JP3541119B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP3541119B2
JP3541119B2 JP29334597A JP29334597A JP3541119B2 JP 3541119 B2 JP3541119 B2 JP 3541119B2 JP 29334597 A JP29334597 A JP 29334597A JP 29334597 A JP29334597 A JP 29334597A JP 3541119 B2 JP3541119 B2 JP 3541119B2
Authority
JP
Japan
Prior art keywords
absorber
evaporator
refrigerant
partition plate
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29334597A
Other languages
Japanese (ja)
Other versions
JPH11118277A (en
Inventor
修行 井上
利男 松原
祥治 田中
伸隆 松田
照雄 白石
純 村田
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP29334597A priority Critical patent/JP3541119B2/en
Publication of JPH11118277A publication Critical patent/JPH11118277A/en
Application granted granted Critical
Publication of JP3541119B2 publication Critical patent/JP3541119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単効用又は多重効用吸収冷凍機に係り、特に吸収器の構造の改良に関するものである。
【0002】
【従来の技術】
この種の吸収冷凍機においては、吸収器部分が最も低圧になり、吸収冷凍機内に不凝縮ガスがあれば、この不凝縮ガスは吸収器に集まってくる。この不凝縮ガスが伝熱、吸収に悪影響を与えるので、エジェクター等の抽気手段でこの不凝縮ガスを抽気タンク等に集め、不凝縮ガスが伝熱、吸収に悪影響を与えるのを防いでいる。
【0003】
吸収器内には蒸発器から冷媒蒸気が流入するが、吸収器の側面或いは下面からこの蒸気の流入を許すと、不凝縮ガスは、吸収器伝熱管群の中心部に集まり、外部への吸引が難しくなるという問題がある。そこで、吸収器の側面及び底面を囲い、蒸発器からの蒸気の流入を上部からに規制し、不凝縮ガスの集積する部分を吸収器の下部に特定し、不凝縮ガスを吸引しやすいようにしている例がある。
【0004】
断面が矩形状の缶胴を持つ吸収冷凍機においては、下面に受け皿を設け、該受け皿を吸収器の底面の囲いとして用い、蒸発器と吸収器を仕切る仕切り板を吸収器の側面の囲いとして用い、更に他の側面の囲いに缶胴の一側部を用いることができる。
【0005】
【発明が解決しようとする課題】
上記のように蒸発器と吸収器を仕切る仕切り板を吸収器の側面の直接の囲いとして用いると、吸収器の熱が直接蒸発器内の冷媒に伝わり、熱損失が生じると共に、吸収器側ではこの仕切り板に接触した溶液が蒸発器の低い温度により、溶質の結晶が析出し、長時間に渡っては側面付近の流路を塞いでしまうという問題が生じる。また、結晶析出により、仕切り板等の腐食の恐れもある。
【0006】
本発明は上述の点に鑑みてなされたもので、吸収器の熱が直接蒸発器内の冷媒に伝わり、熱損失が生じたり、吸収器側で仕切り板に溶質の結晶が析出したり、結晶析出による仕切り板等の腐食の恐れがない吸収冷凍機を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明は、吸収器、蒸発器、再生器、熱交換器、溶液ポンプ及び冷媒ポンプを具備する単効用又は多重効用吸収冷凍機において、少なくとも吸収器及び蒸発器を一つの缶胴に収めると共に、該吸収器と蒸発器の間に仕切り板を設け、該吸収器の伝熱管群を吸収器受け皿と缶胴と側板で囲い、該吸収器と該蒸発器との間には該側板と該仕切り板とに囲まれた吸収器側に含まれる蒸気相の空間を設けたことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。なお、本発明はこの実施の形態例に限定されるものではないことは当然である。
【0009】
図1は本発明の吸収冷凍機の概略構成例を示す縦断面図である。図1において、Aは吸収器、Eは蒸発器、Gは再生器、Cは凝縮器である。これら吸収器A、蒸発器E、再生器G及び凝縮器Cは断面矩形状の缶胴1に収容されている。即ち、最下部に吸収器Aを配置し、その上方に凝縮器Cを配置し、その上に再生器Gを配置し、更に吸収器Aに隣接し且つ斜め上方に渡って蒸発器Eを配置している。そして吸収器Aと凝縮器Cの間は仕切り板2で仕切られ、凝縮器Cと再生器Gの間は仕切り板3,3とエリミネータ5で仕切られ、吸収器Aと蒸発器Eの間は仕切り板4とエリミネータ6で仕切られている。
【0010】
吸収器Aの下面には受け皿7が配置され、更に吸収器Aの蒸発器Eの側には側板8が前記仕切り板4との間に間隔を設けて配置されている。即ち、吸収器Aはその底面が受け皿7、その側面が前記側板8及び缶胴の一側部で囲われている。従って、蒸発器Eからの冷媒蒸気は仕切り板4の上部に配置されたエリミネータ6を通して、吸収器A内に下方に向かって流入するようになっている。また、吸収器Aと蒸発器Eの下方の冷媒収容部16の間は側板8と仕切り板4で囲まれた吸収器A側に含まれる蒸気相の空間9で仕切られている。
【0011】
また、吸収器Aは受け皿7の上方には不凝縮ガスを抽気するためのエジェクター10が配置され、その上方に吸収器伝熱管群11が配置され、その上方に濃溶液スプレー管12が配置された構成である。また、凝縮器Cは凝縮器伝熱管群13が配置された構成である。また、再生器Gは再生器伝熱管群14が配置され、その上方に希溶液スプレー管15が配置された構成である。
【0012】
蒸発器E内は下方に冷媒収容部16が配置され、その上方に蒸発器伝熱管群17が配置され、更にその上方には冷媒スプレー管18が配置された構成である。
【0013】
上記構成の吸収冷凍機において、吸収器Aで蒸発器Eからの冷媒蒸気を濃溶液スプレー管12からスプレーされた濃溶液により吸収する。この冷媒蒸気を吸収した濃溶液は希溶液となり、受け皿7に収容される。この時不凝縮ガスはエジェクター10で抽気され、図示しない抽気タンクに収容する。吸収器Aの下部に溜った希溶液は溶液ポンプSPにより、管20、熱交換器Xの被加熱側及び管21を通り、希溶液スプレー管15から再生器G内にスプレーされる。該再生器G内で希溶液は再生器伝熱管群14内を流れる熱源22により加熱され、冷媒は蒸発して濃縮される。
【0014】
上記再生器Gで濃縮された濃溶液は管23、熱交換器Xの加熱側及び管24を通って濃溶液スプレー管12から吸収器A内にスプレーされ循環する。一方、再生器Gで蒸発した冷媒蒸気はエリミネータ5及び通路25を通り、凝縮器Cに流れ込み、該凝縮器Cで凝縮器伝熱管群13内を流れる冷却水26により冷却されて冷媒液となり、管27から蒸発器Eに流れ込む。
【0015】
蒸発器Eでは、冷媒収容部16内の冷媒液Qが冷媒ポンプRPにより、管19から冷媒スプレー管18に送られ、該冷媒スプレー管18から蒸発器伝熱管群17上にスプレーされる。スプレーされた冷媒は蒸発器伝熱管群17内を流れる冷水28から熱を奪い加熱蒸発する。そして熱の奪われた冷水28は低温冷水となり冷房用に供給される。そして蒸発した冷媒蒸気はエリミネータ6を通って、吸収器Aに流れ込み、上記のように濃溶液スプレー管12からスプレーされた濃溶液に吸収される。
【0016】
上記構成の吸収冷凍機において、もし吸収器Aと蒸発器Eの冷媒収容部16の間が仕切り板4だけで仕切られている場合(側板8が無い場合)、吸収器Aの熱が直接冷媒収容部16内の冷媒Qに伝わり、熱損失が生じると共に、吸収器Aの側ではこの仕切り板4に接触した溶液が蒸発器Eの低温度により溶質の結晶が析出し、長時間に渡っては側面付近の流路を塞いでしまうという問題が生じたり、また結晶析出により、仕切り板4等の腐食が発生するという問題が起る。
【0017】
しかしながら、本吸収冷凍機においては、吸収器Aと蒸発器Eの下方の冷媒Qを収容する冷媒収容部16の間は側板8と仕切り板4で囲まれた吸収器A側に含まれる蒸気相の空間9で仕切られているから、吸収器Aの熱が直接冷媒収容部16内の冷媒に伝わりにくく、熱損失が生じることがないと共に、吸収器Aの側では側板8に蒸発器Eの低温が伝わりにくく、溶液の溶質の結晶が側板8の面上等に析出することはない。
【0018】
なお、上記実施形態例では、缶胴1内に吸収器A、蒸発器E、再生器G及び凝縮器Cが収容されている例を示したが、本発明はこれに限定されるものではなく、少なくとも吸収器A及び蒸発器Eが一つの缶胴に収められ、吸収器Aの伝熱管群を該吸収器Aの受け皿と缶胴と側板とで囲み、吸収器Aと蒸発器Eとの間に側板と仕切り板で挟まれた吸収器A側に含まれる冷媒蒸気相の空間を設けた構成であればその具体的構成はどのようなものであってもよい。
【0019】
【発明の効果】
以上説明したように、本発明によれば、吸収器の伝熱管群を吸収器受け皿と缶胴と側板で囲い、該吸収器と該蒸発器との間には該側板と該仕切り板とに囲まれた吸収器側に含まれる蒸気相の空間を設けたので、下記のような優れた効果が得られる。
【0020】
吸収器の熱が直接蒸発器内の冷媒に伝わり、熱損失が生じたり、吸収器側で側板の面上に溶質の結晶が析出したり、結晶析出による側板等の腐食の恐れがない吸収冷凍機を提供するとができる。
【図面の簡単な説明】
【図1】本発明の吸収冷凍機の概略構成例を示す縦断面図である。
【符号の説明】
A 吸収器
C 凝縮器
E 蒸発器
G 再生器
X 熱交換器
SP 溶液ポンプ
RP 冷媒ポンプ
1 缶胴
2 仕切り板
3 仕切り板
4 仕切り板
5 エリミネータ
6 エリミネータ
7 受け皿
8 側板
9 蒸気相の空間
10 エジェクター
11 吸収器伝熱管群
12 濃溶液スプレー管
13 凝縮器伝熱管群
14 再生器伝熱管群
15 希溶液スプレー管
16 冷媒収容部
17 蒸発器伝熱管群
18 冷媒スプレー管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a single-effect or multiple-effect absorption refrigerator, and more particularly to an improvement in the structure of an absorber.
[0002]
[Prior art]
In this type of absorption refrigerator, the pressure in the absorber portion becomes the lowest, and if there is non-condensable gas in the absorption refrigerator, the non-condensable gas collects in the absorber. Since the non-condensable gas adversely affects heat transfer and absorption, the non-condensable gas is collected in a bleed tank or the like by an extraction device such as an ejector to prevent the non-condensable gas from adversely affecting heat transfer and absorption.
[0003]
Refrigerant vapor flows into the absorber from the evaporator, but when the vapor is allowed to flow in from the side or lower surface of the absorber, the non-condensable gas collects at the center of the heat transfer tube group of the absorber and is sucked to the outside. There is a problem that becomes difficult. Therefore, surrounding the side and bottom of the absorber, restrict the inflow of vapor from the evaporator from the top, identify the portion where the non-condensable gas accumulates at the bottom of the absorber, and make it easier to suck the non-condensable gas. There are examples.
[0004]
In an absorption refrigerator having a can body having a rectangular cross section, a saucer is provided on the lower surface, the saucer is used as an enclosure for the bottom surface of the absorber, and a partition plate separating the evaporator and the absorber is used as an enclosure for the side surface of the absorber. One side of the can body can be used for further side enclosures.
[0005]
[Problems to be solved by the invention]
When the partition plate that separates the evaporator and the absorber as described above is used as a direct enclosure on the side surface of the absorber, the heat of the absorber is directly transmitted to the refrigerant in the evaporator, causing heat loss, and the absorber side Due to the low temperature of the evaporator, the solution in contact with the partition plate causes solute crystals to precipitate, which causes a problem of blocking the flow path near the side surface for a long time. In addition, there is a possibility that the partition plate and the like may be corroded due to crystal precipitation.
[0006]
The present invention has been made in view of the above points, the heat of the absorber is directly transmitted to the refrigerant in the evaporator, heat loss occurs, or solute crystals precipitate on the partition plate on the absorber side, An object of the present invention is to provide an absorption refrigerator having no fear of corrosion of a partition plate or the like due to precipitation.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a single-effect or multiple-effect absorption refrigerator including an absorber, an evaporator, a regenerator, a heat exchanger, a solution pump and a refrigerant pump, wherein at least the absorber and the evaporator are one. Along with being housed in the can body, a partition plate is provided between the absorber and the evaporator, and the heat transfer tube group of the absorber is surrounded by an absorber tray, a can body, and a side plate, and between the absorber and the evaporator. Is characterized in that a space for a vapor phase included on the absorber side surrounded by the side plate and the partition plate is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited to this embodiment.
[0009]
FIG. 1 is a longitudinal sectional view showing a schematic configuration example of an absorption refrigerator of the present invention. In FIG. 1, A is an absorber, E is an evaporator, G is a regenerator, and C is a condenser. The absorber A, the evaporator E, the regenerator G and the condenser C are housed in a can body 1 having a rectangular cross section. That is, the absorber A is arranged at the lowest part, the condenser C is arranged above the absorber A, the regenerator G is arranged thereabove, and the evaporator E is arranged adjacent to the absorber A and obliquely upward. are doing. Then, the absorber A and the condenser C are partitioned by the partition plate 2, the condenser C and the regenerator G are partitioned by the partition plates 3, 3 and the eliminator 5, and the absorber A and the evaporator E are partitioned. It is partitioned by the partition plate 4 and the eliminator 6.
[0010]
A tray 7 is arranged on the lower surface of the absorber A, and a side plate 8 is arranged on the side of the evaporator E of the absorber A with an interval between the absorber and the partition plate 4. That is, the absorber A has its bottom face surrounded by the tray 7, and its side face is surrounded by the side plate 8 and one side of the can body. Therefore, the refrigerant vapor from the evaporator E flows downward into the absorber A through the eliminator 6 arranged on the upper part of the partition plate 4. Further, the space between the refrigerant storage section 16 below the absorber A and the evaporator E is partitioned by a vapor phase space 9 included on the absorber A side surrounded by the side plate 8 and the partition plate 4.
[0011]
In the absorber A, an ejector 10 for extracting uncondensed gas is disposed above the tray 7, an absorber heat transfer tube group 11 is disposed above the ejector 10, and a concentrated solution spray tube 12 is disposed above the absorber. Configuration. The condenser C has a configuration in which the condenser heat transfer tube group 13 is arranged. The regenerator G has a configuration in which a regenerator heat transfer tube group 14 is arranged, and a dilute solution spray tube 15 is arranged above the regenerator heat transfer tube group 14.
[0012]
In the evaporator E, a refrigerant accommodating portion 16 is disposed below, an evaporator heat transfer tube group 17 is disposed above the evaporator E, and a refrigerant spray tube 18 is further disposed above the evaporator heat transfer tube group 17.
[0013]
In the absorption refrigerator having the above configuration, the refrigerant vapor from the evaporator E is absorbed by the concentrated solution sprayed from the concentrated solution spray pipe 12 by the absorber A. The concentrated solution that has absorbed the refrigerant vapor becomes a dilute solution and is stored in the receiving tray 7. At this time, the non-condensable gas is extracted by the ejector 10 and stored in an extraction tank (not shown). The dilute solution collected in the lower part of the absorber A is sprayed into the regenerator G from the dilute solution spray pipe 15 through the pipe 20, the heated side of the heat exchanger X and the pipe 21 by the solution pump SP. In the regenerator G, the dilute solution is heated by the heat source 22 flowing in the regenerator heat transfer tube group 14, and the refrigerant is evaporated and concentrated.
[0014]
The concentrated solution concentrated in the regenerator G is sprayed from the concentrated solution spray tube 12 into the absorber A through the tube 23, the heating side of the heat exchanger X and the tube 24, and circulated. On the other hand, the refrigerant vapor evaporated in the regenerator G passes through the eliminator 5 and the passage 25, flows into the condenser C, is cooled by the cooling water 26 flowing through the condenser heat transfer tube group 13 in the condenser C, and becomes a refrigerant liquid. It flows into the evaporator E from the pipe 27.
[0015]
In the evaporator E, the refrigerant liquid Q in the refrigerant storage section 16 is sent from the pipe 19 to the refrigerant spray pipe 18 by the refrigerant pump RP, and is sprayed from the refrigerant spray pipe 18 onto the evaporator heat transfer pipe group 17. The sprayed refrigerant takes heat from the cold water 28 flowing in the evaporator heat transfer tube group 17 and heats and evaporates. Then, the cold water 28 from which heat has been removed becomes low-temperature cold water and is supplied for cooling. Then, the evaporated refrigerant vapor flows into the absorber A through the eliminator 6 and is absorbed by the concentrated solution sprayed from the concentrated solution spray pipe 12 as described above.
[0016]
In the absorption refrigerator having the above configuration, if the space between the absorber A and the refrigerant accommodating portion 16 of the evaporator E is separated only by the partition plate 4 (when there is no side plate 8), the heat of the absorber A is directly transferred to the refrigerant. The heat is transmitted to the refrigerant Q in the storage section 16 and heat loss occurs. At the side of the absorber A, the solution in contact with the partition plate 4 causes solute crystals to precipitate due to the low temperature of the evaporator E, and over a long period of time. This causes a problem that the flow path near the side surface is blocked, and also a problem that corrosion of the partition plate 4 and the like occurs due to crystal precipitation.
[0017]
However, in the present absorption refrigerator, the space between the absorber A and the refrigerant accommodating portion 16 for accommodating the refrigerant Q below the evaporator E contains the vapor phase contained on the side of the absorber A surrounded by the side plate 8 and the partition plate 4. Of the absorber A, it is difficult for the heat of the absorber A to be directly transmitted to the refrigerant in the refrigerant accommodating portion 16, and no heat loss occurs, and the evaporator E is attached to the side plate 8 on the side of the absorber A. The low temperature is not easily transmitted, and the solute crystals of the solution do not precipitate on the surface of the side plate 8 or the like.
[0018]
In the above-described embodiment, an example in which the absorber A, the evaporator E, the regenerator G, and the condenser C are accommodated in the can body 1 has been described, but the present invention is not limited to this. , At least the absorber A and the evaporator E are housed in one can body, and the heat transfer tube group of the absorber A is surrounded by the tray of the absorber A, the can body, and the side plate. Any specific configuration may be used as long as a space for the refrigerant vapor phase included on the side of the absorber A sandwiched between the side plate and the partition plate is provided.
[0019]
【The invention's effect】
As described above, according to the present invention, the heat transfer tube group of the absorber is surrounded by the absorber tray, the can body, and the side plate, and the side plate and the partition plate are provided between the absorber and the evaporator. Since the space for the vapor phase included in the enclosed absorber is provided, the following excellent effects can be obtained.
[0020]
Absorption refrigeration that does not cause the heat of the absorber to be directly transmitted to the refrigerant in the evaporator, causing heat loss, depositing solute crystals on the side plate surface on the absorber side, and corrosion of the side plate etc. due to crystal precipitation. Machine can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration example of an absorption refrigerator of the present invention.
[Explanation of symbols]
Reference Signs List A Absorber C Condenser E Evaporator G Regenerator X Heat exchanger SP Solution pump RP Refrigerant pump 1 Can body 2 Partition plate 3 Partition plate 4 Partition plate 5 Eliminator 6 Eliminator 7 Receiving plate 8 Side plate 9 Vapor phase space 10 Ejector 11 Absorber heat transfer tube group 12 Concentrated solution spray tube group 13 Condenser heat transfer tube group 14 Regenerator heat transfer tube group 15 Dilute solution spray tube 16 Refrigerant storage unit 17 Evaporator heat transfer tube group 18 Refrigerant spray tube

Claims (1)

吸収器、蒸発器、再生器、熱交換器、溶液ポンプ及び冷媒ポンプを具備する単効用又は多重効用吸収冷凍機において、
少なくとも前記吸収器及び前記蒸発器を一つの缶胴に収めると共に、該吸収器と蒸発器の間に仕切り板を設け、該吸収器の伝熱管群を吸収器受け皿と缶胴と側板で囲い、該吸収器と該蒸発器との間には該側板と該仕切り板とに囲まれた該吸収器側に含まれる蒸気相の空間を設けたことを特徴とする吸収冷凍機。
In a single-effect or multiple-effect absorption refrigerator equipped with an absorber, an evaporator, a regenerator, a heat exchanger, a solution pump and a refrigerant pump,
At least the absorber and the evaporator are housed in one can body, a partition plate is provided between the absorber and the evaporator, and a heat transfer tube group of the absorber is surrounded by an absorber tray, a can body, and a side plate, An absorption refrigerator comprising a space between the absorber and the evaporator, the space for the vapor phase included on the side of the absorber surrounded by the side plate and the partition plate.
JP29334597A 1997-10-09 1997-10-09 Absorption refrigerator Expired - Lifetime JP3541119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29334597A JP3541119B2 (en) 1997-10-09 1997-10-09 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29334597A JP3541119B2 (en) 1997-10-09 1997-10-09 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH11118277A JPH11118277A (en) 1999-04-30
JP3541119B2 true JP3541119B2 (en) 2004-07-07

Family

ID=17793607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29334597A Expired - Lifetime JP3541119B2 (en) 1997-10-09 1997-10-09 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3541119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1809966B1 (en) * 2004-10-13 2011-07-27 York International Corporation Falling film evaporator

Also Published As

Publication number Publication date
JPH11118277A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US4278502A (en) Chemical recovery apparatus
US6820440B2 (en) Absorption-type air conditioner core structure
JP3591356B2 (en) Absorption refrigerator and method of manufacturing the same
JP3078364B2 (en) High temperature hot water removal device in absorption chiller / heater
JP3013673B2 (en) Absorption refrigerator
JP4826314B2 (en) Evaporation / absorption unit for absorption refrigerator
JP3541119B2 (en) Absorption refrigerator
JPH08105669A (en) Regenerator for absorption refrigerator
JPH07269980A (en) Absorption type heat pump
JPH07332788A (en) Chemical thermal storage type refrigerating equipment
JPH074769A (en) Single and double effect absorption refrigerating device
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JP3729876B2 (en) Air conditioner low temperature regenerator
JP2004211978A (en) Regenerator of absorption refrigerating machine, and absorption refrigerating machine
JP3282244B2 (en) Adsorption refrigeration equipment
JP3857955B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JP2000266422A (en) Absorption refrigerating machine
JPH0744919Y2 (en) Hydrogen gas discharge device
JPS5922441Y2 (en) Heat exchanger
JP4104269B2 (en) Single double effect absorption refrigerator
JPH0442683Y2 (en)
RU2086866C1 (en) Device for evacuation of air from condenser and absorber of lithium bromide heat transformer
JP2853439B2 (en) Absorption type ice machine
JPS6022252B2 (en) absorption refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term