JP3540939B2 - High frequency wiring board - Google Patents

High frequency wiring board Download PDF

Info

Publication number
JP3540939B2
JP3540939B2 JP11696398A JP11696398A JP3540939B2 JP 3540939 B2 JP3540939 B2 JP 3540939B2 JP 11696398 A JP11696398 A JP 11696398A JP 11696398 A JP11696398 A JP 11696398A JP 3540939 B2 JP3540939 B2 JP 3540939B2
Authority
JP
Japan
Prior art keywords
signal transmission
transmission line
semiconductor element
wiring board
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11696398A
Other languages
Japanese (ja)
Other versions
JPH11307685A (en
Inventor
謙治 北澤
慎一 郡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11696398A priority Critical patent/JP3540939B2/en
Publication of JPH11307685A publication Critical patent/JPH11307685A/en
Application granted granted Critical
Publication of JP3540939B2 publication Critical patent/JP3540939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Waveguides (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子を収納するためのパッケージ等に適応される配線基板に関するものであり、具体的には、マイクロ波やミリ波領域の周波数の高い信号を処理するための配線基板、特にアンテナ素子が接続された高周波用配線基板の改良に関するものである。
【0002】
【従来の技術】
近年、高度情報化時代を迎え、情報伝達は携帯電話に代表されるようにパーソナル化、無線化が進んでいる。このため無線に用いられる電波は、すでにマイクロ波(1〜30GHz)の領域まで利用されているが、無線局の増加により使用周波数帯域が不足しつつある。また情報の容量が増加する傾向にあることから、マイクロ波の領域においては動画や多量のデータを高速で伝送することが困難であった。このような実情に対して、ミリ波(30〜300GHz)領域の周波数の有効活用が検討され、60GHz、77GHzで動作する半導体素子の開発等も活発化し、追突防止用レーダや無線LANのようにミリ波の電波を用いたさまざまな応用システムが提案されるようになってきた。
【0003】
例えば、無線LANにおいて、受信モジュールとして低雑音増幅器を多段に一体化したパッケージが提案されている(1995年電子情報通信学会エレクトロニクスソサイエティ大会、C−135参照)。この提案では、金属製の収納容器内に半導体素子を収納し、その半導体との接続を、金属製枠体の一部に信号伝送線路が形成されたセラミックス部材をはめ込み、その信号伝送線路と半導体素子を接続して、半導体素子の収納容器内への気密封止を実現している。
【0004】
しかし、パッケージの量産性および低コスト化を実現するためには、パッケージの絶縁基板やキャビティを形成する枠体を、金属に代わりセラミックスにより構成し、信号伝送線路と同時に焼成することが望まれている。
【0005】
そこで、半導体素子が搭載された絶縁基板の表面からセラミックス製枠体を貫通して、キャビティ内部から外部に引き出し、さらに絶縁基板の側面を経由して絶縁基板の底面に信号伝送線路を配線し、外部回路基板接続用の高周波端子と接続した構造からなり、信号伝送線路と絶縁基板、セラミックス製枠体とを同時焼成して形成する高周波用半導体素子パッケージが提案されている。
【0006】
また、上記のほかにも、絶縁基板の表面側に半導体素子が搭載され、裏面側に外部回路基板接続用の高周波端子を形成し、この高周波端子と半導体素子とを絶縁基板内を貫通して形成されたスルーホール導体を介して接続した構造からなり、絶縁基板やスルーホール導体等を同時焼成により形成する半導体素子パッケージも提案されている。また、配線基板とアンテナ素子とをモジュール化することも提案されている。
【0007】
【発明が解決しようとする課題】
同時焼成が可能な上記2つのパッケージによれば、前者の高周波用半導体素子パッケージをミリ波帯で用いた場合、ストリップ線路等の信号伝送線路をセラミック製枠体を通してキャビティの内側から外側に引き出した際、枠体通過部で信号線路がマイクロストリップ線路からストリップ線路へと変換されるため、インピーダンス整合をとるために、信号線路幅を狭くする必要がある。その結果、この通過部で反射損、放射損が発生しやすく、共振現象を引き起こすため高周波信号の出力強度の低下により高周波信号の伝送特性が悪くなるという問題があった。また、信号伝送線路を絶縁基板の側面で曲折した場合でも、曲折部での反射損が大きくなり伝送特性の劣化が生じる。
【0008】
また、後者のパッケージにおいては、スルーホール導体を絶縁基板の底面に導出して信号線路として用いると、信号伝送線路とスルーホールの接触部が曲折するため、この曲折部分での反射損が大きくなり、40GHz以上で急激な伝送特性の劣化が生じるため、高周波領域で使用することが困難であった。
【0009】
そこで、本発明者等は、絶縁基板表面に一端が半導体素子と接続された信号伝送線路を形成し、また、絶縁基板の裏面に信号伝送線路を形成し、絶縁基板内のグランド層に形成したスロット孔を介して両伝送線路を電磁結合により信号を低損失で伝送可能なパッケージを提案した(特願平9−104909号)。
【0010】
しかし、半導体素子の集積化及び回路自体の小型化、薄型化が検討されており、高周波用半導体素子配線基板もさらに小型化することが望まれる。
さらに、半導体素子を搭載する配線基板とアンテナ素子とのモジュールを形成する場合、半導体素子とアンテナ素子との接続が重要であり、接続回路間の損失を最小にするには、アンテナ素子と半導体素子間をコンパクトにかつ短距離に接続することが望まれている。
【0011】
したがって、本発明の目的は、小型化が可能で、伝送特性に優れ、マイクロ波またはミリ波等の半導体素子とアンテナ素子を含むシステムに好適な高周波用配線基板を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、前記課題を解消するため、配線基板における構造および材料等の観点から種々検討を行った結果、例えば先に特願平9−104909号にて提案した配線基板構造において、一端が前記半導体素子と電気的に接続される第1の信号伝送線路と、前記絶縁基板内部に形成されたグランド層との間に位置する絶縁層を、絶縁基板の裏面に形成された第2の信号伝送線路と前記グランド層との間に位置する絶縁層よりも誘電率の大きい誘電体材料により形成することにより、上記目的が達成されることを見いだし、本発明に至った。
【0013】
即ち、本発明の高周波用配線基板は、誘電体材料からなる複数の絶縁層を積層してなる絶縁基板より形成され半導体素子が搭載され、前記半導体素子と電気的に接続される第1の信号伝送線路と、前記絶縁基板内部に配設されたグランド層と、前記絶縁基板の裏面に形成された第2の信号伝送線路とを具備し、前記第1の信号伝送線路と、前記第2の信号伝送線路の間で信号の伝達が行われる配線基板であって、前記第1の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε1が、前記第2の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε2よりも大きいことを特徴とするものである。
【0014】
また、本発明の高周波用配線基板は、さらに前記絶縁基板の裏面にアンテナ素子を形成する場合に好適である。
【0015】
【作用】
特願平9−104909号にて提案した配線基板構造において、絶縁基板の裏面に形成された第2の信号伝送線路と絶縁基板の内部に形成されたグランド層との間に位置する絶縁層の誘電率ε2が高い場合、第2の信号伝送線路より配線基板を外部回路基板等に実装するとき、外部回路基板の誘電率との整合をとるために第2の信号伝送線路における実装部の線路幅を狭くする必要があり、実装時の位置決め精度を高くしなければならない。
【0016】
逆に、実装部の線路幅が決められている場合、前記第2の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε2が高いと前記第2の信号伝送線路と前記グランド層との間に位置する絶縁層の厚みを厚くしなければならず、電磁結合部への磁界の集中を妨げ、伝送特性を劣化させてしまう。
【0017】
さらに、前記第2の信号伝送線路と前記グランド層との間に位置する絶縁層の厚みを厚くした場合、高周波帯では高次モードの伝搬が生じる。例えば、前記絶縁層の誘電率が8〜9、絶縁層の厚みが250μmの場合、60〜70GHz以上の周波数で高次モードの伝搬が生じる。一方、前記絶縁層の誘電率が5〜6、絶縁層の厚みが250μmの場合、110GHz以上の周波数で高次モードの伝搬が生じる。この高次モードが伝搬すると、信号の伝送特性は劣化してしまう。また、前記第1の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε1が低い場合、第1の信号伝送線路等の線路幅を広くする必要があるため、微細配線化ができず半導体素子との接続面の面積を広くしなければならず、場合によっては半導体素子との接続が困難となる場合がある。このため、配線基板自体が必然的に大型になってしまうという問題があった。
【0018】
本発明によれば、前記第1の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε1を前記第2の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε2よりも大きくすることにより、配線基板を第2の信号伝送線路を介して外部回路基板に実装する場合、第2の信号伝送線路における実装部の線路幅を広くできるため、実装時の位置決め精度が低くでき、実装が容易となる。
【0019】
また、前記第2の信号伝送線路と前記グランド層との間に位置する絶縁層の厚みを薄くすることができるため、電磁結合部へ磁界を集中させることができ、伝送特性を向上できるとともに低背化が可能となる。しかも、高周波帯において生ずる高次モードの伝搬による伝送特性の劣化を抑制でき、より高周波の信号の使用が可能となる。
【0020】
さらに、本発明によれば、半導体素子と接続される第1の信号伝送線路を微細配線化することが可能となる結果、半導体素子搭載面の面積を小さくでき、配線基板自体の小型化が可能となる。
【0021】
また、配線基板とアンテナ素子とをモジュール化する場合、配線基板の裏面に形成した第2の信号伝送線路近傍にアンテナ素子を形成することにより、半導体素子とアンテナ回路とを第1および第2の信号伝送線路を経由してコンパクトに接続することができる。また第2の信号伝送線路とグランド層との間に位置する絶縁層を低誘電率の誘電体材料で構成することによりアンテナの放射特性を向上することができる。
【0022】
【発明の実施の形態】
本発明における高周波用配線基板の典型的応用例として、高周波用半導体素子パッケージの断面図を図1に示した。
高周波用半導体素子パッケージ1によれば、誘電体材料からなる絶縁層2と絶縁層3を積層してなる絶縁基板4と蓋体5によってキャビティ6が形成されており、その絶縁基板4の表面には、MMIC、MIC等の半導体素子7が搭載されキャビティ6内に気密に封止される。
絶縁基板4を構成する誘電体材料として、アルミナ、ムライト、窒化アルミニウム、窒化珪素などのセラミックス、ガラスセラミックス、セラミック金属複合材料、ガラス有機樹脂系複合材料等により構成される。
【0023】
蓋体5は、キャビティ6からの電磁波が外部に漏洩するのを防止できる導電性材料から構成され、金属、導電性セラミックス、セラミック金属複合材料等が使用できる。絶縁基体の表面に導電性物質を塗布したものであってもよいが、コストの点から考慮すれば金属であるのがよく、例えば、コバール、銅−ニッケル基合金などが好適に使用される。絶縁基板4内には導体層からなるグランド層10がほぼ全面にわたり形成されている。
【0024】
図1のパッケージにおいては、第1の信号伝送線路8および第2の信号伝送線路9はマイクロストリップ線路により形成されている。キャビティ6内の絶縁基板4表面には第1の信号伝送線路8が形成され、その一端は半導体素子7と接続されている。また、絶縁基板4の裏面にも、第2の信号伝送線路9が形成されている。
【0025】
そして、絶縁基板4の内部にはグランド層10が形成されており、そのグランド層10内には、スロット孔11が形成されている。そして、第1の信号伝送線路8と第2の信号伝送線路9とは、このスロット孔11を介して、各信号伝送線路の終端部が対峙する位置に形成することにより電磁結合され、損失の少ない信号が伝達される。
【0026】
より具体的には、このスロット孔11を介した2つの信号伝送線路は、スロット孔11を挟んで必要な周波数における伝送信号の1/2波長相当長さで平面的にみて重なる対峙位置に形成されることが望ましく、スロット孔11の形状は、長辺と短辺とからなる長方形の孔であり、そのサイズは、使用周波数や周波数の帯域幅により適宜設定される。特に、スロット孔の長辺は必要な周波数における伝送信号の1/2波長相当長さにするのが望ましく、スロット孔の短辺は1/5波長相当長さから1/50波長相当長さに設定することが望ましい。
【0027】
また、第2の信号伝送線路9の終端部(外部回路基板との接続部)は、図2の絶縁基板の裏面における配線図に示すように、マイクロストリップ線路の中心導体9aの両脇にグランド層9bをもったグランド付きコプレーナ線路に変換されている。なお、このグランド層9bは絶縁基板4内に設けられたグランド層10とビアホール導体12または絶縁基板4の側面に形成したキャスタレーション(図示せず)によって接続されている。
【0028】
本発明によれば、第1の信号伝送線路8とグランド層10との間に位置する絶縁層2の誘電率ε1を第2の信号伝送線路9とグランド層10との間に位置する絶縁層3の誘電率ε2よりも大きくすることにより、前述した通り、絶縁層2側においては伝送線路の微細配線化が可能となり、配線の省スペース化を図ることができるとともに、絶縁層3側においては、電磁結合による伝送特性を向上でき、かつ高次モードの伝搬を抑制し高い周波数の信号を使用することができるとともに外部電気回路基板への実装性を高めることができる。
【0029】
具体的には、絶縁層2は誘電率が5より大きく15以下のセラミックス、ガラスセラミックス、セラミック金属複合材料、ガラス有機樹脂系複合材料等などが望ましく、特に誘電率は5より大きく10以下が望ましい。また絶縁層3は絶縁層2より低誘電率の誘電体材料で構成されており、具体的には、誘電率が7以下のセラミックス、ガラスセラミックス、セラミック金属複合材料、ガラス有機樹脂系複合材料、石英等の低誘電率材料等が望ましい。
【0030】
また、絶縁層の誘電率を上記のように制御する方法としては、絶縁層中にAl2 3 、SiO2 、石英、ムライト、チタン酸バリウム、チタン酸カルシウムおよび窒化アルミ等のセラミックフィラーの添加あるいは添加量の増加により高誘電率化する方法や、ほう珪酸亜鉛ガラスやほう珪酸鉛ガラス等のほう珪酸系ガラス、アルカリ珪酸ガラスなどガラス成分の添加あるいは添加量の増加により低誘電率化する方法がある。なお、前記絶縁層2および絶縁層3はセラミックスまたはガラスセラミックスの場合、同時焼成が可能な組成物であることが望ましい。また、本発明の上記構成は、絶縁層3の裏面に形成された第2の信号伝送線路9の延長部にパッチアンテナ等のアンテナ素子を被着形成する場合において特に有効であり、この場合、前述した通り、半導体素子とアンテナ素子とをコンパクトに接続することができるとともに、アンテナの放射特性を向上することができる。なお、第2の信号伝送線路9がマイクロストリップ線路である場合、伝送特性の劣化を考慮すると、アンテナ素子の接続は電磁結合部に近い方が望ましい。
【0031】
本発明の高周波用配線基板は、図1に示したような半導体素子7を蓋体5によって気密封止した高周波用半導体素子パッケージのみならず、例えば、図3に示すように、誘電率の異なる絶縁層2、絶縁層3によって形成された絶縁基板4表面に半導体素子7を搭載し、この半導体素子7を樹脂14等で封止する形態の半導体素子搭載配線基板13に対しても応用が可能である。
【0032】
【発明の効果】
以上詳述した通り、本発明の高周波用配線基板によれば、半導体素子と接続される第1の信号伝送線路が形成される絶縁層を、外部回路基板との実装部を有する第2の信号伝送線路が形成される絶縁層よりも高誘電率の誘電体材料で構成することにより、信号伝送特性の向上が図れ、かつ高周波の信号が使用可能で、また配線基板自体の小型化が可能となる。さらに、外部回路基板等の配線層に容易に実装できる。また、アンテナ素子と半導体素子をコンパクトに接続でき、低損失で信号を伝送することができる。
【図面の簡単な説明】
【図1】本発明の高周波用配線基板の一例である高周波半導体素子パッケージの態様を説明するための断面図である。
【図2】図1のパッケージにおける裏面の配線図を示す図である。
【図3】本発明の他の高周波用配線基板の態様を説明するための断面図である。
【符号の説明】
1 高周波半導体素子パッケージ
2,3 絶縁層
4 絶縁基板
5 蓋体
6 キャビティ
7 半導体素子
7 中心線路
8 第1の信号伝送線路
9 第2の信号伝送線路
9a 中心導体
9b グランド層
10 グランド層
11 スロット孔
12 ビアホール導体
13 配線基板
14 樹脂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board adapted to a package or the like for housing a semiconductor element, and more specifically, to a wiring board for processing a signal having a high frequency in a microwave or millimeter wave region, particularly an antenna. The present invention relates to improvement of a high-frequency wiring board to which elements are connected.
[0002]
[Prior art]
In recent years, with the era of advanced information technology, personalization and wireless communication have progressed, as represented by mobile phones. For this reason, radio waves used for radio have already been used up to the microwave (1 to 30 GHz) region, but the number of radio stations has been increasing, and the used frequency band is becoming insufficient. In addition, since the capacity of information tends to increase, it has been difficult to transmit a moving image and a large amount of data at high speed in a microwave region. Under such circumstances, the effective use of frequencies in the millimeter wave (30 to 300 GHz) region has been studied, and the development of semiconductor devices operating at 60 GHz and 77 GHz has been activated, as in the case of radars for rear-end collision prevention and wireless LAN. Various application systems using millimeter wave radio waves have been proposed.
[0003]
For example, in a wireless LAN, a package in which low-noise amplifiers are integrated in multiple stages as a receiving module has been proposed (see IEICE Electronics Society Conference 1995, C-135). In this proposal, a semiconductor element is housed in a metal container, and a connection with the semiconductor is made by fitting a ceramic member having a signal transmission line formed in a part of a metal frame, and connecting the signal transmission line to the semiconductor. The elements are connected to achieve hermetic sealing of the semiconductor element in the storage container.
[0004]
However, in order to realize mass production and cost reduction of the package, it is desired that the frame forming the insulating substrate and the cavity of the package be made of ceramics instead of metal and fired simultaneously with the signal transmission line. I have.
[0005]
Therefore, the ceramic frame is penetrated from the surface of the insulating substrate on which the semiconductor element is mounted, pulled out from the inside of the cavity, and a signal transmission line is wired to the bottom surface of the insulating substrate via the side surface of the insulating substrate, There has been proposed a high-frequency semiconductor element package having a structure connected to a high-frequency terminal for connection to an external circuit board and formed by simultaneously firing a signal transmission line, an insulating substrate, and a ceramic frame.
[0006]
In addition, in addition to the above, a semiconductor element is mounted on the front side of the insulating substrate, and a high frequency terminal for connecting an external circuit board is formed on the back side, and the high frequency terminal and the semiconductor element are penetrated through the insulating substrate. There has also been proposed a semiconductor element package having a structure connected via the formed through-hole conductor and forming an insulating substrate, a through-hole conductor and the like by simultaneous firing. It has also been proposed to modularize the wiring board and the antenna element.
[0007]
[Problems to be solved by the invention]
According to the above two packages that can be simultaneously fired, when the former high-frequency semiconductor element package is used in the millimeter wave band, a signal transmission line such as a strip line is drawn out from the inside of the cavity to the outside through the ceramic frame. At this time, the signal line is converted from the microstrip line to the strip line in the frame passing portion, so that the width of the signal line needs to be reduced in order to achieve impedance matching. As a result, reflection loss and radiation loss are apt to occur in the passing portion, and a resonance phenomenon is caused. As a result, the transmission intensity of the high-frequency signal deteriorates due to a decrease in the output intensity of the high-frequency signal. Further, even when the signal transmission line is bent at the side surface of the insulating substrate, the reflection loss at the bent portion is increased and the transmission characteristics are deteriorated.
[0008]
In the latter package, if the through-hole conductor is led out to the bottom surface of the insulating substrate and used as a signal line, the contact portion between the signal transmission line and the through-hole is bent, and the reflection loss at this bent portion increases. , 40 GHz or more, the transmission characteristics suddenly deteriorate, so that it has been difficult to use it in a high frequency region.
[0009]
Therefore, the present inventors formed a signal transmission line having one end connected to the semiconductor element on the surface of the insulating substrate, formed a signal transmission line on the back surface of the insulating substrate, and formed the signal transmission line on the ground layer in the insulating substrate. A package capable of transmitting a signal with low loss by electromagnetically coupling both transmission lines via a slot hole has been proposed (Japanese Patent Application No. 9-104909).
[0010]
However, the integration of the semiconductor element and the miniaturization and thinning of the circuit itself are being studied, and it is desired to further reduce the size of the high-frequency semiconductor element wiring board.
Furthermore, when forming a module of a wiring board on which a semiconductor element is mounted and an antenna element, it is important to connect the semiconductor element and the antenna element, and to minimize the loss between connection circuits, the antenna element and the semiconductor element are required. It is desired that the space be connected in a compact and short distance.
[0011]
Therefore, an object of the present invention is to provide a high-frequency wiring board that can be miniaturized, has excellent transmission characteristics, and is suitable for a system including a semiconductor element such as a microwave or a millimeter wave and an antenna element.
[0012]
[Means for Solving the Problems]
The present inventors have conducted various studies from the viewpoint of the structure and materials of the wiring board in order to solve the above-mentioned problems. As a result, for example, in the wiring board structure previously proposed in Japanese Patent Application No. 9-104909, one end A first signal transmission line electrically connected to the semiconductor element, and a ground layer formed inside the insulating substrate, a second insulating layer formed on the back surface of the insulating substrate. The present inventors have found that the above object can be achieved by using a dielectric material having a higher dielectric constant than the insulating layer located between the signal transmission line and the ground layer, and have accomplished the present invention.
[0013]
That is, the high-frequency wiring board of the present invention is formed of an insulating substrate formed by laminating a plurality of insulating layers made of a dielectric material, on which a semiconductor element is mounted, and a first signal electrically connected to the semiconductor element. A transmission line, a ground layer disposed inside the insulating substrate, and a second signal transmission line formed on a back surface of the insulating substrate; the first signal transmission line; A wiring board for transmitting a signal between signal transmission lines, wherein a dielectric constant ε1 of an insulating layer located between the first signal transmission line and the ground layer is the second signal transmission line. And a dielectric constant .epsilon.2 of an insulating layer located between the ground layer and the ground layer.
[0014]
Further, the high-frequency wiring board of the present invention is suitable when an antenna element is further formed on the back surface of the insulating substrate.
[0015]
[Action]
In the wiring board structure proposed in Japanese Patent Application No. 9-104909, an insulating layer located between a second signal transmission line formed on the back surface of the insulating substrate and a ground layer formed inside the insulating substrate is formed. When the dielectric constant ε2 is high, when the wiring board is mounted on an external circuit board or the like from the second signal transmission line, the line of the mounting portion in the second signal transmission line is used to match the dielectric constant of the external circuit board. The width must be reduced, and the positioning accuracy during mounting must be increased.
[0016]
Conversely, when the line width of the mounting portion is determined, if the dielectric constant ε2 of the insulating layer located between the second signal transmission line and the ground layer is high, the second signal transmission line and the The thickness of the insulating layer located between the ground layer and the ground layer must be increased, which hinders the concentration of the magnetic field on the electromagnetic coupling portion and deteriorates the transmission characteristics.
[0017]
Further, when the thickness of the insulating layer located between the second signal transmission line and the ground layer is increased, higher-order mode propagation occurs in a high frequency band. For example, when the dielectric constant of the insulating layer is 8 to 9 and the thickness of the insulating layer is 250 μm, propagation of a higher-order mode occurs at a frequency of 60 to 70 GHz or more. On the other hand, when the dielectric constant of the insulating layer is 5 to 6 and the thickness of the insulating layer is 250 μm, propagation of a higher mode occurs at a frequency of 110 GHz or more. When the higher-order mode propagates, signal transmission characteristics deteriorate. Further, when the dielectric constant ε1 of the insulating layer located between the first signal transmission line and the ground layer is low, it is necessary to increase the line width of the first signal transmission line and the like. And the area of the connection surface with the semiconductor element must be increased, and in some cases, the connection with the semiconductor element becomes difficult. For this reason, there has been a problem that the wiring substrate itself is necessarily large.
[0018]
According to the present invention, the dielectric constant ε1 of the insulating layer located between the first signal transmission line and the ground layer is set to the dielectric constant ε1 of the insulating layer located between the second signal transmission line and the ground layer. When the wiring board is mounted on an external circuit board via the second signal transmission line by increasing the dielectric constant ε2, the line width of the mounting portion of the second signal transmission line can be increased. Positioning accuracy can be reduced, and mounting is facilitated.
[0019]
Further, since the thickness of the insulating layer located between the second signal transmission line and the ground layer can be reduced, a magnetic field can be concentrated on the electromagnetic coupling portion, so that transmission characteristics can be improved and low It can be taller. In addition, it is possible to suppress deterioration of transmission characteristics due to propagation of a higher-order mode occurring in a high-frequency band, and to use a higher-frequency signal.
[0020]
Furthermore, according to the present invention, the first signal transmission line connected to the semiconductor element can be miniaturized, so that the area of the semiconductor element mounting surface can be reduced, and the wiring board itself can be miniaturized. It becomes.
[0021]
Further, when the wiring board and the antenna element are modularized, the semiconductor element and the antenna circuit are connected to each other by forming the antenna element near the second signal transmission line formed on the back surface of the wiring board. Compact connection can be made via the signal transmission line. Further, the radiation characteristics of the antenna can be improved by forming the insulating layer located between the second signal transmission line and the ground layer with a dielectric material having a low dielectric constant.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a cross-sectional view of a high-frequency semiconductor element package as a typical application example of the high-frequency wiring board according to the present invention.
According to the high-frequency semiconductor element package 1, the cavity 6 is formed by the insulating substrate 4 formed by laminating the insulating layers 2 and 3 made of a dielectric material and the lid 5, and the surface of the insulating substrate 4 is formed on the surface of the insulating substrate 4. Is mounted with a semiconductor element 7 such as MMIC or MIC, and hermetically sealed in the cavity 6.
The insulating substrate 4 is made of a dielectric material such as ceramics such as alumina, mullite, aluminum nitride, or silicon nitride, glass ceramics, a ceramic metal composite material, or a glass organic resin composite material.
[0023]
The lid 5 is made of a conductive material that can prevent the electromagnetic wave from the cavity 6 from leaking to the outside, and a metal, a conductive ceramic, a ceramic metal composite material, or the like can be used. Although a conductive substance may be applied to the surface of the insulating base, it is preferable to use a metal in consideration of cost. For example, Kovar or a copper-nickel-based alloy is preferably used. In the insulating substrate 4, a ground layer 10 made of a conductor layer is formed over almost the entire surface.
[0024]
In the package of FIG. 1, the first signal transmission line 8 and the second signal transmission line 9 are formed by microstrip lines. A first signal transmission line 8 is formed on the surface of the insulating substrate 4 in the cavity 6, and one end thereof is connected to the semiconductor element 7. The second signal transmission line 9 is also formed on the back surface of the insulating substrate 4.
[0025]
A ground layer 10 is formed inside the insulating substrate 4, and a slot hole 11 is formed in the ground layer 10. Then, the first signal transmission line 8 and the second signal transmission line 9 are electromagnetically coupled through the slot holes 11 by being formed at positions where the end portions of the respective signal transmission lines face each other, thereby reducing loss. Fewer signals are transmitted.
[0026]
More specifically, two signal transmission lines passing through the slot hole 11 are formed at opposing positions where the two transmission lines at a required frequency overlap with each other with a length corresponding to a half wavelength of the transmission signal at a required frequency. Preferably, the shape of the slot hole 11 is a rectangular hole having a long side and a short side, and the size thereof is appropriately set according to a used frequency and a frequency bandwidth. In particular, the long side of the slot hole is desirably a length corresponding to a half wavelength of a transmission signal at a required frequency, and the short side of the slot hole is changed from a length corresponding to a 1/5 wavelength to a length corresponding to a 1/50 wavelength. It is desirable to set.
[0027]
In addition, as shown in the wiring diagram on the back surface of the insulating substrate in FIG. 2, ground ends are provided on both sides of the center conductor 9a of the microstrip line, as shown in the wiring diagram on the back surface of the insulating substrate in FIG. This is converted into a grounded coplanar line having the layer 9b. The ground layer 9b is connected to a ground layer 10 provided in the insulating substrate 4 by a via hole conductor 12 or a castellation (not shown) formed on a side surface of the insulating substrate 4.
[0028]
According to the present invention, the dielectric constant ε1 of the insulating layer 2 located between the first signal transmission line 8 and the ground layer 10 is changed to the insulating layer located between the second signal transmission line 9 and the ground layer 10. By making the dielectric constant larger than the dielectric constant ε2 of 3, the transmission line can be miniaturized on the insulating layer 2 side as described above, and the wiring can be saved in space. In addition, transmission characteristics due to electromagnetic coupling can be improved, higher-order mode propagation can be suppressed, high-frequency signals can be used, and mountability on an external electric circuit board can be improved.
[0029]
Specifically, the insulating layer 2 is preferably made of ceramics, glass ceramics, ceramic metal composite materials, glass organic resin-based composite materials, etc., having a dielectric constant of more than 5 and 15 or less, and more preferably a dielectric constant of more than 5 and 10 or less. . The insulating layer 3 is made of a dielectric material having a dielectric constant lower than that of the insulating layer 2, and specifically, has a dielectric constant of 7 or less, a glass ceramic, a ceramic metal composite material, a glass organic resin composite material, A low dielectric constant material such as quartz is desirable.
[0030]
As a method of controlling the dielectric constant of the insulating layer as described above, a method of adding a ceramic filler such as Al 2 O 3 , SiO 2 , quartz, mullite, barium titanate, calcium titanate, and aluminum nitride to the insulating layer is used. Alternatively, a method of increasing the dielectric constant by increasing the amount of addition, a method of decreasing the dielectric constant by adding or increasing the amount of a glass component such as borosilicate glass such as zinc borosilicate glass or lead borosilicate glass, or alkali silicate glass. There is. In the case where the insulating layer 2 and the insulating layer 3 are ceramics or glass ceramics, it is desirable that the insulating layers 2 and 3 be a composition that can be simultaneously fired. Further, the above configuration of the present invention is particularly effective when an antenna element such as a patch antenna is formed on an extension of the second signal transmission line 9 formed on the back surface of the insulating layer 3, and in this case, As described above, the semiconductor element and the antenna element can be compactly connected, and the radiation characteristics of the antenna can be improved. When the second signal transmission line 9 is a microstrip line, it is desirable that the connection of the antenna element is closer to the electromagnetic coupling part in consideration of deterioration of transmission characteristics.
[0031]
The high-frequency wiring board of the present invention has not only a high-frequency semiconductor element package in which the semiconductor element 7 as shown in FIG. 1 is hermetically sealed with the lid 5 but also, for example, different dielectric constants as shown in FIG. The semiconductor element 7 is mounted on the surface of the insulating substrate 4 formed by the insulating layer 2 and the insulating layer 3 and the semiconductor element 7 is sealed with a resin 14 or the like. It is.
[0032]
【The invention's effect】
As described above in detail, according to the high-frequency wiring board of the present invention, the insulating layer on which the first signal transmission line connected to the semiconductor element is formed is provided with the second signal having the mounting portion with the external circuit board. By using a dielectric material with a higher dielectric constant than the insulating layer on which the transmission line is formed, signal transmission characteristics can be improved, high-frequency signals can be used, and the size of the wiring board itself can be reduced. Become. Furthermore, it can be easily mounted on a wiring layer such as an external circuit board. Further, the antenna element and the semiconductor element can be compactly connected, and a signal can be transmitted with low loss.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an embodiment of a high-frequency semiconductor element package which is an example of a high-frequency wiring board according to the present invention.
FIG. 2 is a diagram showing a wiring diagram on a back surface of the package of FIG. 1;
FIG. 3 is a cross-sectional view illustrating another embodiment of a high-frequency wiring board according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High frequency semiconductor element package 2, 3 Insulating layer 4 Insulating substrate 5 Lid 6 Cavity 7 Semiconductor element 7 Center line 8 First signal transmission line 9 Second signal transmission line 9a Center conductor 9b Ground layer 10 Ground layer 11 Slot hole 12 via-hole conductor 13 wiring board 14 resin

Claims (2)

誘電体材料からなる複数の絶縁層を積層してなり、表面に半導体素子が搭載される絶縁基板と前記半導体素子と電気的に接続される第1の信号伝送線路と、前記絶縁基板内部に配設されたグランド層と、前記絶縁基板の裏面に形成された第2の信号伝送線路とを具備し、前記第1の信号伝送線路と、前記第2の信号伝送線路の間で信号の伝達が行われる配線基板であって、前記第1の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε1が、前記第2の信号伝送線路と前記グランド層との間に位置する絶縁層の誘電率ε2よりも大きいことを特徴とする高周波用配線基板。A plurality of insulating layers made of a dielectric material are laminated, and an insulating substrate on which a semiconductor element is mounted, a first signal transmission line electrically connected to the semiconductor element, and a plurality of insulating layers disposed inside the insulating substrate. And a second signal transmission line formed on the back surface of the insulating substrate. Signal transmission between the first signal transmission line and the second signal transmission line is provided. A wiring board to be performed, wherein a dielectric constant ε1 of an insulating layer located between the first signal transmission line and the ground layer is located between the second signal transmission line and the ground layer. A high-frequency wiring board characterized in that the dielectric constant of the insulating layer is larger than ε2. 前記絶縁基板の裏面にアンテナ素子を形成し、前記第2の信号伝送線路と接続してなることを特徴とする請求項1記載の高周波用配線基板。2. The high-frequency wiring board according to claim 1, wherein an antenna element is formed on a back surface of the insulating substrate and connected to the second signal transmission line.
JP11696398A 1998-04-27 1998-04-27 High frequency wiring board Expired - Fee Related JP3540939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11696398A JP3540939B2 (en) 1998-04-27 1998-04-27 High frequency wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11696398A JP3540939B2 (en) 1998-04-27 1998-04-27 High frequency wiring board

Publications (2)

Publication Number Publication Date
JPH11307685A JPH11307685A (en) 1999-11-05
JP3540939B2 true JP3540939B2 (en) 2004-07-07

Family

ID=14700087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11696398A Expired - Fee Related JP3540939B2 (en) 1998-04-27 1998-04-27 High frequency wiring board

Country Status (1)

Country Link
JP (1) JP3540939B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575614B2 (en) * 2001-03-30 2010-11-04 京セラ株式会社 Composite ceramic substrate
CN1316858C (en) 2001-04-27 2007-05-16 日本电气株式会社 High frequency circuit base board and its producing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299906A (en) * 1992-04-21 1993-11-12 Matsushita Electric Ind Co Ltd High frequency multi-layer integrated circuit
JP3305589B2 (en) * 1996-08-30 2002-07-22 京セラ株式会社 Mounting structure of high frequency semiconductor device
JP3457802B2 (en) * 1996-04-26 2003-10-20 京セラ株式会社 High frequency semiconductor device
JP3266491B2 (en) * 1996-02-29 2002-03-18 京セラ株式会社 High frequency package

Also Published As

Publication number Publication date
JPH11307685A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3266491B2 (en) High frequency package
EP0939451A1 (en) Slot antenna
JP2001028413A (en) Package for high-frequency waves
JP3580680B2 (en) High frequency package and its connection structure
JP2002289737A (en) Wiring board and wiring board module using the same
JP3631667B2 (en) Wiring board and its connection structure with waveguide
JP3540939B2 (en) High frequency wiring board
JP2001015880A (en) Wiring board and its connection structure
JP3464118B2 (en) Connection structure of high frequency package
JP3309056B2 (en) Package for storing high-frequency elements
JP3704440B2 (en) High frequency wiring board connection structure
JP3556470B2 (en) High frequency module
JP2002185222A (en) Wiring board
JP2011010242A (en) High-frequency substrate and high-frequency module
JP2006067376A (en) Antenna module
JP2006067375A (en) Antenna module
JP3398314B2 (en) High frequency package and its connection structure
JP3762109B2 (en) Wiring board connection structure
JP5289214B2 (en) High frequency module
JP3426878B2 (en) Wiring board mounting structure
JP3464119B2 (en) High frequency package and its connection structure
JP3605257B2 (en) Connection structure of high frequency package
JP3493278B2 (en) Connection structure of high frequency package
JP5414364B2 (en) High frequency substrate and high frequency module
JP3681950B2 (en) Wiring board and its connection structure with waveguide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees