JP3542841B2 - Hot water storage type electric water heater control device - Google Patents

Hot water storage type electric water heater control device Download PDF

Info

Publication number
JP3542841B2
JP3542841B2 JP3323695A JP3323695A JP3542841B2 JP 3542841 B2 JP3542841 B2 JP 3542841B2 JP 3323695 A JP3323695 A JP 3323695A JP 3323695 A JP3323695 A JP 3323695A JP 3542841 B2 JP3542841 B2 JP 3542841B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
time
water
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3323695A
Other languages
Japanese (ja)
Other versions
JPH08226708A (en
Inventor
義博 宮石
Original Assignee
株式会社キューヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キューヘン filed Critical 株式会社キューヘン
Priority to JP3323695A priority Critical patent/JP3542841B2/en
Publication of JPH08226708A publication Critical patent/JPH08226708A/en
Application granted granted Critical
Publication of JP3542841B2 publication Critical patent/JP3542841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、貯湯タンク内の湯を設定した沸上温度まで沸上げるのに必要な通電時間を演算し、演算した通電時間に基いて電気ヒータへの通電を制御する貯湯式電気温水器の制御装置に関するものである。
【0002】
【従来の技術】
従来の貯湯式電気温水器の制御装置では、特公昭61−25062号公報に示されるように、貯湯タンク内の湯を設定した沸上温度Tまで沸上げるのに必要な通電時間を、給水温度センサで検出した給水水温T1 と貯湯タンクの容量Vとから貯えておくべき熱カロリーを演算する第1の演算器と、貯湯タンク内の残熱量を検出する温度センサからなる残熱量センサで検出した検出値(温度)T2 から残湯熱カロリーを算出する第2の演算器とを設け、第1の演算器で演算した貯えておくべき熱カロリーから第2の演算器で演算した残湯熱カロリーとの差から電気ヒータへの通電時間を第3の演算器で演算している。
【0003】
【発明が解決しようとする課題】
従来の装置において、例えば残熱量を検出する温度センサを1個設けて通電時間Hを演算する場合には、貯えておくべき熱カロリーC1 をC1=(T−T1 )×Vの式で演算し、残湯熱カロリーC2 をC2 =(T2 −T1 )×Vの式で演算し、通電時間HをH=(C1 −C2 )×k[kは係数]の式で演算する。従来の装置では、貯えておくべき熱カロリーC1 の演算と残湯熱カロリーC2 の演算の両方の演算に、給水温度センサの検出値T1 を用いている。そのため経年変化等により給水温度センサの測定値に誤差が発生すると、その誤差を含む測定値が2回使用されることになり、通電時間の演算誤差が大きくなる。貯湯タンクの内部を複数の温水ブロックに分けて、これら複数の温水ブロックの残湯熱カロリーをそれぞれ(Tn −T1 )×Vn の式[但しTn は対応する温水ブロックの温度、Vn は対応する温水ブロックの容量]を用いて演算する場合には、温水ブロックの数だけ給水温度センサの測定値が使用されることになり、更に演算誤差が大きくなる問題がある。
【0004】
本発明の目的は、通電時間の演算精度の高い貯湯式電気温水器の制御装置を提供することにある。
【0005】
本発明のより具体的な目的は、給水水温を測定する温度センサの測定値に含まれる誤差が通電時間の演算に大きな影響を与えることがない貯湯式電気温水器の制御装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の貯湯式電気温水器の制御装置では、貯湯タンク1内に給水される水の水温T1 を検出する第1の温度センサ3aと、第1の温度センサ3aよりも上の領域を上下方向にn個の温水ブロックB1 〜B4 に分けた場合の各温水ブロック間の境界位置に配置された第2〜第nの温度センサ3b〜3dと、沸上温度Tを設定する沸上温度設定手段4と、第1の温度センサ3aにより検出した水温T1 と第2〜第nの温度センサ3b〜3dにより検出した残湯温度T2 〜Tn と沸上温度Tとに基いて貯湯タンク1内の湯を沸上温度まで沸上げるのに必要な電気ヒータ2への通電時間Hを演算する通電時間演算手段7と、通電時間Hに基いて電気ヒータ2への通電を制御する通電制御手段11とを具備する。
【0007】
本発明においては、通電時間演算手段7を第1〜第nの温水ブロックB1 〜B4 の水を各温水ブロックに対応する第1〜第nの温度センサの検出温度T1 〜Tn から沸上温度Tまでそれぞれ沸上げるのに必要な個別通電時間H1 〜Hn を演算し、個別通電時間の積算時間を通電時間Hとして出力するように構成する。これを具体的に表現すると、通電時間演算手段7は、通電時間Hを、H=(T−T1 )×K1 +(T−T2 )×K2 +(T−T3 )×K3 +……+(T−Tn )×Knの演算式を用いて演算する。但しK1 〜Knは、それぞれ第1〜第nの温水ブロックB1 〜B4 内の水をそれぞれ1℃上昇させるのに必要な通電時間を示す係数である
お第1の温度センサ3aを電気ヒータ2によって加熱される領域内に配置する、即ち電気ヒータ2の加熱部よりも上の領域に配置すると、前日に湯が使用されない場合には、第1の温度センサ3aは水温ではなく湯温を検出するため、通電時間の演算精度が高くなる。
【0008】
【作用】
本発明では、従来のように貯えておくべき熱カロリーと残湯熱カロリーとの差から電気ヒータへの通電時間を演算せずに、各温水ブロックB1 〜B4 を沸上温度まで沸上げるのに必要な個別通電時間を演算したり、各温水ブロックB1 〜B4 内の水をそれぞれ0℃から第1〜第nの温度センサ3a〜3dで検出した温度T1 〜Tn まで沸上げるのに必要な残留通電時間Hrem を演算し、これらの時間に基いて電気ヒータへの通電時間を算出する。具体的には、H=(T−T1 )×K1 +(T−T2 )×K2 +(T−T3 )×K3 +……+(T−Tn )×Knの演算式を用いる。この演算式から分かるように、本発明によれば通電時間Hの演算には給水水温を測定する第1の温度センサ3aの測定値即ち給水水温T1 は1回しか使用しない。そのため本発明によれば、給水水温を測定する第1の温度センサ3aの測定値に誤差が含まれている場合でも、その誤差が通電時間の演算に大きな影響を及ぼすことがない。
【0009】
【実施例】
以下図面を参照して本発明の実施例を詳細に説明する。図1は、本発明を適用する貯湯式電気温水器の貯湯タンクの温度センサの位置関係を示す概略図である。同図において、1は貯湯タンクであり、2は電気ヒータであり、3a〜3dはサーミスタ等の感温素子を含んで構成される第1〜第4の温度センサである。本実施例では、第1の温度センサ3aが給水口1aから貯湯タンク1内に給水される水温T1 を検出する給水温度センサを構成している。第1の温度センサ3aは、給水口1aに対応する位置に配置されており、電気ヒータ2の一部(ヒータ部)2aは第1の温度センサ3aの取付け位置よりも少し下に位置している。電気ヒータ2の一部2aと第1の温度センサ3aの取付け位置との間の距離は、115mmに定めている。そして第2〜第4の温度センサ3b〜3dは、第1の温度センサ3aよりも上の領域を上下方向に4個の温水ブロックB1 〜B4 に分けた場合の各温水ブロック間の境界位置に配置されて残湯温度を検出する残湯温度センサを構成している。なお図1においてV1 〜V4 は、各温水ブロックB1 〜B4 の容量(単位はリットル)であり、V(=V1 +V2 +V3 +V4 )は貯湯タンク1の全容量である。
【0010】
図1の配置構成の貯湯式電気温水器を対象にして、本発明の制御装置の一実施例では図2の構成を採用する。図2においては、沸上温度設定手段4は、温水器本体の外装ケースまたはリモートコントローラに取付けられた調整手段によって沸上温度Tを任意に設定できるように構成されている。5は通電時間演算手段7で用いる係数を記憶しておく係数記憶手段であり、6は所定の演算式にしたがって演算を実行する演算装置であり、係数記憶手段5と演算装置6とにより第1の温度センサ3aにより検出した水温T1 と第2〜第nの温度センサ3b〜3dにより検出した残湯温度T2 〜Tn と沸上温度Tとに基いて貯湯タンク1内の湯を沸上温度まで沸上げるのに必要な電気ヒータ2への通電時間Hを演算する通電時間演算手段7が構成されている。
【0011】
8は通電時間演算手段7により演算した通電時間Hを用いて通電開始時間をシフトするための通電シフト時間を計算する通電シフト時間計算手段であり、9は深夜電力時間帯等の特定電力時間帯を確定するために時間を計数するタイマであり、10はタイマ9が特定電力時間帯を計数している間に、通電シフト時間計算手段8で計算したシフト時間から電気ヒータ2への通電を開始させる通電時間制御手段10である。本実施例では、通電シフト時間計算手段8と、タイマ9と通電時間制御手段10とにより、通電時間Hに基いて電気ヒータ2への通電を制御する通電制御手段11が構成されている。
【0012】
通電シフト時間計算手段8は、特定電力時間帯の終了時刻に湯が沸き上がるようにシフト時間を定めたり、特定電力時間帯における電力の平準化を図るようにシフト時間を定める。例えば深夜電力を利用する場合、タイマ9で計数する時間は480分であり、深夜電力時間帯の終了時刻に通電を停止する場合のシフト時間Hsは、Hs=480−Hの式により計算する。そして通電時間制御手段では、タイマ9の計数時間がシフト時間Hs以上になると即ち計数時間≧Hsになると、電気ヒータ2への通電を開始する。
【0013】
次に通電時間演算手段7における演算の一例を説明する。まず第1の例では、第1〜第4の温水ブロックB1 〜B4 の水を各温水ブロックに対応する第1〜第4の温度センサ3a〜3dの検出温度T1 〜Tn から沸上温度Tまでそれぞれ沸上げるのに必要な個別通電時間H1 〜Hn を演算し、個別通電時間の積算時間を通電時間Hとして出力する。これを具体的に表現すると、通電時間演算手段7は、通電時間Hを、H=(T−T1 )×K1 +(T−T2 )×K2 +(T−T3 )×K3 +……+(T−Tn )×Knの演算式[以下演算式1と言う]を用いて演算する。但しK1 〜Knは、それぞれ第1〜第nの温水ブロックB1 〜B4 内の水をそれぞれ1℃上昇させるのに必要な通電時間を示す係数である。
【0014】
ここで電気ヒータ2の出力をW(KW)、効率をμ、1KWH=860Kcal,1時間=60分とすると、K1 =(V1 ×60)/(860×W×μ)、K2 =(V2 ×60)/(860×W×μ)、K3 =(V3 ×60)/(860×W×μ)となり、K4 =(V4 ×60)/(860×W×μ)となる。これらの係数K1 〜K4 は、予め計算により求めて係数記憶手段5に記憶させておく。
【0015】
上記演算式1を用いると、各温度センサ3a〜3dの測定値は一度しか使用しないため、温度センサの測定誤差が通電時間の演算結果に与える影響を最小のものとすることができる
お上記実施例では、通電制御手段11によりシフト時間制御を行っているが、通電制御手段11の構成は任意であり、必ずしもシフト時間制御を行う必要はない。
【0016】
【発明の効果】
本発明によれば、通電時間Hの演算に給水水温を測定する第1の温度センサの測定値即ち給水水温を1回しか使用しないため、給水水温を測定する第1の温度センサの測定値に誤差が含まれている場合でも、その誤差が通電時間の演算に大きな影響を及ぼすことがなく、通電時間の演算精度を高めることができる。
【図面の簡単な説明】
【図1】本発明を適用する貯湯式電気温水器の貯湯タンクの温度センサの位置関係を示す概略図である。
【図2】本発明の制御装置の一実施例の構成を示すブロック図である。
【符号の説明】
1 貯湯タンク
2 電気ヒータ
3a〜3d 第1〜第4の温度センサ
4 沸上温度設定手段
5 係数記憶手段
6 演算装置
7 通電時間演算手段
8 通電シフト時間計算手段
9 タイマ
10 通電時間制御手段
11 通電制御手段
[0001]
[Industrial applications]
The present invention relates to a control of a hot-water storage type electric water heater that calculates an energization time required for boiling hot water in a hot water storage tank to a set boiling temperature, and controls energization to an electric heater based on the calculated energization time. It concerns the device.
[0002]
[Prior art]
In the control device of the conventional hot water storage type electric water heater, as shown in JP-B-61-25062, the energization time required for boiling the hot water in the hot water storage tank to the set boiling temperature T is determined by the feed water temperature. A first calculator for calculating the heat calorie to be stored based on the feed water temperature T1 detected by the sensor and the capacity V of the hot water storage tank, and a residual heat amount sensor including a temperature sensor for detecting the residual heat amount in the hot water storage tank. A second calculator for calculating the remaining calorie heat calorie from the detected value (temperature) T2; and the remaining hot calorie calculated by the second calculator from the calorie to be stored calculated by the first calculator. The third computing unit calculates the energizing time to the electric heater from the difference from the above.
[0003]
[Problems to be solved by the invention]
In a conventional apparatus, for example, when one temperature sensor for detecting the amount of residual heat is provided and the energization time H is calculated, the heat calorie C1 to be stored is calculated by the formula of C1 = (T-T1) × V. The remaining hot calorie C2 is calculated by the formula of C2 = (T2 -T1) .times.V, and the energizing time H is calculated by the formula of H = (C1 -C2) .times.k (k is a coefficient). In the conventional apparatus, the detection value T1 of the feedwater temperature sensor is used for both the calculation of the heat calorie C1 to be stored and the calculation of the remaining heat calorie C2. Therefore, when an error occurs in the measured value of the feedwater temperature sensor due to aging or the like, the measured value including the error is used twice, and the calculation error of the energization time increases. The interior of the hot water storage tank is divided into a plurality of hot water blocks, and the remaining hot water calories of the plurality of hot water blocks are expressed by the formula (Tn-T1) × Vn, where Tn is the temperature of the corresponding hot water block and Vn is the corresponding hot water When the calculation is performed using the capacity of the block, the measured values of the feedwater temperature sensors are used by the number of hot water blocks, and there is a problem that the calculation error is further increased.
[0004]
An object of the present invention is to provide a control device for a hot-water storage type electric water heater with high calculation accuracy of the energization time.
[0005]
A more specific object of the present invention is to provide a control device for a hot-water storage type electric water heater in which an error included in a measurement value of a temperature sensor for measuring a feed water temperature does not greatly affect the calculation of the energization time. is there.
[0006]
[Means for Solving the Problems]
In the control device of the hot water storage type electric water heater according to the present invention, the first temperature sensor 3a for detecting the temperature T1 of the water supplied into the hot water storage tank 1, and the area above the first temperature sensor 3a in the vertical direction. And second to n-th temperature sensors 3b to 3d arranged at boundaries between the respective hot water blocks when divided into n hot water blocks B1 to B4, and a boiling temperature setting means for setting a boiling temperature T. 4, the hot water temperature in the hot water storage tank 1 based on the water temperature T1 detected by the first temperature sensor 3a, the remaining hot water temperatures T2 to Tn detected by the second to nth temperature sensors 3b to 3d, and the boiling temperature T. And a power supply control means 11 for controlling the power supply to the electric heater 2 based on the power supply time H. Have.
[0007]
In the present invention, the energization time calculating means 7 determines the water in the first to n-th hot water blocks B1 to B4 from the detected temperatures T1 to Tn of the first to n-th temperature sensors corresponding to each of the hot water blocks to the boiling temperature T. Each of the individual energizing times H1 to Hn required for boiling is calculated, and the integrated time of the individual energizing times is output as the energizing time H. More specifically, the energization time calculation means 7 calculates the energization time H as H = (T−T1) × K1 + (T−T2) × K2 + (T−T3) × K3 +. The calculation is performed using the formula of (T−Tn) × Kn. Here, K1 to Kn are coefficients indicating the energization time required to raise the water in the first to nth hot water blocks B1 to B4 by 1 ° C., respectively .
Placing within the area heated by contact first electric heater 2 the temperature sensor 3a such, that when placed in the area above the heating section of the electric heater 2, when the hot water is not used on the day before, the first Temperature sensor 3a detects not the water temperature but the hot water temperature, so that the calculation accuracy of the energization time is improved.
[0008]
[Action]
In the present invention, it is possible to boil each of the hot water blocks B1 to B4 to the boiling temperature without calculating the energizing time to the electric heater from the difference between the heat calorie to be stored and the heat calorie of the remaining hot water as in the conventional case. The necessary individual energization time is calculated, and the residual water necessary for boiling the water in each of the hot water blocks B1 to B4 from 0 ° C. to the temperatures T1 to Tn detected by the first to nth temperature sensors 3a to 3d, respectively. The energization time Hrem is calculated, and the energization time to the electric heater is calculated based on these times. Specifically, an arithmetic expression of H = (T−T1) × K1 + (T−T2) × K2 + (T−T3) × K3 +... + (T−Tn) × Kn is used. As can be seen from this arithmetic expression, according to the present invention, the value measured by the first temperature sensor 3a for measuring the feedwater temperature, that is, the feedwater temperature T1 is used only once in the calculation of the energizing time H. Therefore, according to the present invention, even when an error is included in the measurement value of the first temperature sensor 3a for measuring the feedwater temperature, the error does not greatly affect the calculation of the energization time.
[0009]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a positional relationship of a temperature sensor of a hot water storage tank of a hot water storage type electric water heater to which the present invention is applied. In FIG. 1, reference numeral 1 denotes a hot water storage tank, 2 denotes an electric heater, and 3a to 3d denote first to fourth temperature sensors each including a temperature-sensitive element such as a thermistor. In this embodiment, the first temperature sensor 3a constitutes a water supply temperature sensor for detecting the temperature T1 of water supplied from the water supply port 1a into the hot water storage tank 1. The first temperature sensor 3a is arranged at a position corresponding to the water supply port 1a, and a part (heater portion) 2a of the electric heater 2 is located slightly below the mounting position of the first temperature sensor 3a. I have. The distance between the portion 2a of the electric heater 2 and the mounting position of the first temperature sensor 3a is set to 115 mm. The second to fourth temperature sensors 3b to 3d are located at boundaries between the respective hot water blocks when the area above the first temperature sensor 3a is divided into four hot water blocks B1 to B4 in the vertical direction. A remaining hot water temperature sensor is provided to detect the remaining hot water temperature. In FIG. 1, V1 to V4 are the capacities (unit: liter) of each of the hot water blocks B1 to B4, and V (= V1 + V2 + V3 + V4) is the total capacity of the hot water storage tank 1.
[0010]
For the hot water storage type electric water heater having the arrangement configuration of FIG. 1, the embodiment of the control device of the present invention employs the configuration of FIG. In FIG. 2, the boiling temperature setting means 4 is configured such that the boiling temperature T can be arbitrarily set by an adjusting means attached to an outer case of the water heater main body or a remote controller. Reference numeral 5 denotes a coefficient storage unit for storing a coefficient used in the energization time calculation unit 7. Reference numeral 6 denotes a calculation unit that executes a calculation according to a predetermined calculation expression. Of the hot water in the hot water storage tank 1 to the boiling temperature based on the water temperature T1 detected by the temperature sensor 3a, the remaining hot water temperatures T2 to Tn detected by the second to nth temperature sensors 3b to 3d, and the boiling temperature T. An energization time calculation means 7 for calculating an energization time H to the electric heater 2 necessary for boiling is provided.
[0011]
Reference numeral 8 denotes an energization shift time calculating means for calculating an energization shift time for shifting the energization start time using the energization time H calculated by the energization time arithmetic means 7, and 9 denotes a specific power time zone such as a midnight power time zone. Is a timer that counts a time to determine the time. The timer 10 starts energization to the electric heater 2 from the shift time calculated by the energization shift time calculation means 8 while the timer 9 is counting the specific power time zone. Means 10 for controlling the energization time. In this embodiment, the energization shift time calculation means 8, the timer 9, and the energization time control means 10 constitute an energization control means 11 for controlling energization to the electric heater 2 based on the energization time H.
[0012]
The energization shift time calculation means 8 determines the shift time so that the hot water is heated at the end time of the specific power time zone, or determines the shift time so as to level the power in the specific power time zone. For example, when using midnight power, the time counted by the timer 9 is 480 minutes, and the shift time Hs when power is stopped at the end time of the midnight power time zone is calculated by the equation Hs = 480−H. When the count time of the timer 9 becomes equal to or longer than the shift time Hs, that is, when the count time ≥ Hs, the energization time control means starts energization of the electric heater 2.
[0013]
Next, an example of calculation in the energization time calculation means 7 will be described. First, in the first example, the water in the first to fourth hot water blocks B1 to B4 is supplied from the detection temperatures T1 to Tn of the first to fourth temperature sensors 3a to 3d corresponding to the respective hot water blocks to the boiling temperature T. The individual energizing times H1 to Hn required for boiling are calculated, and the integrated time of the individual energizing times is output as the energizing time H. More specifically, the energization time calculation means 7 calculates the energization time H as H = (T−T1) × K1 + (T−T2) × K2 + (T−T3) × K3 +. The calculation is performed using the following equation (T−Tn) × Kn [hereinafter referred to as “operation equation 1”]. Here, K1 to Kn are coefficients indicating the energization time required to raise the water in the first to nth hot water blocks B1 to B4 by 1 ° C., respectively.
[0014]
Here, assuming that the output of the electric heater 2 is W (KW), the efficiency is μ, 1KWH = 860 Kcal, 1 hour = 60 minutes, K1 = (V1 × 60) / (860 × W × μ), K2 = (V2 × 60) / (860 × W × μ), K3 = (V3 × 60) / (860 × W × μ), and K4 = (V4 × 60) / (860 × W × μ). These coefficients K1 to K4 are obtained in advance by calculation and stored in the coefficient storage means 5.
[0015]
When the above-described arithmetic expression 1 is used, the measurement value of each of the temperature sensors 3a to 3d is used only once, so that the influence of the measurement error of the temperature sensor on the calculation result of the energization time can be minimized .
In our above example such, is performed to shift the time controlled by the energization control unit 11, an optional configuration of the energization control means 11, it is not always necessary to perform the shift time control.
[0016]
【The invention's effect】
According to the present invention, since the measured value of the first temperature sensor for measuring the feedwater temperature, that is, the feedwater temperature is used only once in the calculation of the energization time H, the measured value of the first temperature sensor for measuring the feedwater temperature is used. Even when an error is included, the error does not greatly affect the calculation of the energization time, and the calculation accuracy of the energization time can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a positional relationship of a temperature sensor of a hot water storage tank of a hot water storage type electric water heater to which the present invention is applied.
FIG. 2 is a block diagram showing a configuration of a control device according to an embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 hot water storage tank 2 electric heaters 3 a to 3 d first to fourth temperature sensors 4 boiling temperature setting means 5 coefficient storage means 6 arithmetic unit 7 energization time operation means 8 energization shift time calculation means 9 timer 10 energization time control means 11 energization Control means

Claims (2)

貯湯タンク内に給水される水の水温(TThe temperature of the water supplied to the hot water storage tank (T 1 1 )を検出する第1の温度センサと、A) a first temperature sensor for detecting
前記第1の温度センサよりも上の領域を上下方向にn個の温水ブロック(BAn area above the first temperature sensor is vertically moved by n hot water blocks (B 1 1 〜B~ B 4 Four )に分けた場合の各温水ブロック間の境界位置に配置された第2〜第nの温度センサと、), The second to n-th temperature sensors arranged at the boundary positions between the respective hot water blocks,
沸上温度(T)を設定する沸上温度設定手段と、Boiling temperature setting means for setting a boiling temperature (T);
前記第1の温度センサにより検出した水温(TThe water temperature (T) detected by the first temperature sensor 1 1 )と前記第2〜第nの温度センサにより検出した残湯温度(T) And the remaining hot water temperature (T) detected by the second to n-th temperature sensors. 2 Two 〜T~ T n n )と前記沸上温度(T)とに基いて貯湯タンク内の湯を前記沸上温度まで沸上げるのに必要な前記電気ヒータへの通電時間(H)を演算する通電時間演算手段と、) And an energizing time calculating means for calculating an energizing time (H) to the electric heater required for boiling the hot water in the hot water storage tank to the boiling temperature based on the boiling temperature (T);
前記通電時間(H)に基いて前記電気ヒータへの通電を制御する通電制御手段とを具備する貯湯式電気温水器の制御装置であって、A control unit for controlling power supply to the electric heater based on the power supply time (H).
前記通電時間演算手段は、前記通電時間Hを、H=(T−TThe energization time calculation means calculates the energization time H as H = (T−T 1 1 )×K) × K 1 1 +(T−T+ (TT 2 Two )×K) × K 2 Two +(T−T+ (TT 3 Three )×K) × K 3 Three +……+(T−T+ ... + (TT n n )×Knの演算式[但しK) × Kn [where K 1 1 〜Knは、それぞれ第1〜第nの温水ブロック(BTo Kn are the first to n-th warm water blocks (B 1 1 〜B~ B 4 Four )内の水をそれぞれ1℃上昇させるのに必要な通電時間を示す係数である。)を用いて演算することを特徴とする貯湯式電気温水器の制御装置。This is a coefficient indicating the energization time required to raise the water in the parentheses by 1 ° C. A control device for a hot-water storage type electric water heater characterized in that the control is performed by using (1).
前記第1の温度センサは前記電気ヒータによって加熱される領域内に配置されている請求項1に記載の貯湯式電気温水器の制御装置。The control device for a hot-water storage type electric water heater according to claim 1, wherein the first temperature sensor is disposed in a region heated by the electric heater.
JP3323695A 1995-02-22 1995-02-22 Hot water storage type electric water heater control device Expired - Lifetime JP3542841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323695A JP3542841B2 (en) 1995-02-22 1995-02-22 Hot water storage type electric water heater control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323695A JP3542841B2 (en) 1995-02-22 1995-02-22 Hot water storage type electric water heater control device

Publications (2)

Publication Number Publication Date
JPH08226708A JPH08226708A (en) 1996-09-03
JP3542841B2 true JP3542841B2 (en) 2004-07-14

Family

ID=12380832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323695A Expired - Lifetime JP3542841B2 (en) 1995-02-22 1995-02-22 Hot water storage type electric water heater control device

Country Status (1)

Country Link
JP (1) JP3542841B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0713475D0 (en) * 2007-07-11 2007-08-22 Ec Power As Heat storage

Also Published As

Publication number Publication date
JPH08226708A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
JP4785927B2 (en) Electric kettle control method
FI940902A0 (en) Device for preparing hot beverages
DE20119638U1 (en) Electric heaters
JPH0311385B2 (en)
JP3542841B2 (en) Hot water storage type electric water heater control device
JP2858788B2 (en) Operation control method of electric water heater
JPS61190243A (en) Electrical water heater
JP3962032B2 (en) Energization control system for regenerative heating system
JPS5770575A (en) Control device for fixing temperature
JPS57202446A (en) Controlling device of water heater using midnight electric power supply
JPH11337177A (en) Power application control method for electric water heater
JPH0259383B2 (en)
JPS6164217A (en) Electric pot
JPS60207849A (en) Control device of hot water storage type electric heater
JPS61110840A (en) Controlling device for electric water heater
JPH0322552B2 (en)
JPH05280806A (en) Electric water heater
JPH0642575Y2 (en) Jarpot
JPH1026416A (en) Bath burner with hot water feeder
JPS60211257A (en) Control device of electric water heater
JPH0413616B2 (en)
JPS6468213A (en) Electric water heater
JPS62225850A (en) Controller of water heater
JPH11337178A (en) Electric water heater
JPS6176845A (en) Control device for electric water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term