JP3541778B2 - Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance - Google Patents

Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance Download PDF

Info

Publication number
JP3541778B2
JP3541778B2 JP2000112194A JP2000112194A JP3541778B2 JP 3541778 B2 JP3541778 B2 JP 3541778B2 JP 2000112194 A JP2000112194 A JP 2000112194A JP 2000112194 A JP2000112194 A JP 2000112194A JP 3541778 B2 JP3541778 B2 JP 3541778B2
Authority
JP
Japan
Prior art keywords
less
content
present
weld metal
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000112194A
Other languages
Japanese (ja)
Other versions
JP2001294992A (en
Inventor
友彰 池田
昭夫 山本
昌彦 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000112194A priority Critical patent/JP3541778B2/en
Publication of JP2001294992A publication Critical patent/JP2001294992A/en
Application granted granted Critical
Publication of JP3541778B2 publication Critical patent/JP3541778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管に関する。より具体的には、本発明は、例えば石油や天然ガス等の輸送に使用されるラインパイプや、貯蔵に使用される容器、あるいは強度、靱性および耐食性がいずれも要求される用途に供される高Cr系溶接鋼管等に用いるのに好適な、耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管に関する。
【0002】
【従来の技術】
油井環境の過酷化に伴って、生産される石油や天然ガス中における湿潤な炭酸ガスが含有される場合が増加している。このような環境下では、炭素鋼や低合金鋼からなる鋼管は著しく腐食されてしまうため、腐食抑制剤が添加される。しかし、この腐食抑制剤による腐食抑制効果は高温では消失するとともに、海底パイプラインの場合には、腐食抑制剤の添加および回収に膨大なコストを要する。
【0003】
このため、腐食抑制剤の添加を必要としない耐食性材料として、AISI420鋼に代表されるような、12〜13%(本明細書では特にことわりがない限り「%」は「質量%」を意味するものとする)のCrを含有するマルテンサイト系ステンレス鋼が広く使用されるようになってきた。このAISI420鋼では、高強度を得るために、0.16〜0.22%程度と比較的多量のCが添加されている。
【0004】
しかし、周知のように、ラインパイプは、パイプ同士の互いの端部を突き合わせて溶接により接合されることから、AISI420鋼のようにCを比較的多量に含有すると、通常の溶接方法で施工した際に溶接熱影響部の硬さが上昇し、耐衝撃特性が劣化してしまう。また、溶接熱影響部の硬さが上昇することに起因して、硫化物応力腐食割れの感受性も高まってしまう。
【0005】
溶接熱影響部の硬さの上昇を抑制するには、溶接後に、溶接熱影響部を600℃程度以上に保持する溶接後熱処理を行えばよい。しかし、この溶接後熱処理を行うと、施工コストが著しく上昇してしまう。
【0006】
このため、特開平2−243740公報や同5−287455公報等には、母材のC含有量を低減して溶接熱影響部の硬さの上昇を抑えて、耐衝撃特性の低下や硫化物応力腐食割れの感受性の上昇を抑制する発明が提案されている。これらの発明により、湿潤な炭酸ガスを含有する石油や天然ガスの輸送用ラインパイプに好適な継目無鋼管を製造できるようになった。
【0007】
さらに、特開平4−191319公報には、熱間圧延により製造された、C含有量が0.08%以下のマルテンサイト系ステンレス鋼板を連続的に成型した後に電縫溶接を行うことによって鋼管とし、さらに電縫溶接部に熱処理を施すことにより、湿潤な炭酸ガスを含有する石油や天然ガスの輸送用ラインパイプに好適な電縫鋼管を得る発明が開示されている。
【0008】
このマルテンサイト系ステンレス鋼は、基本的に高強度を有することから薄肉化を図ることができ、これにより、パイプラインの施工コストを削減することができる。
【0009】
ところで、継目無鋼管は、押出し加工や圧延等により製造されることから、比較的小径かつ肉厚の厚い鋼管の製造に限定される。このため、マルテンサイト系ステンレス鋼を継目無鋼管に適用しても薄肉化を図ることができず、パイプラインの施工コストを削減できない。
【0010】
また、電縫鋼管は、電気抵抗溶接法により接合されることから、薄肉化を図ることができる。このため、マルテンサイト系ステンレス鋼を電縫鋼管に適用することにより、パイプラインの施工コストの削減を図ることができる。しかし、電縫鋼管の溶接部には、端面の一部が酸欠した状態のままで内部に残留する、ペネトレータと呼ばれる特有の内部欠陥が発生するため、溶接品質および溶接部の腐食性の点で問題であった。
【0011】
このように、従来は、低コストでかつ比較的大径の耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた、例えばマルテンサイト系ステンレス鋼管等の高Cr溶接鋼管を製造する発明は、提案されていない。
【0012】
【発明が解決しようとする課題】
通常、比較的大径の高Cr溶接鋼管はサブマージアーク溶接により製造されるが、高Cr鋼等の共金系材料では、Niを多量に含有しても、得られる溶接金属の硬さが非常に上昇し、溶接金属の低温割れ感受性が著しく上昇する。このため、予熱処理または後熱処理を行う必要が生じる。したがって、共金系材料あるいはマルテンサイト系ステンレス鋼からなる溶接材料を用いて、高Cr溶接鋼管を製造することは、事実上不可能である。
【0013】
一方、耐食性の優れた高Niオーステナイト系ステンレス鋼あるいはNi基超合金からなる溶接材料を用いると、ペネトレータ等の選択腐食は発生せず、溶接金属の硬さが低く靱性が優れた溶接金属を得ることができる。しかし、オーステナイト系ステンレス鋼やNi基超合金からなる溶接金属は、その結晶構造に起因して強度が非常に低く、外部応力が負荷された場合に溶接金属が集中的に変形して破壊に至る、いわゆるアンダーマッチが発生するおそれがある。このため、オーステナイト系ステンレス鋼や高Ni合金を溶接材料として高Cr鋼からなる母材を溶接することも、困難であった。
【0014】
さらに、近年では二相ステンレス鋼からなる溶接材料も使用されるようになってきたが、溶接金属の強度は低く、オーステナイト系ステンレス鋼やNi基超合金からなる溶接金属と同様に、アンダーマッチが発生するおそれがある。
【0015】
本発明は、このような従来の技術が有する課題に鑑みてなされたものであり、本発明の目的は、予熱処理や後熱処理を必要とせず、溶接部の耐高温割れ性、耐低温割れ性、靱性および強度が優れ、さらに、耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管、例えば高Crサブマージアーク溶接鋼管を提供することである。
【0016】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、母材および溶接金属それぞれの組成、とりわけMo含有量を適正化することにより、炭酸ガス含有環境等で優れた耐食性と、優れた耐硫化水素割れ性とをともに備える高Crサブマージアーク溶接鋼管を提供することが可能となることを知見して、本発明を完成した。
【0017】
本発明は、母材および溶接金属を有する溶接鋼管であって、母材が、C:0.001 〜0.04%、Si: 0.50%以下、Mn: 2.00%以下、P:0.015%以下、S: 0.015 %以下、Cr: 10.0〜14.0%、Mo:2.0〜3.0 %、Ni:3.0〜8.0 %、Cu:0.10 %以下、Ti:0.15 %以下、Al:0.050%以下、V:0.15%以下、N:0.050%以下、およびO:0.025%以下、残部 Fe および不可避不純物から成る鋼組成を有し、
溶接金属が、C:0.001 〜0.04%、Si: 0.010 〜0.5 %、Mn: 0.2 〜2.0 %、P:0.020%以下、S: 0.010 %以下、N:0.030%以下、O:0.05 %以下、Cr: 11〜14%、Mo:2.0〜4.0 %、Ni:5.5〜8.0 %、V:0.020 〜0.1 %、Ti:0.002〜0.05%、およびAl:0.005〜0.05%を含有するとともにNi≦−0.8(Cr+Mo) +22を満足し、
さらに、(母材のMo含有量+0.2 %) ≦(溶接金属のMo含有量) を満足することを特徴とする耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管である。
【0018】
【発明の実施の形態】
以下、本発明にかかる耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管の実施の形態を、詳細に説明する。
【0019】
まず、本発明において、母材および溶接金属それぞれの組成を限定する理由を順次説明する。
(1)母材
(C:0.001〜0.04%)
Cは、0.04%を超えて含有するとCr炭化物を生成することによって溶接性および耐食性をいずれも著しく劣化させる。一方、C含有量を0.001%未満に低減するには相応の処理コストを要し、母材の製造コストを上昇させる。そこで、本発明では、母材のC含有量は0.001%以上0.04%以下に限定する。
【0020】
(Si:0.50%以下)
Siは、脱酸元素として有効な元素であるが、0.50%を超えて含有すると、非金属介在物量が増加し、耐HIC性能が劣化するとともに、HAZ靱性も劣化する。そこで、本発明では、母材のSi含有量は0.50%以下に限定する。
【0021】
(Mn:2.00%以下)
Mnは、脱酸元素であるとともに、母材の強度、靱性を改善するために有効な元素である。しかし、Mn含有量が2.00%を超えると.スラブの中心偏析が悪化し、耐HIC性能や低温割れ性能が劣化するとともに、HAZ靱性も劣化する。そこで、本発明では、母材のMn含有量は2.00%以下と限定する。
【0022】
(P:0.015%以下)
Pは、本発明では不可避的不純物であり、その含有量が0.015%以下であれば、所望の耐炭酸ガス腐食特性および耐硫化水素割れ性が得られる。そこで、本発明では、母材のP含有量は0.015%以下と限定する。
【0023】
(S:0.015%以下)
Sは、本発明では不可避的不純物であり、その含有量が0.015%以下であれば、所望の耐炭酸ガス腐食特性および耐硫化水素割れ性が得られる。そこで、本発明では、母材のS含有量は0.015%以下と限定する。
【0024】
(Cr:10.0〜14.0%)
Crは、10.0%以上含有することにより含油炭酸ガス環境下での耐腐食性能、すなわち耐炭酸ガス腐食特性を著しく向上させる。しかし、Cr含有量が14.0%を超えると、溶接性が低下する。そこで、本発明では、母材のCr含有量は10.0%以上14.0%以下と限定する。
【0025】
(Mo:2.0〜3.0%)
Moは、本発明では重要な元素であり、耐硫化水素環境下での耐腐食性を著しく向上させるのに有効であるとともに、高強度化に寄与する。Mo含有量が2.0%未満であると、母材の耐食性および強度がいずれも不充分となる。一方、Mo含有量が3.0%を超えると、母材靱性が低下する。そこで、本発明では、母材のMoの含有量は2.0%以上3.0%以下と限定する。
【0026】
なお、後述するように、本発明では、母材のMo含有量は、溶接金属のMo含有量にも基づいて、規定される。
(Ni:3.0〜8.0%)
Niは、3.0%以上含有することによりHAZ靱性を改善することができるが、Ni含有量が8.0%を超えると、コストが嵩むだけではなく、オーステナイト分率を増加させて母材の強度が低下する。そこで、本発明では、母材のNi含有量は3.0%以上8.0%以下と限定する。
【0027】
(Cu:0.10%以下)
Cuは、強度および靱性を高める元素であるが、Cu含有量が0.10%を超えるとHAZ靱性が劣化する。そこで、本発明では、母材のCu含有量は0.10%以下に限定する。
【0028】
(Ti:0.15%以下)
Tiは、強度および靱性を高める元素であるが、Ti含有量が0.15%を超えるとHAZ靱性が劣化する。そこで、本発明では、母材のTi含有量は0.15%以下と限定する。
【0029】
(Al:0.050%以下)
Alは、脱酸元素であるが、Al含有量が0.050%を超えると非金属介在物量が増加し、耐HIC性能のみならずHAZ靱性も劣化する。そこで、本発明では、母材のAl含有量は0.050%以下と限定する。
【0030】
(V:0.15%以下)
Vは、強度を高めることに有効な有効な元素であるが、0.15%を超えて含有すると、HAZ靱性が劣化する。そこで、本発明では、母材のV含有量は0.15%以下と限定する。
【0031】
(N:0.050%以下)
Nは、本発明では不可避的不純物であり、その含有量が0.050%以下であれば、所望の耐炭酸ガス腐食特性および耐硫化水素割れ性が得られる。そこで、本発明では、母材の含有量は0.050%以下と限定する。
【0032】
(O:0.025%以下)
Oは、本発明では不可避的不純物であり、その含有量が0.025%以下であれば、所望の耐炭酸ガス腐食特性および耐硫化水素割れ性が得られる。そこで、本発明では、母材の含有量は0.025%以下と限定する。
【0033】
このように、本発明にかかる溶接鋼管の母材は、C:0.001〜0.04%、Si:0.50%以下、Mn:2.00%以下、P:0.015%以下、S:0.015%以下、Cr:10.0〜14.0%、Mo:2.0〜3.0%、Ni:3.0〜8.0%、Cu:0.10%以下、Ti:0.15%以下、Al:0.050%以下、V:0.15%以下、N:0.050%以下、およびO:0.025%以下を含有する鋼組成を有する。
【0034】
また、この母材のミクロ組織は、マルテンサイト単相または、マルテンサイトとフェライトとの混合組織である。
本発明にかかる溶接鋼管の母材のこれ以外の要素は、周知慣用の溶接鋼管の母材の要素と同じであるため、これ以上の説明は省略する。
【0035】
(2)溶接金属
(C:0.001〜0.04%)
Cは、溶接金属の強度を大きく上昇させる元素として、またオーステナイト生成元素として、0.001%以上含有する。しかし、C含有量が0.04%を超えると、溶接金属中にCr炭化物を生成させ、耐食性および溶接性がいずれも劣化する。そこで、本発明では、溶接金属のC含有量は0.001%以上0.04%以下と限定する。
【0036】
(Si:0.010〜0.5%)
Siは、0.010%以上含有することにより溶接金属の脱酸剤および強化元素として有効であるが、Si含有量が0.5%を超えると、このような効果が飽和するばかりでなく、耐衝撃特性も低下する。そこで、本発明では、溶接金属のSi含有量は0.010%以上0.5%以下と限定する。
【0037】
(Mn:0.2〜2.0%)
Mnは、0.2%以上含有することにより、溶接金属の脱酸剤として、また溶接金属の組織を調整するためのオーステナイト生成元素としても、作用する。しかし、Mn含有量が2.0%を超えると、かかる効果は飽和してコストが上昇するだけになるとともに、溶接金属の生成時に様々な問題を生じる。そこで、本発明では、溶接金属のMn含有量は0.2%以上2.0%以下と限定する。
【0038】
(P:0.020%以下)
Pは、本発明では不可避的不純物であり、その含有量は低い方が望ましい。そこで、本発明では、溶接金属のP含有量は0.020%以下と限定する。
【0039】
(S:0.010%以下)
Sは、本発明では不可避的不純物であり、その含有量は低い方が望ましい。そこで、本発明では、溶接金属のS含有量は0.010%以下と限定する。
【0040】
(N:0.030%以下)
Nは、本発明では不可避的不純物であり、その含有量は低い方が望ましい。そこで、本発明では、溶接金属のN含有量は0.030%以下と限定する。
【0041】
(O:0.05%以下)
Oは、本発明では不可避的不純物であり、その含有量は低い方が望ましい。そこで、本発明では、溶接金属のO含有量は0.05%以下と限定する。
【0042】
(Cr:11〜14%)
Crは、溶接金属の耐食性および強度をともに確保するために、11%以上を含有させるが、14%を超えて含有させると、溶接金属の強度を確保するためのマルテンサイト組織の生成が困難になり、強度が低下する。そこで、本発明では、溶接金属のCr含有量は11%以上14%以下と限定する。
【0043】
(Mo:2.0〜4.0%)
Moは、溶接金属の耐食性および高強度をともに確保するために添加する。Mo含有量が2.0%未満では、溶接金属の耐食性および強度がいずれも十分ではなく、一方、Mo含有量が4.0%を超えると溶接金属中に金属間化合物を生成し、靱性が低下する。そこで、本発明では、溶接金属のMo含有量は2.0%以上4.0%以下と限定する。
【0044】
なお、後述するように、本発明では、溶接金属のMo含有量は、母材のMo含有量にも基づいて、規定される。
(Ni:5.5〜8.0%)
Niは、溶接金属の組織中にオーステナイトを安定的に生成させ、靱性および耐食性をともに確保するために含有される。Ni含有量が5.5%未満では衝撃靱性が不充分であり、逆にNi含有量が8.0%を超えると、オーステナイト分率が過大となって溶接金属の強度が低下するとともに、衝撃靱性の向上効果も飽和する。そこで、本発明では、溶接金属のNi含有量は5.5%以上8.0%以下と限定する。
【0045】
(V:0.020〜0.1%)
Vは、溶接金属の強度を安定化させる元素であり、V含有量が0.020%未満であると強度が低下する。一方、V含有量が0.1%を超えると、靱性が劣化する。そこで、本発明では、溶接金属のV含有量は0.020%以上0.1%以下と限定する。
【0046】
(Ti:0.002〜0.05%)
Tiは、溶接金属の強度を安定化させる元素であり、Ti含有量が0.002%未満であると強度が低下する。一方、Ti含有量が0.05%を超えると靱性が劣化する。そこで、本発明では、溶接金属のTi含有量は0.002%以上0.05%以下と限定する。
【0047】
(Al:0.005〜0.05%)
Alは、溶接金属の脱酸剤として0.005%以上含有する。しかし、Al含有量が0.05%を超えると、溶接金属中のAl系介在物が増加して靱性が低下する。そこで、本発明では、溶接金属のAl含有量は0.005%以上0.05%以下と限定する。
【0048】
このように、本発明にかかる溶接鋼管の溶接金属は、C:0.001〜0.04%、Si:0.010〜0.5%、Mn:0.2〜2.0%、P:0.020%以下、S:0.010%以下、N:0.030%以下、O:0.05%以下、Cr:11〜14%、Mo:2.0〜4.0%、Ni:5.5〜8.0%、V:0.020〜0.1%、Ti:0.002〜0.05%、およびAl:0.005〜0.05%を含有する鋼組成を有する。
【0049】
また、この溶接金属のミクロ組織は、オーステナイト相、フェライト相およびマルテンサイト相を有する3相組織である。
さらに、本実施形態では、溶接金属の強度を十分に確保するためには、溶接金属におけるオーステナイト分率を制御することが、有効である。このため、オーステナイト安定化元素であるNiと、フェライト安定化元素であるCr、Moとの量比を限定する。
【0050】
すなわち、溶接金属のNi含有量、Cr含有量およびMo含有量それぞれの量比を、Ni≦−0.8×(Cr+Mo)+22と限定することにより、溶接金属におけるオーステナイト分率を適正な範囲に抑制することができ、これにより、溶接金属の強度を十分に満足することができる。
【0051】
さらに、溶接金属のMo含有量が母材のMo含有量よりも小さいと、溶接金属の耐食性が低下し、溶接金属にペネトレータ等の選択腐食が発生してしまう。そこで、本実施形態では、溶接金属の選択腐食を防止するため、溶接金属のMo含有量が母材のMo含有量よりも0.2%以上大きくなるようにする。
【0052】
本実施形態の溶接鋼管は、以上の組成を有する母材を適宜成型した後に、適当な組成のワイヤを用いたサブマージアーク溶接を行うことによって、上記の組成の溶接金属が形成されて、製造される。
【0053】
なお、本発明では、溶接金属の性能は、溶接金属の組成が本発明の範囲内であれば達成される。したがって、溶接金属の組成が本発明の範囲を満足するように、ワイヤの組成や組合せを適宜調節して、溶接を行えばよい。
【0054】
このようにして、本発明により、予熱処理や後熱処理を必要とせず、溶接部の耐高温割れ性、耐低温割れ性、靱性および強度が優れ、さらに、耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管、例えば高Crサブマージアーク溶接鋼管が提供される。
【0055】
【実施例】
(実施例1)
次に、本発明を実施例を参照しながら詳細に説明する。
【0056】
表1に示す組成を有する25種の高Cr鋼板(板厚19.05mm)母材として開先角度60度の開先を作成した。なお、表1に示す鋼板は、焼入れ−焼戻し熱処理を施して作成した。
【0057】
得られた25種の高Cr鋼板それぞれの機械的性質を評価するため、API板状試験片を切り出して引張試験を行い、APIX80グレード(TS=620MPa、YS=551MPa)以上を目標とした。
【0058】
また、得られた25種の高Cr鋼板それぞれからシャルピー試験片を切り出してシャルピ衝撃試験を行い、破面遷移温度が−80℃以下を目標とした。
さらに、鋼板の腐食性の評価は、湿潤ガス環境における腐食試験を行った。湿潤ガス環境における試験条件は、試験温度50℃のオートクレーブ中で炭酸ガス1気圧、5%NaCl水溶液中に30日間浸漬して、試験前後の重量変化から腐食速度を算出することにより、行った。一般的に、ある環境における材料の腐食速度が0.1mm/y未満の場合、材料は十分耐食的であり、使用可能であると判断される。
【0059】
また、硫化水素に対する腐食性を評価するため、上記と同様の温度で炭酸ガス+0.01気圧、H2 Sの混合ガスの条件で割れの有無を調査した。
さらに、母材の溶接性を評価するため、得られた25種の高Cr鋼板それぞれから切り出した試料にJIS3158に規定されるy割れ試験を行い、割れの有無を調査した。
【0060】
さらに、継手性能を評価するため、表2に示す組成を有するワイヤW1〜W8のいずれかを用いて溶接継手を作成し、F.L部にノッチを挿入したシャルピー試験片を作成して試験に供し、破面遷移温度が−30℃以下を目標とした。
【0061】
表1に各試験結果を示し、目標を満足した試料を○で、満足しなかった試料を×でそれぞれ示した。
【0062】
【表1】

Figure 0003541778
【0063】
【表2】
Figure 0003541778
本発明例である試料No.1〜試料No.8は、いずれも、母材性能、腐食性および溶接性をいずれも満足しており、良好な性能を有することがわかる。
【0064】
一方、試料No.9は、C含有量が本発明の範囲の上限を上回っているため、H2 S腐食性が低下するばかりでなく、低温割れ性およびHAZ靱性も劣化した。
【0065】
試料No.10は、Cr含有量が本発明の範囲の下限を下回るため、CO2 腐食性が低下した。
試料No.11は、Ni含有量が本発明の範囲の下限を下回るため、HAZ靱性が低下するばかりでなく、母材強度も目標値を満足できなかった。
【0066】
試料No.12は、Ni含有量が本発明の範囲の上限を上回るため、所定量のマルテンサイト組織が得られなくなり、母材強度が低下した。
試料No.13は耐H2 S腐食性を向上させるMo含有量が本発明の範囲の下限を下回るため、H2 S腐食が発生した。
【0067】
試料No.14は、Mo含有量が本発明の範囲の上限を上回ったため、耐H2 S腐食性およびHAZ靱性が目標を満足しなかった。
試料No.15は、Cr含有量が本発明の範囲の上限を上回ったため、HAZ靱性が目標を満足しなかった。
【0068】
試料No.16、試料No.17および試料No.22は、それぞれ、Si含有量、Mn含有量、Al含有量が本発明の範囲の上限を上回ったため、HAZ靱性が劣化するとともに、介在物量の増加によりHIC性能も低下した。
【0069】
試料No.18および試料No.19は、それぞれ、P含有量、S含有量が本発明の範囲の上限を超えたため、HAZ靱性、HIC性能に加え、母材靱性をも低下した。
【0070】
試料No.20、試料No.21および試料No.23は、それぞれ、Cu含有量、Ti含有量、V含有量が本発明の範囲の上限を超えたため、HAZ靱性および低温割れ性が劣化した。
【0071】
試料No.24は、N含有量が本発明の範囲の上限を超えたため、固溶N量の増加により、母材靱性およびHAZ靱性がともに劣化した。
さらに.試料No.25は、O含有量が本発明の範囲の上限を超えているため、酸化物量が増加し、HIC性能、HAZ靱性および母材靱性がいずれも劣化した。
【0072】
(実施例2)
溶接によって製管される大径鋼管の溶接金属についても、優れた溶接性能を確保する必要があるため、溶接金属の特性を評価するため、表2に示す組成を有するワイヤを使用するとともに表3に示す組成を有するフラックスを用い、表4に示す溶接条件で溶接を行った。この際に用いた母材、ワイヤおよびフラックスの組合せを、表5に示す。
【0073】
【表3】
Figure 0003541778
【0074】
【表4】
Figure 0003541778
【0075】
【表5】
Figure 0003541778
得られた溶接金属の成分と評価試験結果を表6および表7にそれぞれ示す。
【0076】
腐食試験方法は、溶接継手部よりサンプルを採取し、母材の評価試験方法と同様に行った。また、溶接金属の強度を評価するため、溶接金属部より直径6mmの引張試験片を採取し引張試験を行い、APIX80グレード(TS=620MPa、YS=551MPa)以上を目標とした。さらに、溶接部よりシャルピ衝撃試験片を採取し、ノッチを溶接金属部に挿入して試験を行った。ここで、溶接金属の靱性として、破面遷移温度が−30℃以下を目標とした。
【0077】
【表6】
Figure 0003541778
【0078】
【表7】
Figure 0003541778
表6および表7において、試料No.C1〜試料No.C5は、本発明の条件を全て満足する本発明例にかかる溶接金属であり、腐食性能、溶接金属強度および溶接金属靱性をいずれも十分に満足し、良好な性能を有することがわかる。
【0079】
これに対し、試料No.C6、試料No.7および試料No.C9は、いずれも、Niが本発明の範囲の下限を下回るため、オーステナイトの生成が不充分となり、H2 S腐食性および溶接靱性がともに劣化した。
【0080】
試料No.C8および試料No.C12は、不純物元素であるSおよびPそれぞれの含有量が本発明の範囲の上限を超えているため、耐食性および溶接金属靱性がともに低下した。
【0081】
試料No.C10は、Ti含有量が本発明の範囲の上限を超えているため、溶接金属が不安定となり、目標を満足しなかった。
試料No.C11は、Si含有量が本発明の範囲の上限を超えるため、衝撃特性が低下し、目標を満足しなかった。
【0082】
試料No.C13は、Mo含有量が本発明の範囲の上限を超えるために靱性が低下するとともに、Ni含有量およびTi含有量がいずれも本発明の範囲を超えており、腐食性および強度がともに低下した。
【0083】
試料No.C14は、Cr含有量が本発明の範囲の上限を超えているため、マルテンサイト組織の生成が不充分となり、強度が低下した。
試料No.C15は、C含有量が本発明の範囲の上限を外れているため、H2 S腐食性と溶接金属靱性とがともに低下した。
【0084】
試料No.C18は、Ni含有量が本発明の範囲の上限を外れているため、オーステナイト分率が増加して強度が低下した。
試料No.C19は、V含有量が本発明の範囲の上限を上回っているため、靱性が低下し目標を満足しなかった。
【0085】
試料No.C20は、Si含有量が本発明の範囲の下限を下回っているために強度が低下するとともに、脱酸が不充分なために溶接金属靱性が低下した。
試料No.C21は、Cr含有量が本発明の範囲の下限を下回っているため、、溶接金属強度が低下してしまうばかりでなく、CO2 腐食が発生した。
【0086】
試料No.C22は、Mo含有量が本発明の範囲の下限を下回るため、溶接金属強度が低下してしまうばかりでなく、H2 Sによる腐食が発生した。
試料No.C23は、Ti含有量が本発明の範囲の下限を下回っているため、強度が安定化せず、目標を満足しなかった。
【0087】
試料No.C24は、V含有量が本発明の範囲の下限を外れるため、同様に強度が安定化せず、目標を満足しなかった。
試料No.C25は、Al含有量が本発明の範囲の上限を外れるため、Al系の介在物が増加し、靱性が低下した。
【0088】
試料No.C26は、Al含有量が本発明の範囲の下限を外れるため、脱酸が不充分となって靱性が低下した。
試料No.C27は、N含有量およびO含有量がともに本発明の範囲を外れるため、靱性が低下し、目標を満足しなかった。
【0089】
試料No.C22および試料No.C24は、いずれも、溶接金属のMo含有量が母材のMo含有量よりも低いため、溶接金属の腐食性が劣化した。
さらに、試料No.C14および試料No.C18は、いずれも、溶接金属のNi含有量がNi≦−0.8* (Cr+Mo)+22の範囲を超えるため、オーステナイトの生成が不充分となって、強度が低下した。
【0090】
【発明の効果】
以上詳細に説明したように、本発明により、予熱処理や後熱処理を必要とせず、溶接部の耐高温割れ性、耐低温割れ性、靱性および強度が優れ、さらに、耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管、例えば高Crサブマージアーク溶接鋼管を提供することができた。
【0091】
かかる効果を有する本発明の意義は、極めて著しい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a welded steel pipe excellent in carbon dioxide gas corrosion resistance and hydrogen sulfide crack resistance. More specifically, the present invention is applied to line pipes used for transportation of oil and natural gas, etc., containers used for storage, or applications where strength, toughness and corrosion resistance are all required. The present invention relates to a welded steel pipe suitable for use in high Cr-based welded steel pipes and the like, which is excellent in carbon dioxide gas corrosion resistance and hydrogen sulfide cracking resistance.
[0002]
[Prior art]
As the oil well environment becomes more severe, the number of cases where wet carbon dioxide gas is contained in the produced oil or natural gas is increasing. Under such an environment, a steel pipe made of carbon steel or low alloy steel is significantly corroded, so that a corrosion inhibitor is added. However, the corrosion inhibitory effect of the corrosion inhibitor disappears at high temperatures, and in the case of a submarine pipeline, the addition and recovery of the corrosion inhibitor requires enormous costs.
[0003]
Therefore, as a corrosion-resistant material that does not require the addition of a corrosion inhibitor, 12 to 13% as represented by AISI420 steel (in this specification, "%" means "% by mass" unless otherwise specified. Martensitic stainless steel containing Cr) has been widely used. In this AISI420 steel, a relatively large amount of C of about 0.16 to 0.22% is added in order to obtain high strength.
[0004]
However, as is well known, since the line pipe is joined by welding with the ends of the pipes butt to each other, if a relatively large amount of C is contained as in AISI420 steel, the line pipe is constructed by a normal welding method. In this case, the hardness of the heat affected zone increases, and the impact resistance deteriorates. In addition, susceptibility to sulfide stress corrosion cracking is increased due to the increase in hardness of the heat affected zone.
[0005]
In order to suppress an increase in the hardness of the weld heat affected zone, post-weld heat treatment may be performed after welding to maintain the weld heat affected zone at about 600 ° C. or higher. However, when this heat treatment is performed after welding, the construction cost is significantly increased.
[0006]
For this reason, JP-A-2-243740 and JP-A-5-287455 disclose that the C content of the base material is reduced to suppress the increase in the hardness of the heat affected zone by welding, and to reduce the impact resistance and reduce the sulfide content. An invention that suppresses an increase in the sensitivity to stress corrosion cracking has been proposed. According to these inventions, a seamless steel pipe suitable for a line pipe for transporting oil and natural gas containing wet carbon dioxide gas can be manufactured.
[0007]
Further, Japanese Patent Application Laid-Open No. 4-191319 discloses that a martensitic stainless steel sheet produced by hot rolling and having a C content of 0.08% or less is continuously formed and then subjected to electric resistance welding to form a steel pipe. Further, an invention is disclosed in which an electric resistance welded steel pipe suitable for a line pipe for transporting oil or natural gas containing wet carbon dioxide gas is obtained by subjecting an electric resistance welded portion to heat treatment.
[0008]
Since this martensitic stainless steel basically has high strength, it can be made thinner, and thus, the construction cost of the pipeline can be reduced.
[0009]
By the way, since a seamless steel pipe is manufactured by extrusion, rolling, or the like, it is limited to manufacturing a relatively small diameter and thick steel pipe. For this reason, even if martensitic stainless steel is applied to a seamless steel pipe, the thickness cannot be reduced, and the construction cost of the pipeline cannot be reduced.
[0010]
Further, since the electric resistance welded steel pipe is joined by the electric resistance welding method, it is possible to reduce the thickness. For this reason, by applying martensitic stainless steel to the electric resistance welded steel pipe, the construction cost of the pipeline can be reduced. However, a special internal defect called a penetrator, which remains inside the welded portion of the ERW steel pipe with a part of the end face left in an oxygen-deficient state, occurs. Was a problem.
[0011]
As described above, conventionally, an invention for producing a high Cr welded steel pipe such as a martensitic stainless steel pipe, which is low in cost and excellent in relatively large diameter carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance, has been proposed. It has not been.
[0012]
[Problems to be solved by the invention]
Normally, a relatively large diameter high Cr welded steel pipe is manufactured by submerged arc welding. However, in the case of a common metal material such as a high Cr steel, even if a large amount of Ni is contained, the hardness of the obtained weld metal is extremely high. And the cold cracking susceptibility of the weld metal increases significantly. Therefore, it is necessary to perform a pre-heat treatment or a post-heat treatment. Therefore, it is practically impossible to produce a high Cr welded steel pipe using a welding material composed of a common metal material or a martensitic stainless steel.
[0013]
On the other hand, when a welding material made of high Ni austenitic stainless steel or Ni-based superalloy having excellent corrosion resistance is used, selective corrosion of a penetrator or the like does not occur, and a weld metal having low weld metal hardness and excellent toughness is obtained. be able to. However, the weld metal made of austenitic stainless steel or Ni-base superalloy has a very low strength due to its crystal structure, and when external stress is applied, the weld metal is intensively deformed and leads to fracture. , A so-called undermatch may occur. For this reason, it was also difficult to weld a base material made of high Cr steel using austenitic stainless steel or a high Ni alloy as a welding material.
[0014]
Furthermore, in recent years, welding materials made of duplex stainless steel have also been used, but the strength of the weld metal is low, and as with weld metal made of austenitic stainless steel or Ni-base superalloy, undermatching occurs. May occur.
[0015]
The present invention has been made in view of such problems of the conventional technology, and an object of the present invention is to eliminate the need for a pre-heat treatment or a post-heat treatment, and to provide high-temperature crack resistance and low-temperature crack resistance of a welded portion. An object of the present invention is to provide a welded steel pipe having excellent toughness and strength, and also excellent in carbon dioxide gas corrosion resistance and hydrogen sulfide cracking resistance, for example, a high Cr submerged arc welded steel pipe.
[0016]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by optimizing the composition of the base metal and the weld metal, particularly the Mo content, to achieve excellent corrosion resistance in a carbon dioxide gas-containing environment and the like. The present inventors have found that it is possible to provide a high Cr submerged arc welded steel pipe having both excellent resistance to hydrogen sulfide cracking and the present invention, and have completed the present invention.
[0017]
The present invention relates to a welded steel pipe having a base material and a weld metal, wherein the base material is C: 0.001 to 0.04%, Si: 0.50% or less, Mn: 2.00% or less, P: 0.015% or less, S: 0.015% Below, Cr: 10.0 to 14.0%, Mo: 2.0 to 3.0%, Ni: 3.0 to 8.0%, Cu: 0.10% or less, Ti: 0.15% or less, Al: 0.050% or less, V: 0.15% or less, N: 0.050 % And O: 0.025% or less,Rest Fe And a steel composition consisting of unavoidable impurities,
Weld metal: C: 0.001 to 0.04%, Si: 0.010 to 0.5%, Mn: 0.2 to 2.0%, P: 0.020% or less, S: 0.010% or less, N: 0.030% or less, O: 0.05% or less, Cr : 11-14%, Mo: 2.0-4.0%, Ni: 5.5-8.0%, V: 0.020-0.1%, Ti: 0.002-0.05%, and Al: 0.005-0.05%WhenBoth satisfy Ni ≦ −0.8 (Cr + Mo) +22,
Further, the welded steel pipe is excellent in carbon dioxide gas corrosion resistance and hydrogen sulfide cracking resistance characterized by satisfying (Mo content of base metal + 0.2%) ≦ (Mo content of weld metal).
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a welded steel pipe excellent in carbon dioxide gas corrosion resistance and hydrogen sulfide cracking resistance according to the present invention will be described in detail.
[0019]
First, in the present invention, the reasons for limiting the respective compositions of the base metal and the weld metal will be sequentially described.
(1) Base material
(C: 0.001 to 0.04%)
When C is contained in excess of 0.04%, Cr carbides are formed, thereby significantly deteriorating both weldability and corrosion resistance. On the other hand, reducing the C content to less than 0.001% requires a corresponding processing cost and increases the production cost of the base material. Therefore, in the present invention, the C content of the base material is limited to 0.001% or more and 0.04% or less.
[0020]
(Si: 0.50% or less)
Although Si is an effective element as a deoxidizing element, if it is contained in excess of 0.50%, the amount of nonmetallic inclusions increases, the HIC resistance deteriorates, and the HAZ toughness also deteriorates. Therefore, in the present invention, the Si content of the base material is limited to 0.50% or less.
[0021]
(Mn: 2.00% or less)
Mn is a deoxidizing element and an element effective for improving the strength and toughness of the base material. However, when the Mn content exceeds 2.00%. The center segregation of the slab deteriorates, and the HIC resistance and the low temperature cracking performance deteriorate, and the HAZ toughness also deteriorates. Therefore, in the present invention, the Mn content of the base material is limited to 2.00% or less.
[0022]
(P: 0.015% or less)
P is an unavoidable impurity in the present invention, and if its content is 0.015% or less, desired carbon dioxide gas corrosion resistance and hydrogen sulfide cracking resistance can be obtained. Therefore, in the present invention, the P content of the base material is limited to 0.015% or less.
[0023]
(S: 0.015% or less)
S is an unavoidable impurity in the present invention, and if the content is 0.015% or less, desired carbon dioxide gas corrosion resistance and hydrogen sulfide cracking resistance can be obtained. Therefore, in the present invention, the S content of the base material is limited to 0.015% or less.
[0024]
(Cr: 10.0-14.0%)
When Cr is contained at 10.0% or more, the corrosion resistance in an oil-containing carbon dioxide gas environment, that is, the carbon dioxide gas corrosion resistance is remarkably improved. However, if the Cr content exceeds 14.0%, the weldability decreases. Therefore, in the present invention, the Cr content of the base material is limited to 10.0% or more and 14.0% or less.
[0025]
(Mo: 2.0-3.0%)
Mo is an important element in the present invention, and is effective in remarkably improving corrosion resistance in a hydrogen sulfide resistant environment, and contributes to high strength. When the Mo content is less than 2.0%, both the corrosion resistance and the strength of the base material become insufficient. On the other hand, if the Mo content exceeds 3.0%, the base material toughness decreases. Therefore, in the present invention, the content of Mo in the base material is limited to 2.0% or more and 3.0% or less.
[0026]
As described later, in the present invention, the Mo content of the base metal is defined based on the Mo content of the weld metal.
(Ni: 3.0-8.0%)
Ni content of not less than 3.0% can improve the HAZ toughness. However, if the Ni content exceeds 8.0%, not only does the cost increase, but also the austenite fraction is increased to increase the base material. The strength of the steel decreases. Therefore, in the present invention, the Ni content of the base material is limited to 3.0% or more and 8.0% or less.
[0027]
(Cu: 0.10% or less)
Cu is an element that increases strength and toughness, but HAZ toughness deteriorates when the Cu content exceeds 0.10%. Therefore, in the present invention, the Cu content of the base material is limited to 0.10% or less.
[0028]
(Ti: 0.15% or less)
Ti is an element that enhances strength and toughness, but HAZ toughness deteriorates when the Ti content exceeds 0.15%. Therefore, in the present invention, the Ti content of the base material is limited to 0.15% or less.
[0029]
(Al: 0.050% or less)
Al is a deoxidizing element, but when the Al content exceeds 0.050%, the amount of nonmetallic inclusions increases, and not only HIC resistance performance but also HAZ toughness deteriorates. Therefore, in the present invention, the Al content of the base material is limited to 0.050% or less.
[0030]
(V: 0.15% or less)
V is an effective element effective for increasing the strength, but if it is contained in excess of 0.15%, the HAZ toughness deteriorates. Therefore, in the present invention, the V content of the base material is limited to 0.15% or less.
[0031]
(N: 0.050% or less)
N is an unavoidable impurity in the present invention, and if its content is 0.050% or less, desired carbon dioxide gas corrosion resistance and hydrogen sulfide cracking resistance can be obtained. Therefore, in the present invention, the base materialNThe content is limited to 0.050% or less.
[0032]
(O: 0.025% or less)
O is an unavoidable impurity in the present invention, and if its content is 0.025% or less, desired carbon dioxide gas corrosion resistance and hydrogen sulfide crack resistance can be obtained. Therefore, in the present invention, the base materialOThe content is limited to 0.025% or less.
[0033]
Thus, the base material of the welded steel pipe according to the present invention is as follows: C: 0.001 to 0.04%, Si: 0.50% or less, Mn: 2.00% or less, P: 0.015% or less, S: 0.015% or less, Cr: 10.0 to 14.0%, Mo: 2.0 to 3.0%, Ni: 3.0 to 8.0%, Cu: 0.10% or less, Ti : 0.15% or less, Al: 0.050% or less, V: 0.15% or less, N: 0.050% or less, and O: 0.025% or less.
[0034]
The microstructure of the base material is a martensite single phase or a mixed structure of martensite and ferrite.
The other elements of the base material of the welded steel pipe according to the present invention are the same as those of the well-known and commonly used base material of the welded steel pipe, and therefore, further description will be omitted.
[0035]
(2) Weld metal
(C: 0.001 to 0.04%)
C is contained in an amount of 0.001% or more as an element that greatly increases the strength of the weld metal and as an austenite forming element. However, when the C content exceeds 0.04%, Cr carbide is generated in the weld metal, and both the corrosion resistance and the weldability deteriorate. Therefore, in the present invention, the C content of the weld metal is limited to 0.001% or more and 0.04% or less.
[0036]
(Si: 0.010-0.5%)
Si is effective as a deoxidizing agent and a strengthening element for a weld metal by containing 0.010% or more. However, when the Si content exceeds 0.5%, such an effect is not only saturated, but also, Impact resistance is also reduced. Therefore, in the present invention, the Si content of the weld metal is limited to 0.010% or more and 0.5% or less.
[0037]
(Mn: 0.2-2.0%)
When Mn is contained in an amount of 0.2% or more, Mn acts as a deoxidizing agent for the weld metal and also as an austenite-forming element for adjusting the structure of the weld metal. However, when the Mn content exceeds 2.0%, such an effect is saturated and only the cost is increased, and various problems are caused when a weld metal is formed. Therefore, in the present invention, the Mn content of the weld metal is limited to 0.2% or more and 2.0% or less.
[0038]
(P: 0.020% or less)
P is an unavoidable impurity in the present invention, and its content is preferably low. Therefore, in the present invention, the P content of the weld metal is limited to 0.020% or less.
[0039]
(S: 0.010% or less)
S is an unavoidable impurity in the present invention, and its content is preferably low. Therefore, in the present invention, the S content of the weld metal is limited to 0.010% or less.
[0040]
(N: 0.030% or less)
N is an unavoidable impurity in the present invention, and its content is preferably low. Therefore, in the present invention, the N content of the weld metal is limited to 0.030% or less.
[0041]
(O: 0.05% or less)
O is an inevitable impurity in the present invention, and its content is preferably low. Therefore, in the present invention, the O content of the weld metal is limited to 0.05% or less.
[0042]
(Cr: 11-14%)
Cr is contained at least 11% in order to secure both the corrosion resistance and strength of the weld metal. However, if it is contained in excess of 14%, it becomes difficult to form a martensite structure for securing the strength of the weld metal. And the strength decreases. Therefore, in the present invention, the Cr content of the weld metal is limited to 11% or more and 14% or less.
[0043]
(Mo: 2.0-4.0%)
Mo is added to secure both corrosion resistance and high strength of the weld metal. When the Mo content is less than 2.0%, both the corrosion resistance and the strength of the weld metal are not sufficient. On the other hand, when the Mo content exceeds 4.0%, an intermetallic compound is generated in the weld metal, and the toughness is reduced. descend. Therefore, in the present invention, the Mo content of the weld metal is limited to 2.0% or more and 4.0% or less.
[0044]
As described later, in the present invention, the Mo content of the weld metal is defined based on the Mo content of the base metal.
(Ni: 5.5-8.0%)
Ni is contained in order to stably generate austenite in the structure of the weld metal and secure both toughness and corrosion resistance. If the Ni content is less than 5.5%, the impact toughness is insufficient. Conversely, if the Ni content exceeds 8.0%, the austenite fraction becomes excessively large and the strength of the weld metal decreases, and the impact strength decreases. The effect of improving toughness is also saturated. Therefore, in the present invention, the Ni content of the weld metal is limited to 5.5% or more and 8.0% or less.
[0045]
(V: 0.020-0.1%)
V is an element that stabilizes the strength of the weld metal. If the V content is less than 0.020%, the strength decreases. On the other hand, if the V content exceeds 0.1%, the toughness deteriorates. Therefore, in the present invention, the V content of the weld metal is limited to 0.020% or more and 0.1% or less.
[0046]
(Ti: 0.002-0.05%)
Ti is an element that stabilizes the strength of the weld metal. If the Ti content is less than 0.002%, the strength decreases. On the other hand, if the Ti content exceeds 0.05%, the toughness deteriorates. Therefore, in the present invention, the Ti content of the weld metal is limited to 0.002% or more and 0.05% or less.
[0047]
(Al: 0.005 to 0.05%)
Al is contained in an amount of 0.005% or more as a deoxidizing agent for the weld metal. However, if the Al content exceeds 0.05%, Al-based inclusions in the weld metal increase and the toughness decreases. Therefore, in the present invention, the Al content of the weld metal is limited to 0.005% or more and 0.05% or less.
[0048]
As described above, the weld metal of the welded steel pipe according to the present invention includes C: 0.001 to 0.04%, Si: 0.010 to 0.5%, Mn: 0.2 to 2.0%, and P: 0.020% or less, S: 0.010% or less, N: 0.030% or less, O: 0.05% or less, Cr: 11 to 14%, Mo: 2.0 to 4.0%, Ni: It has a steel composition containing 5.5-8.0%, V: 0.020-0.1%, Ti: 0.002-0.05%, and Al: 0.005-0.05%.
[0049]
The microstructure of the weld metal is a three-phase structure having an austenite phase, a ferrite phase, and a martensite phase.
Further, in the present embodiment, in order to sufficiently secure the strength of the weld metal, it is effective to control the austenite fraction in the weld metal. For this reason, the amount ratio of Ni, which is an austenite stabilizing element, to Cr, Mo, which is a ferrite stabilizing element, is limited.
[0050]
That is, by limiting the respective ratios of the Ni content, the Cr content, and the Mo content of the weld metal to Ni ≦ −0.8 × (Cr + Mo) +22, the austenite fraction in the weld metal is adjusted to an appropriate range. Thus, the strength of the weld metal can be sufficiently satisfied.
[0051]
Further, when the Mo content of the weld metal is smaller than the Mo content of the base material, the corrosion resistance of the weld metal is reduced, and selective corrosion of the weld metal such as a penetrator occurs. Therefore, in the present embodiment, in order to prevent selective corrosion of the weld metal, the Mo content of the weld metal is set to be 0.2% or more larger than the Mo content of the base metal.
[0052]
The welded steel pipe of the present embodiment is manufactured by appropriately molding a base material having the above composition, and then performing submerged arc welding using a wire having an appropriate composition, thereby forming a weld metal having the above composition. You.
[0053]
In the present invention, the performance of the weld metal is achieved if the composition of the weld metal is within the range of the present invention. Therefore, the welding may be performed by appropriately adjusting the composition and combination of the wires so that the composition of the weld metal satisfies the range of the present invention.
[0054]
Thus, according to the present invention, the pre-heat treatment and post-heat treatment are not required, the hot crack resistance, the low temperature crack resistance, the toughness and the strength of the weld are excellent, and the carbon dioxide corrosion resistance and the hydrogen sulfide crack resistance are further improved. The present invention provides a welded steel pipe having excellent resistance, for example, a high Cr submerged arc welded steel pipe.
[0055]
【Example】
(Example 1)
Next, the present invention will be described in detail with reference to examples.
[0056]
A groove having a groove angle of 60 degrees was prepared as a base material of 25 types of high Cr steel sheets (plate thickness 19.05 mm) having the compositions shown in Table 1. The steel sheets shown in Table 1 were prepared by performing a quenching-tempering heat treatment.
[0057]
In order to evaluate the mechanical properties of each of the obtained 25 types of high Cr steel sheets, API plate-shaped test pieces were cut out and subjected to a tensile test, and the APIX80 grade (TS = 620 MPa, YS = 551 MPa) or higher was targeted.
[0058]
In addition, Charpy test pieces were cut out from each of the obtained 25 types of high Cr steel sheets and subjected to a Charpy impact test. The target was a fracture surface transition temperature of −80 ° C. or less.
Furthermore, the corrosion test of the steel plate was performed in a wet gas environment. The test conditions in a wet gas environment were carried out by immersing in an autoclave at a test temperature of 50 ° C. in 1 atm of carbon dioxide gas and a 5% aqueous NaCl solution for 30 days, and calculating the corrosion rate from the weight change before and after the test. Generally, if the corrosion rate of a material in an environment is less than 0.1 mm / y, the material is considered sufficiently corrosion resistant and usable.
[0059]
Further, in order to evaluate the corrosiveness to hydrogen sulfide, carbon dioxide gas +0.01 atm.TwoThe presence or absence of cracks was investigated under the conditions of the S mixed gas.
Further, in order to evaluate the weldability of the base material, a sample cut out of each of the obtained 25 types of high Cr steel sheets was subjected to a y-cracking test specified in JIS3158 to check for cracks.
[0060]
Further, in order to evaluate the joint performance, a welded joint was prepared using any of the wires W1 to W8 having the composition shown in Table 2, and F.F. A Charpy test piece in which a notch was inserted in the L portion was prepared and subjected to a test, and a fracture surface transition temperature was targeted at -30 ° C or lower.
[0061]
Table 1 shows the results of each test. Samples that satisfied the target were indicated by ○, and samples that did not satisfy the target were indicated by ×.
[0062]
[Table 1]
Figure 0003541778
[0063]
[Table 2]
Figure 0003541778
Sample No. which is an example of the present invention. No. 1 to No. 1 No. 8 satisfies all of the properties of the base material, the corrosiveness and the weldability, and it can be seen that the sample No. 8 has good performance.
[0064]
On the other hand, the sample No. 9 is H because the C content exceeds the upper limit of the range of the present invention.TwoNot only was the S corrosion property reduced, but also the low temperature cracking property and HAZ toughness were deteriorated.
[0065]
Sample No. 10 has a CO content of less than the lower limit of the range of the present invention,TwoCorrosion decreased.
Sample No. In No. 11, since the Ni content was below the lower limit of the range of the present invention, not only the HAZ toughness was lowered but also the base metal strength could not satisfy the target value.
[0066]
Sample No. In No. 12, since the Ni content exceeded the upper limit of the range of the present invention, a predetermined amount of martensite structure was not obtained, and the base material strength was reduced.
Sample No. 13 is H-resistantTwoSince the Mo content for improving S corrosion is below the lower limit of the range of the present invention, HTwoS corrosion occurred.
[0067]
Sample No. In No. 14, the Mo content exceeded the upper limit of the range of the present invention.TwoS corrosion and HAZ toughness did not meet the targets.
Sample No. In No. 15, the HAZ toughness did not satisfy the target because the Cr content exceeded the upper limit of the range of the present invention.
[0068]
Sample No. 16, sample no. 17 and sample no. In No. 22, since the Si content, the Mn content, and the Al content exceeded the upper limits of the range of the present invention, the HAZ toughness was deteriorated, and the HIC performance was also lowered due to the increase in the amount of inclusions.
[0069]
Sample No. 18 and sample no. In No. 19, since the P content and the S content exceeded the upper limits of the range of the present invention, respectively, the base metal toughness was reduced in addition to the HAZ toughness and the HIC performance.
[0070]
Sample No. 20, sample no. 21 and sample no. In No. 23, the Cu content, the Ti content, and the V content exceeded the upper limits of the range of the present invention, respectively, so that the HAZ toughness and the low-temperature cracking property were deteriorated.
[0071]
Sample No. In No. 24, since the N content exceeded the upper limit of the range of the present invention, both the base metal toughness and the HAZ toughness were deteriorated due to the increase in the amount of dissolved N.
further. Sample No. In No. 25, since the O content exceeded the upper limit of the range of the present invention, the amount of oxides increased, and the HIC performance, HAZ toughness, and base metal toughness all deteriorated.
[0072]
(Example 2)
Since it is necessary to ensure excellent welding performance also for the weld metal of a large diameter steel pipe produced by welding, a wire having the composition shown in Table 2 was used to evaluate the properties of the weld metal. The welding was performed under the welding conditions shown in Table 4 using a flux having the composition shown in Table 4. Table 5 shows combinations of base materials, wires, and fluxes used at this time.
[0073]
[Table 3]
Figure 0003541778
[0074]
[Table 4]
Figure 0003541778
[0075]
[Table 5]
Figure 0003541778
Tables 6 and 7 show the components of the obtained weld metal and the evaluation test results, respectively.
[0076]
The corrosion test method was performed in the same manner as the evaluation test method for the base material, by taking a sample from the welded joint. In addition, in order to evaluate the strength of the weld metal, a tensile test piece having a diameter of 6 mm was sampled from the weld metal part, and a tensile test was performed. The target was APIX80 grade (TS = 620 MPa, YS = 551 MPa) or higher. Further, a Charpy impact test piece was sampled from the welded portion, and a test was performed by inserting a notch into the welded metal portion. Here, as the toughness of the weld metal, the target was a fracture surface transition temperature of −30 ° C. or less.
[0077]
[Table 6]
Figure 0003541778
[0078]
[Table 7]
Figure 0003541778
In Tables 6 and 7, Sample No. C1 to Sample No. C5 is a weld metal according to an example of the present invention that satisfies all the conditions of the present invention. It can be seen that the corrosion performance, the weld metal strength, and the weld metal toughness are all sufficiently satisfied and have good performance.
[0079]
On the other hand, the sample No. C6, sample no. 7 and sample no. In all of C9, since Ni is below the lower limit of the range of the present invention, the generation of austenite is insufficient, andTwoBoth S corrosion property and weld toughness deteriorated.
[0080]
Sample No. C8 and sample no. Since the content of each of S12 and P, which are impurity elements, exceeds the upper limit of the range of the present invention, both the corrosion resistance and the weld metal toughness of C12 decreased.
[0081]
Sample No. For C10, since the Ti content exceeded the upper limit of the range of the present invention, the weld metal became unstable and did not satisfy the target.
Sample No. C11 had a Si content exceeding the upper limit of the range of the present invention, so that the impact characteristics were lowered and the target was not satisfied.
[0082]
Sample No. C13 decreased the toughness because the Mo content exceeded the upper limit of the range of the present invention, the Ni content and the Ti content both exceeded the range of the present invention, and both the corrosiveness and the strength decreased. .
[0083]
Sample No. In C14, since the Cr content exceeded the upper limit of the range of the present invention, the formation of a martensite structure was insufficient, and the strength was reduced.
Sample No. C15 contains H since the C content is outside the upper limit of the range of the present invention.TwoBoth the S corrosion property and the weld metal toughness decreased.
[0084]
Sample No. For C18, since the Ni content was outside the upper limit of the range of the present invention, the austenite fraction increased and the strength decreased.
Sample No. Since C19 had a V content exceeding the upper limit of the range of the present invention, the toughness was lowered and the target was not satisfied.
[0085]
Sample No. C20 had a lower strength because the Si content was below the lower limit of the range of the present invention, and a lower weld metal toughness due to insufficient deoxidation.
Sample No. Since C21 has a Cr content lower than the lower limit of the range of the present invention, not only does the weld metal strength decrease, but also CO2 decreases.TwoCorrosion occurred.
[0086]
Sample No. Since C22 has a Mo content below the lower limit of the range of the present invention, not only does the weld metal strength decrease,TwoCorrosion by S occurred.
Sample No. C23 had a Ti content below the lower limit of the range of the present invention, so that the strength was not stabilized and did not satisfy the target.
[0087]
Sample No. C24 had a V content outside the lower limit of the range of the present invention, so that the strength was not similarly stabilized and did not satisfy the target.
Sample No. Since C25 has an Al content outside the upper limit of the range of the present invention, Al-based inclusions increased and toughness was reduced.
[0088]
Sample No. Since C26 had an Al content outside the lower limit of the range of the present invention, deoxidation was insufficient and toughness was lowered.
Sample No. C27 was out of the range of the present invention in both the N content and the O content, so that the toughness was lowered and the target was not satisfied.
[0089]
Sample No. C22 and sample no. In each case of C24, since the Mo content of the weld metal was lower than the Mo content of the base metal, the corrosion properties of the weld metal deteriorated.
Further, the sample No. C14 and sample no. C18 has a Ni content of the weld metal of Ni ≦ −0.8.*Since it exceeds the range of (Cr + Mo) +22, austenite generation was insufficient, and the strength was reduced.
[0090]
【The invention's effect】
As described in detail above, according to the present invention, the pre-heat treatment and post-heat treatment are not required, the hot crack resistance, the low temperature crack resistance, the toughness and the strength of the weld are excellent, and further, the carbon dioxide gas corrosion resistance and resistance. A welded steel pipe excellent in hydrogen sulfide cracking properties, for example, a high Cr submerged arc welded steel pipe could be provided.
[0091]
The significance of the present invention having such an effect is extremely remarkable.

Claims (1)

母材および溶接金属を有する溶接鋼管であって、
前記母材が、質量%で、C:0.001 〜0.04%、Si: 0.50%以下、Mn: 2.00%以下、P:0.015%以下、S: 0.015 %以下、Cr: 10.0〜14.0%、Mo:2.0〜3.0 %、Ni:3.0〜8.0 %、Cu:0.10 %以下、Ti:0.15 %以下、Al:0.050%以下、V:0.15%以下、N:0.050%以下、およびO:0.025%以下、残部 Fe および不可避不純物から成る鋼組成を有し、
前記溶接金属が、質量%で、C:0.001 〜0.04%、Si: 0.010 〜0.5 %、Mn: 0.2 〜2.0 %、P:0.020%以下、S: 0.010 %以下、N:0.030%以下、O:0.05 %以下、Cr: 11〜14%、Mo:2.0〜4.0 %、Ni:5.5〜8.0 %、V:0.020 〜0.1 %、Ti:0.002〜0.05%、およびAl:0.005〜0.05%を含有するともにNi≦−0.8(Cr+Mo) +22を満足し、
さらに、( 前記母材のMo含有量+0.2 %) ≦( 前記溶接金属のMo含有量) を満足することを特徴とする耐炭酸ガス腐食特性および耐硫化水素割れ性に優れた溶接鋼管。
A welded steel pipe having a base material and a weld metal,
The base material is, by mass%, C: 0.001 to 0.04%, Si: 0.50% or less, Mn: 2.00% or less, P: 0.015% or less, S: 0.015% or less, Cr: 10.0 to 14.0%, Mo: 2.0 ~ 3.0%, Ni: 3.0 ~ 8.0%, Cu: 0.10% or less, Ti: 0.15% or less, Al: 0.050% or less, V: 0.15% or less, N: 0.050% or less, and O: 0.025% or less, balance Fe And a steel composition consisting of unavoidable impurities,
The weld metal is represented by mass%, C: 0.001 to 0.04%, Si: 0.010 to 0.5%, Mn: 0.2 to 2.0%, P: 0.020% or less, S: 0.010% or less, N: 0.030% or less, O: 0.05% or less, Cr: 11~14%, Mo: 2.0~4.0%, Ni: 5.5~8.0%, V: 0.020 ~0.1%, Ti: 0.002~0.05%, and Al: you containing 0.005 to 0.05% satisfy the monitor Ni ≦ -0.8 (Cr + Mo) +22 and,
Further, a welded steel pipe excellent in carbon dioxide gas corrosion resistance and hydrogen sulfide crack resistance, characterized by satisfying (Mo content of the base metal + 0.2%) ≦ (Mo content of the weld metal).
JP2000112194A 2000-04-13 2000-04-13 Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance Expired - Lifetime JP3541778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000112194A JP3541778B2 (en) 2000-04-13 2000-04-13 Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112194A JP3541778B2 (en) 2000-04-13 2000-04-13 Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance

Publications (2)

Publication Number Publication Date
JP2001294992A JP2001294992A (en) 2001-10-26
JP3541778B2 true JP3541778B2 (en) 2004-07-14

Family

ID=18624407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112194A Expired - Lifetime JP3541778B2 (en) 2000-04-13 2000-04-13 Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance

Country Status (1)

Country Link
JP (1) JP3541778B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168306B2 (en) 2007-09-18 2012-05-01 Exxonmobil Research And Engineering Company Weld metal compositions for joining steel structures in the oil and gas industry
CN103990895B (en) * 2014-05-14 2016-07-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of welding method of high-strength seamless steel pipe
US11772207B2 (en) 2019-09-20 2023-10-03 Lincoln Global, Inc. High chromium creep resistant weld metal for arc welding of thick walled steel members
US11772206B2 (en) 2019-09-20 2023-10-03 Lincoln Global, Inc. High chromium creep resistant weld metal for arc welding of thin walled steel members

Also Published As

Publication number Publication date
JP2001294992A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
US20090232694A1 (en) Martensitic stainless steel for welded structures
JP4760299B2 (en) Welded joint and manufacturing method thereof
EP0953401A1 (en) Wire for welding high-chromium steel
JP4552268B2 (en) How to connect high strength martensitic stainless steel pipes for oil wells
JP2001279392A (en) Martensitic stainless steel and its production method
JP2003003233A (en) High strength steel and production method therefor
JPH08260101A (en) Welding material for welding dual phase stainless steel, having high corrosion resistance and high toughness
JP3726721B2 (en) High-strength weld metal parts with excellent cold cracking resistance and methods for forming them
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JP3541778B2 (en) Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
JP2001115238A (en) Martensitic stainless steel welded steel pipe
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
JP2000015447A (en) Welding method of martensitic stainless steel
JP2002018593A (en) Welding material for low alloy heat resistant steel and weld metal
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP2663089B2 (en) Composite steel sheet with excellent corrosion resistance and low-temperature toughness
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JP2001246495A (en) Welding material and method for producing welded joint
JP3164978B2 (en) High Cr steel welding method
JPH07305140A (en) Composite steel sheet excellent in low temperature toughness and corrosion resistance
JP7492184B1 (en) Manufacturing method of solid wire and welded joint
JP2503329B2 (en) Steel for line pipes with excellent carbon dioxide corrosion resistance and HIC resistance to hydrogen sulfide gas
JP7436821B2 (en) Duplex stainless steel material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350