオゾンを発生させる。このとき、トランス2の検出用3次巻線2cには交流出力が生じる。この交流出力は、整流回路11とフィルタ回路12から構成される2次側負荷判定回路10の交流・直流変換回路13により直流出力に変換されて、それぞれ第1比較回路21及び第2比較回路22に入力される。
【0010】
第1比較回路21では、断線判定電圧設定回路23により設定された断線判定電圧V1と検出用3次巻線2cの直流出力電圧を比較して、その結果を論理回路25に出力する。また、第2比較回路22では、過負荷・短絡電圧設定回路24により設定された過負荷・短絡判定電圧V2と検出用3次巻線2cの直流出力電圧を比較して、その結果を論理回路25に出力する。論理回路25では、判定時間設定回路26で設定された時間経過後、第1比較回路21及び第2比較回路22の比較出力に基づいて、オゾン発生用電極板9を含む2次側回路に断線が生じているか、過負荷・短絡が生じているかを判定する。2次側回路に断線や、過負荷や短絡が生じていると判定した場合の論理回路25の判定信号に基づいて、停止信号発生回路27はオゾン発生停止信号を出力し、スイッチング信号発生回路5の作動を停止してオゾン発生を停止させる。
【0011】
上記論理回路25の判定処理に用いられる検出用3次巻線の直流出力電圧と2次側回路の負荷の相関関係は、図3に示すとおりであって、直流出力電圧に対して、断線判定電圧V1と過負荷・短絡判定電圧V2を設定して比較することにより、論理回路25によってトランス2の2次巻線2bとオゾン発生用電極板9を接続する電線の断線、短絡及びオゾン発生用電極板9の内部短絡、断線、外的要因によるリーク等の異常を瞬時に判定できる。そして、異常と判定されるとオゾン発生を直ちに停止させることができるから、安全性の高いオゾン発生装置を提供できる。また、付随的効果として、オゾン発生用電極板9の消耗による劣化が疑似断線として検出できるとともに、1次側の電流スイッチング回路3のスイッチング素子の短絡や断線も検出できる。
【図面の簡単な説明】
【図1】オゾン発生装置のブロック図である。
【図2】2次側負荷判定回路のブロック図である。
【図3】検出用3次巻線の直流出力電圧と2次側回路の負荷の相関関係を示した説明図である。
【図4】従来のオゾン発生装置のブロック図である。
【符号の説明】
1...オゾン発生装置
2...トランス
2a...1次巻線
2b...2次巻線
2c...3次巻線
3...電流スイッチング回路
9...オゾン発生用電極板
10...2次側負荷判定回路
13...交流・直流変換回路
25...論理回路
27...停止信号発生回路
[0001]
[Industrial applications]
In the present invention, the current of the primary winding of the step-up transformer for high voltage generation is intermittently generated by the switching circuit to generate a high voltage in the secondary winding, and the high voltage is applied to the ozone generating electrode plate to generate ozone. The present invention relates to an ozone generator to be generated.
[0002]
[Prior art]
As shown in FIG. 4, the power supply path d against the short circuit of the elements constituting the primary current switching circuit b of the step-up transformer a for high voltage generation and the short circuit of the secondary ozone generation electrode plate c. The safety of the ozone generator is ensured by fusing the fuse e interposed between them.
[0003]
[Problems to be solved by the invention]
However, since the performance of the fuse is affected by temperature and passing current, there is a problem that it is not easy to select an optimum fusing current value for the fuse to be used. Further, the conventional ozone generator cannot detect the deterioration due to the disconnection of the secondary circuit (including the ozone generating electrode plate) of the step-up transformer for high voltage generation or the consumption of the ozone generating electrode plate.
The present invention has been made to solve the above-described problems, and provides a highly safe ozone generator that detects an abnormality in a secondary circuit of a step-up transformer for generating a high voltage and immediately stops generating ozone. It is intended to do.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, an ozone generator according to the present invention generates a high voltage in a secondary winding by interrupting a current in a primary winding of a step-up transformer for generating a high voltage by a switching circuit. Is applied to an ozone generating electrode plate to generate ozone, and a detection tertiary winding provided in the high voltage generating step-up transformer and an AC output generated in the detection tertiary winding An AC / DC converter circuit for converting a DC output into a DC output, a determination means for determining an abnormality in the secondary side circuit based on a correlation between the converted DC output voltage and a load on the secondary side circuit, and the determination means And a secondary load determination circuit having a stop signal output means for outputting an ozone generation stop signal for stopping the generation of ozone by the abnormality determination.
[Operation and effect of the invention]
[0005]
In the ozone generator having the above-described configuration, the AC output generated in the detection tertiary winding is converted into the DC output by the AC / DC conversion circuit, and based on the correlation between the converted DC output voltage and the load of the secondary circuit. Then, the determination means of the secondary side load determination circuit determines abnormality of the secondary side circuit. Then, the generation of ozone is stopped by the ozone generation stop signal output from the stop signal output means by the abnormality determination of the determination means. This ozone generator is for generating a high voltage by setting a predetermined determination voltage for the DC output voltage based on the correlation between the DC output voltage of the tertiary winding for detection and the load of the secondary circuit. It is possible to instantaneously determine abnormalities such as disconnection, short circuit, internal short circuit of the electrode plate for ozone generation and disconnection, leakage due to external factors, etc., connecting the secondary winding of the step-up transformer and the electrode plate for ozone generation. Since it can be stopped, a highly safe ozone generator can be provided. Further, as an incidental effect, deterioration due to consumption of the electrode plate for generating ozone can be detected as a pseudo disconnection, and a short circuit or disconnection of the primary side switching element can also be detected.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a block diagram of an ozone generator 1, FIG. 2 is a block diagram of a secondary load determination circuit of a step-up transformer for generating a high voltage (hereinafter simply referred to as “transformer”), and FIG. 3 is a DC output voltage of a tertiary winding for detection. It is explanatory drawing which showed the correlation of the load of a secondary side circuit. The transformer 2 has a primary winding 2a, a secondary winding 2b, and a detection tertiary winding 2c. The detection tertiary winding 2 c is for detecting the magnetic flux in the transformer 2. The primary winding 2a is connected to a current switching circuit 3 constituted by a switching element (not shown). The current switching circuit 3 is connected to a switching signal generation circuit 5 to which an ozone generation switch 4 is connected. The current switching circuit 3 and the switching signal generation circuit 5 are connected to the DC power supply circuit 8 by a connection line 7 having a fuse 6 interposed therebetween.
[0007]
The secondary winding 2 b of the transformer 2 is connected to the ozone generating electrode plate 9. Further, the detection tertiary winding 2 c is connected to the secondary load determination circuit 10 of the transformer 2. As shown in FIG. 2, the secondary load determination circuit 10 includes a rectifier circuit 11 that converts an alternating current output into direct current (pulsating flow), and a filter circuit 12 that smoothes the pulsating flow and converts it into a complete direct current output. Configured AC / DC converter circuit 13, first comparison circuit 21, second comparison circuit 22, disconnection determination voltage setting circuit 23, overload / short circuit determination voltage setting circuit 24, logic circuit 25, determination time setting circuit 26 and stop The signal generating circuit 27 is configured.
[0008]
The logic circuit 25 processes the outputs of the first comparison circuit 21 and the second comparison circuit 22 according to a predetermined processing program, and outputs a determination signal to the stop signal generation circuit 27. The determination time setting circuit 26 sets a time until the unstable state of the logic circuit 25 immediately after the ozone generation switch 4 is turned on is stabilized. Further, the stop signal generation circuit 27 outputs an ozone generation stop signal to the switching signal generation circuit 5 based on the processing signal.
[0009]
When the ozone generation switch 4 is turned on, the ozone generator 1 having the above configuration drives the current switching circuit 3 by the switching signal from the switching signal generation circuit 5, and the transformer 2 connected to the current switching circuit 3 The current of the primary winding 2a is interrupted. Accordingly, a high voltage necessary for generating ozone is generated in the secondary winding 2b, and the high voltage is applied to the electrode plate 9 for generating ozone to generate ozone. At this time, an AC output is generated in the detection tertiary winding 2c of the transformer 2. This AC output is converted into a DC output by the AC / DC conversion circuit 13 of the secondary side load determination circuit 10 constituted by the rectifier circuit 11 and the filter circuit 12, and the first comparison circuit 21 and the second comparison circuit 22, respectively. Is input.
[0010]
The first comparison circuit 21 compares the disconnection determination voltage V <b> 1 set by the disconnection determination voltage setting circuit 23 with the DC output voltage of the detection tertiary winding 2 c and outputs the result to the logic circuit 25. The second comparison circuit 22 compares the overload / short-circuit determination voltage V2 set by the overload / short-circuit voltage setting circuit 24 with the DC output voltage of the detection tertiary winding 2c, and the result is a logic circuit. To 25. In the logic circuit 25, after the time set by the determination time setting circuit 26 has elapsed, the secondary circuit including the ozone generating electrode plate 9 is disconnected based on the comparison outputs of the first comparison circuit 21 and the second comparison circuit 22. It is determined whether or not an overload or short circuit has occurred. Based on the determination signal of the logic circuit 25 when it is determined that the secondary circuit is disconnected, overloaded, or short-circuited, the stop signal generation circuit 27 outputs an ozone generation stop signal, and the switching signal generation circuit 5 The ozone generation is stopped by stopping the operation of.
[0011]
The correlation between the DC output voltage of the tertiary winding for detection used in the determination process of the logic circuit 25 and the load of the secondary circuit is as shown in FIG. By setting the voltage V1 and the overload / short-circuit determination voltage V2 and comparing them, the logic circuit 25 connects the secondary winding 2b of the transformer 2 and the electrode plate 9 for ozone generation. Abnormalities such as internal short-circuiting, disconnection, and leakage due to external factors can be instantaneously determined. And if it determines with abnormality, since ozone generation can be stopped immediately, a highly safe ozone generator can be provided. Further, as an incidental effect, deterioration due to consumption of the electrode plate 9 for generating ozone can be detected as a pseudo disconnection, and a short circuit or disconnection of the switching element of the primary side current switching circuit 3 can also be detected.
[Brief description of the drawings]
FIG. 1 is a block diagram of an ozone generator.
FIG. 2 is a block diagram of a secondary side load determination circuit.
FIG. 3 is an explanatory diagram showing a correlation between a DC output voltage of a detection tertiary winding and a load of a secondary circuit.
FIG. 4 is a block diagram of a conventional ozone generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ozone generator 2 ... Transformer 2a ... Primary winding 2b ... Secondary winding 2c ... Tertiary winding 3 ... Current switching circuit 9 ... For ozone generation Electrode plate 10 ... Secondary load determination circuit 13 ... AC / DC conversion circuit 25 ... Logic circuit 27 ... Stop signal generation circuit

Claims (1)

スイッチング回路により高電圧発生用昇圧トランスの1次巻線の電流を断続させて2次巻線に高電圧を発生させ、該高電圧をオゾン発生用電極板に印加してオゾンを発生させるオゾン発生装置に於いて、
前記高電圧発生用昇圧トランスに設けた検出用3次巻線と、
該検出用3次巻線に生ずる交流出力を直流出力に変換する交流・直流変換回路と、
変換された直流出力電圧と2次側回路の負荷の相関関係に基づいて、該2次側回路の異常を判定する判定手段と、該判定手段の異常判定によりオゾンの発生を停止させるオゾン発生停止信号を出力する停止信号出力手段を有する2次側負荷判定回路と、
を備えたことを特徴とするオゾン発生装置。
Ozone generation in which the switching circuit generates a high voltage in the secondary winding by interrupting the current in the primary winding of the step-up transformer for generating a high voltage, and the ozone is generated by applying the high voltage to the ozone generating electrode plate. In the device,
A tertiary winding for detection provided in the step-up transformer for high voltage generation;
An AC / DC conversion circuit for converting an AC output generated in the tertiary winding for detection into a DC output;
Based on the correlation between the converted DC output voltage and the load on the secondary side circuit, determination means for determining abnormality of the secondary side circuit, and ozone generation stop for stopping the generation of ozone by the abnormality determination of the determination means A secondary load determination circuit having a stop signal output means for outputting a signal;
An ozone generator characterized by comprising:
JP24761599A 1999-09-01 1999-09-01 Ozone generator Expired - Lifetime JP3543692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24761599A JP3543692B2 (en) 1999-09-01 1999-09-01 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24761599A JP3543692B2 (en) 1999-09-01 1999-09-01 Ozone generator

Publications (2)

Publication Number Publication Date
JP2001072401A JP2001072401A (en) 2001-03-21
JP3543692B2 true JP3543692B2 (en) 2004-07-14

Family

ID=17166153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24761599A Expired - Lifetime JP3543692B2 (en) 1999-09-01 1999-09-01 Ozone generator

Country Status (1)

Country Link
JP (1) JP3543692B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922979B2 (en) 2005-03-28 2011-04-12 Mitsubishi Denki Kabushiki Kaisha Silent discharge plasma apparatus
JP2007091531A (en) * 2005-09-29 2007-04-12 Toyota Auto Body Co Ltd Ozone generation apparatus
JP4845529B2 (en) * 2006-02-17 2011-12-28 三菱電機株式会社 Ozone generator
JP5198491B2 (en) * 2010-02-05 2013-05-15 三菱電機株式会社 Load abnormality detection device
CN105576509A (en) * 2016-02-03 2016-05-11 重庆超力高科技股份有限公司 Vehicular ion generation device

Also Published As

Publication number Publication date
JP2001072401A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP6133827B2 (en) Motor driving device having welding detection function of magnetic contactor
JP2021532713A (en) Safe operation in wireless power transfer system
JP2011101473A (en) Power unit for motor drive
JP2003309023A5 (en)
JP3543692B2 (en) Ozone generator
JPH02231922A (en) Inrush current prevention system for motor driver upon recovery from instantaneous power interruption
JP3401238B2 (en) Worldwide power supply
JP6239024B2 (en) Power converter
JP2013192392A (en) Inverter device
WO2000074199A1 (en) Power transmission apparatus and method for power transmission
JP2009142061A (en) Dc-dc converter
JP2003230275A (en) Protection method for pwm cycloconverter
RU2302931C1 (en) Welding apparatus
JP2007252170A (en) Motor drive device
JP3851576B2 (en) Power converter
JP2005160214A (en) Power conversion apparatus
JPWO2014013574A1 (en) Power converter
JP2010041836A (en) Switching power unit
JPH0984359A (en) Power converter
JP5000919B2 (en) DC power supply
KR100549081B1 (en) power supply for a motor
JP2549072B2 (en) Waveform abnormality detection circuit
JPH0681496B2 (en) Inrush current prevention circuit
JP2007151358A (en) Dc voltage step-down circuit and electric power conversion system
JP2001078443A (en) Switching power supply including defective power protection circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Ref document number: 3543692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term