JP3540778B2 - Total power measurement method for specific load and total power measurement device for specific load - Google Patents

Total power measurement method for specific load and total power measurement device for specific load Download PDF

Info

Publication number
JP3540778B2
JP3540778B2 JP2001191814A JP2001191814A JP3540778B2 JP 3540778 B2 JP3540778 B2 JP 3540778B2 JP 2001191814 A JP2001191814 A JP 2001191814A JP 2001191814 A JP2001191814 A JP 2001191814A JP 3540778 B2 JP3540778 B2 JP 3540778B2
Authority
JP
Japan
Prior art keywords
phase
load
main line
current value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001191814A
Other languages
Japanese (ja)
Other versions
JP2003004778A (en
Inventor
直也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Building Techno-Service Co Ltd
Priority to JP2001191814A priority Critical patent/JP3540778B2/en
Publication of JP2003004778A publication Critical patent/JP2003004778A/en
Application granted granted Critical
Publication of JP3540778B2 publication Critical patent/JP3540778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の同種類の特定負荷に配電盤を介して電力が供給されている場合に、特定負荷における全電力の測定方法および測定装置に関する。
【0002】
【従来の技術】
工場、事務所、家庭などにおいては、さまざまの電気機器が設置されていて、省エネルギーを図るために、ある特定のシステムを新しいシステムに変更することが行なわれる。この場合に、この特定のシステム変更により省エネルギー効果を評価するために特定負荷の電力測定が必要になる。例えばある工場で照明器具を従来の標準的な蛍光灯システムから、外光の明るさに応じて灯りの明るさを自動的に調整するインバータ方式調光機能の高周波ランプ(Hfランプ)に全面変更したときにその省エネルギー効果を評価したい場合などである。このようなときは、一般に配電盤において、電力アナライザを用いつつ、特定負荷の電力を測定して、システム変更の前後における特定負荷の電力の変化を見れば良い。
【0003】
図4は、配電盤が、コンセント負荷(いわゆる単相100V交流負荷)と、照明負荷(いわゆる単相200V交流負荷)の2種類用の簡単な場合について、従来例の特定負荷の電力測定状況を示したものである。配電盤1には外部よりR相、N相、T相の電力線が引き込まれ、配電盤内部にそれぞれR相主幹線2、N相主幹線3、T相主幹線4の導体(銅帯とも呼ばれる)がおおむね図4のように3列に配設され、N相は負荷と接続しやすいように主幹線末端部6をもつ。外部から引き込まれたR相、N相、T相の電力線との間には主幹ブレーカ5が設けられる。図4の一点鎖線より上側に照明負荷11、12、13および21、22、23がこのR相−T相間に設置される。14、15、16および24、25、26はそれぞれの分岐ブレーカである。図4の一点鎖線より下側部分のR相−N相間およびT相−N相間にコンセント負荷31、32、33および41、42、43がここに設置され、その分岐ブレーカ34、35、36および44、45、46が設けられる。クランプCT51、52、53および54、55、56が、照明負荷11、12、13および21、22、23のR相−T相間電流路に対応して設置され、それぞれ別々の合計6台の電力アナライザ(図示してない)の電流入力端子に結ばれる。また電力アナライザの電圧入力端子と、R相主幹線2、T相主幹線4が例えばワニぐちクリップなどで接続される。
【0004】
この場合の従来例の電力測定方法について説明する。多くの場合、N相導体はB種接地電位にあり、これに対してR相導体、T相導体は約105Vの交流電圧で充電されている。したがってR相−T相間電圧は約210Vとなっており、分岐ブレーカ14等が接続側に倒されているときは、照明負荷は約210Vの単相交流電力が供給される。これに対してR相−N相間、T相−N相間は約105Vであり、分岐ブレーカ34等が接続側に倒されているときは、コンセント負荷31等に約105Vの単相交流電力が供給される。このような配電盤1において照明負荷全体の電力を測定するには、クランプCT51から56を用いて電力アナライザによって測定される。クランプCTとは、電流の流れている電線を切断せずにその電流を測定する機器であり、一般的に言えば電流変成器の2次巻線として動作する挟み試験具であって、リング状鉄心の一部を開閉できるようにし、電線をリングの中に通す。鉄心にはコイルが巻いてあり、電線に交流電流が流れるとコイルに起電力が生じ、その値を計器で読むことで電流を知ることができるもので、種々の市販のタイプが使用可能である。
【0005】
例えば照明負荷11の場合は、R相主幹線2から分岐ブレーカ14を経て照明負荷11に至り、分岐ブレーカ14を経てT相主幹線4に戻る(逆向きも有る)経路の約210V交流電流路に流れる照明負荷11についての電流信号をクランプCT51により得ることができる。図示されていない電力アナライザはクランプCT51から電流値を得て、電圧値はR相主幹線2、T相主幹線4から得て、これら電流値、電圧値に基づいて照明負荷11について電力を測定できる。電力アナライザは、電流値信号と電圧値信号から電力を求める機器で、さまざまな市販機が使用できる。照明負荷11等に対応して合計6台の電力アナライザの電力測定値を集計することで、照明負荷全体の電力がわかり、例えば一週間、一月など適当な期間の測定結果の集計を、照明システムの変更前後で比較することで、そのシステム変更の省電力効果を評価できる。
【0006】
【発明が解決しようとする課題】
従来例のように、複数の同種類の特定負荷一つ一つにクランプCTから電流値信号を得ることで電力アナライザにより、特定負荷全体の全電力測定を確実に行なうことができる。しかし同種類の特定負荷が多数あるときは電力アナライザをその複数個分用意する必要が有り、またその複数の出力データの時間軸を一致させて加算集計演算をする必要が有り、測定上の作業性や経済性の課題が有った。
【0007】
本発明の目的は、かかる従来の特定負荷の全電力測定方法における課題を解決し、同種類の特定負荷が複数有るときでも、一台の電力アナライザにより特定負荷全体の全電力測定が容易にできる、特定負荷全電力測定方法および特定負荷全電力測定装置を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る特定負荷の全電力測定方法は、複数の同種類の特定負荷が配電盤のR相主幹線とT相主幹線間に設置されるときに、電流の流れている電線を切断せずに前記特定負荷に供給される電流と電圧を測定することで、前記特定負荷全体の全電力を測定する特定負荷の全電力測定方法において、前記配電盤のR相主幹線、T相主幹線の電流値をクランプCTにより測定して、R相主幹線電流値信号とT相主幹線電流値信号を得る主幹線電流測定工程と、前記特定負荷以外の他負荷に供給されるR相、T相の電流値をクランプCTにより測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流値測定工程と、R相主幹線電流値信号とR相他負荷電流値信号をベクトル的に差し引いて、一個のR相特定負荷全電流値信号を、またT相主幹線電流値信号とT相他負荷電流値信号をベクトル的に差し引いて一個のT相特定負荷全電流値信号を得る特定負荷電流測定工程とを有し、得られた前記一個のR相特定負荷全電流値信号と前記一個のT相特定負荷全電流値信号から前記特定負荷の全電力を求めることを特徴とする。
【0009】
また本発明に係る特定負荷の全電力測定方法においては、前記他負荷電流測定工程が、前記他負荷が、R相とN相の間またはT相とN相の間の負荷の場合には、R相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのR相側のN相主幹線末端部の電流値、T相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのT相側のN相主幹線末端部の電流値を測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流測定工程であることを特徴とする。
【0010】
また、本発明に係る特定負荷の全電力測定装置は、複数の同種類の特定負荷が配電盤のR相主幹線とT相主幹線間に設置されるときに、電流の流れている電線を切断せずに前記特定負荷に供給される電流と電圧を測定することで、前記特定負荷全体の全電力を測定する特定負荷の全電力測定装置において、前記配電盤のR相主幹線、T相主幹線の電流値をクランプCTにより測定して、R相主幹線電流値信号とT相主幹線電流値信号を得る主幹線電流測定手段と、前記特定負荷以外の他負荷に供給されるR相、T相の電流値をクランプCTにより測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流値測定手段と、R相主幹線電流値信号とR相他負荷電流値信号をベクトル的に差し引いて、一個のR相特定負荷全電流値信号を、またT相主幹線電流値信号とT相他負荷電流値信号をベクトル的に差し引いて一個のT相特定負荷全電流値信号を得る特定負荷電流測定手段とを有し、得られた前記一個のR相特定負荷全電流値信号と前記一個のT相特定負荷全電流値信号から前記特定負荷の全電力を求めることを特徴とする。
【0011】
また、本発明に係る特定負荷の全電力測定装置において、前記他負荷電流測定手段が、前記他負荷が、R相とN相の間またはT相とN相の間の負荷の場合には、R相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのR相側のN相主幹線末端部の電流値、T相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのT相側のN相主幹線末端部の電流値を測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流測定手段であることを特徴とする。
また、本発明に係る特定負荷の全電力測定方法において、主幹線電流測定工程は、第1の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相主幹線を通してR相主幹線電流値を測定し、第2の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相主幹線を通してT相主幹線電流値を測定し、他負荷電流値測定工程は、第3の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相側のN相主幹線末端部を通して他負荷に供給されるR相の電流値を測定し、第4の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相側のN相主幹線末端部を通して他負荷に供給されるT相の電流値を測定し、特定負荷電流測定工程は、第1の親子クランプCTにおける子側の閉じたリングに流れる電流と、第2の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして標準的クランプCTにより一個のR相特定負荷全電流値信号を得、第3の親子クランプCTにおける子側の閉じたリングに流れる電流と、第4の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして別の標準的クランプCTにより一個のT相特定負荷全電流値信号を得ることを特徴とする。
また、本発明に係る特定負荷の全電力測定装置において、主幹線電流測定手段は、第1の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相主幹線を通してR相主幹線電流値を測定し、第2の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相主幹線を通してT相主幹線電流値を測定し、他負荷電流値測定手段は、第3の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相側のN相主幹線末端部を通して他負荷に供給されるR相の電流値を測定し、第4の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相側のN相主幹線末端部を通して他負荷に供給されるT相の電流値を測定し、特定負荷電流測定手段は、第1の親子クランプCTにおける子側の閉じたリングに流れる電流と、第2の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして標準的クランプCTにより一個のR相特定負荷全電流値信号を得、第3の親子クランプCTにおける子側の閉じたリングに流れる電流と、第4の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして別の標準的クランプCTにより一個のT相特定負荷全電流値信号を得ることを特徴とする。
【0012】
本発明に係る特定負荷の全電力測定においては、配電盤のR相主幹線、T相主幹線の電流値を測定し、前記特定負荷以外の他負荷に供給されるR相、T相の電流値を測定し、R相主幹線電流値信号とR相他負荷電流値信号をベクトル的に差し引いて、一個のR相特定負荷全電流値信号を、またT相主幹線電流値信号とT相他負荷電流値信号をベクトル的に差し引いて一個のT相特定負荷全電流値信号を得るものとしたので、同種類の特定負荷が複数有るときでも、一台の電力アナライザにより特定負荷全体の全電力測定が容易にできる。
【0013】
また、本発明に係る特定負荷の全電力測定においては、特定負荷以外の他負荷が、R相とN相の間またはT相とN相の間の負荷の場合には、R相主幹線から前記他負荷を経由してN相主幹線に接続されるそのN相主幹線側の電流値、T相主幹線から前記他負荷を経由してN相主幹線に接続されるそのN相主幹線側の電流値を測定するので、同種類の特定負荷が複数有るときでも、一台の電力アナライザにより特定負荷全体の全電力測定がさらに容易にできる。
【0014】
【発明の実施の形態】
以下図面を用いて、本発明の実施の形態について詳細に説明する。図1は、従来例と比較するため、配電盤が、コンセント負荷(いわゆる単相100V交流負荷)と、照明負荷(いわゆる単相200V交流負荷)の2種類用である場合について、本発明の実施の形態における特定負荷の電力測定状況を示したものであり、図4と同様の構成要素については同一の符号を付し、説明を省略する。
【0015】
本発明の実施の形態においては、クランプCTは、従来例で説明した通常のタイプのクランプCTに加えて、さらに親子タイプとなっているクランプCT、すなわち開閉できるリング状鉄心(親)と、この親のリング状鉄心の中に通した電線を流れる電流を検出して、その検出値の例えば十分の一の電流を流す別の閉じたリング(子)を有しているものを用いる。本発明に用いる各親子クランプCTの子に流れる電流の低減比(例えば十分の一)は同一値に校正される。この親子タイプのクランプCTは、例えばアダプタ付きクランプCTの一種としてさまざまのタイプで市販されるものが利用できる。
【0016】
図1において、第一の親子クランプCTの親61のリングは、その中にR相主幹線2を、第二の親子クランプCTの親63のリングはその中に、R相−N相間に複数配置のコンセント負荷のN相主幹線末端部6側の配線37から40を通している。同様にT相側においても第三の親子クランプCTの親71のリングは、その中にT相主幹線を、第四の親子クランプCTの親73のリングはその中に、T相−N相間に複数配置のコンセント負荷のN相主幹線末端部6側の配線47から50を通している。図1で第一の親子クランプCTの親61は、配電盤1外部のR相電力が引き込まれたところで測定するように示されているが、R相主幹線2の全電流が測定できる個所であれば他の個所でも良い。
【0017】
第一の親子クランプCTの子62と、第二の親子クランプCTの子64は、さらに別のクランプCT81のリングの中を通っている。クランプCT81は、図4で述べた従来のクランプCT51等と同様な標準的な通常のタイプである。この場合に、第一の親子クランプCTの子62に流れる電流と、第二の親子クランプCTの子64に流れる電流をベクトル的に差し引く形でクランプCT81のリングの中を通っている。たとえば、第一の親子クランプCTの親61のリングはその中にR相主幹線2を、第二の親子クランプCTの親63のリングはその中にR相−N相間に複数配置のコンセント負荷のN相主幹線末端部6側の配線37から40を通しているので、これら親子クランプCTの親61と63のリングの中を流れる電流はベクトル的に同方向である。そこで、紙面に親子クランプCTの子62、64を置いたとき、親子クランプCTの子62に流れる電流の方向が紙面の上から見て時計方向のときには、第二の親子クランプCTの子64に流れる電流の方向が紙面の上から見て反時計方向になるように親子クランプCTの子62、64を置き、その配置状態のままで、標準的なクランプCT81のリングの中に第一の親子クランプCTの子62と、第二の親子クランプCTの子64を通す。クランプCT91における第三の親子クランプCTの子72、第四の親子クランプCTの子74との関係も同様である。
【0018】
クランプCT81は、電力アナライザ7のR相電流入力端子80に結ばれ、クランプCT91も同様に電力アナライザ7のT相電流入力端子90に結ばれる。電力アナライザ7の複数の電圧入力端子100は、R相主幹線2、N相主幹線3、T相主幹線4と結ばれる。電力アナライザ7は、表示部8と例えばキーボード等の設定入力部9を備えている。
【0019】
かかる図1における特定負荷の電力測定について説明する。主幹ブレーカ5、分岐ブレーカ14等はすべて接続側に倒されているとする。第一の親子クランプCTの子62のリングには、R相主幹線2を流れる全電流の例えば十分の一の電流が流れる。ここでR相主幹線2を流れる全電流は、R相主幹線2から照明負荷11、12、13を経てT相主幹線4に流れる成分と、R相主幹線2からコンセント負荷31、32、33を経てN相主幹線末端部6に流れる成分が有る。後者は、第二の親子クランプCTの親63で検出され、その子64のリングに、第一の親子クランプCTの子62のリングに流れる電流の低減比と同じ低減比、例えば十分の一の電流が流れる。
【0020】
また、第一の親子クランプCTの子62に流れる電流と、第二の親子クランプCTの子64に流れる電流をベクトル的に差し引くように標準的なクランプCT81のリングの中に第一の親子クランプCTの子62のリングと第二の親子クランプCTの子64のリングが配置されているので、クランプCT81は、R相主幹線2を流れる電流より、照明負荷以外の負荷であるコンセント負荷にR相からN相に流れる電流を差し引いた電流の例えば十分の一の電流を検出する。クランプCT91も同様にT相主幹線を流れる電流より、照明負荷以外の負荷であるコンセント負荷にT相からN相に流れる電流を差し引いた電流の例えば十分の一の電流を検出する。
【0021】
ここでR相主幹線2を流れる全電流を考えると、R相主幹線2から照明負荷11、12、13を流れてT相主幹線4へ戻る成分と、R相主幹線2からコンセント負荷31、32、33を流れてN相主幹線末端部6へ戻る成分からなるので、クランプCT81の検出する電流は、照明負荷11、12、13を流れる全電流の例えば十分の一である。同様にクランプCT91の検出する電流は、照明負荷21、22、23を流れる全電流の例えば十分の一である。これらの電流信号を一台の電力アナライザ7のR相電流入力端子80、T相電流入力端子90に入力し、電圧入力端子100にR相、T相、N相電圧信号を入力し、設定入力部9から、相線方式(今の場合単相三線方式)、親子クランプCTの電流低減比(例えば十分の一)、カレンダー(年月日時分)の設定条件を入力すると、電力アナライザ7は、電流、電圧、電力、力率等のデータを計算して、表示部8に表示する。
【0022】
このように本発明の実施の形態においては、同種類の特定負荷が複数有るときでも、一個のR相特定負荷全電流値信号、一個のT相特定負荷全電流値信号を得ることができるので、一台の電力アナライザにより特定負荷全体の全電力測定が容易にできる。このことは、特定のシステム変更により省エネルギー効果を評価するために特定負荷の電力測定が必要な場合でも、配電盤において、一台の電力アナライザのみを所定の期間接続することで、特定システムの負荷の全電力が測定できるので、システム変更の前後における特定負荷の電力の変化を見ることで、省エネルギー効果の評価が容易にできる。
【0023】
図2は、本発明に係る特定負荷の全電力測定方法を用いて、特定負荷全電力の一日の各時刻における変化を表した、いわゆる日負荷曲線と呼ばれる一例である。この例では、照明器具を従来の標準的な蛍光灯システムから、外光の明るさに応じて灯りの明るさを自動的に調整するインバータ方式調光機能の高周波ランプ(Hfランプ)に全面変更したときの、照明負荷の全電力を縦軸に、横軸に一日の時刻をとってある。ここで、標準的な蛍光灯システムの場合がi−j−k−lで示す特性線101で、調光機能の高周波ランプ(Hfランプ)に変更したときの雨天の日の場合がa−f−g−h−eの特性線102、晴天の日のときの場合がa−b−c−d−eの特性線103である。この特性線の差、すなわち照明システム変更前後における特性線101と102の差、あるいは特性線101と103の差の面積から電力削減値(kwh)が、またこれらの差分面積と従来システムの場合の面積との比から電力削減率が求められ、これらは省エネルギー効果の評価値に利用できる。
【0024】
図3は、本発明に係る特定負荷の全電力測定方法を用いて、十日間にわたって電力削減率を追跡した結果を示す。たとえば天候との関係で電力削減率が変動することがわかり、この事例では電力削減率が晴天日で約47%、雨天日で約42%であることが、本発明を実施することで容易に求めることができた。
【0025】
本発明の実施の形態では、特定負荷を照明負荷、特定負荷以外の負荷をR相とN相、T相とN相間のコンセント負荷とし、また負荷の数もそれぞれ3個ずつに対称に配置したが、これらの数量はもとより、負荷の種類に制限されない。
【0026】
また例えば、工場や事務所等において、既設の配電盤の導体部(主幹線)から増設導体部を分岐して、新たな配電盤を設け、その新配電盤からたとえばOA機器を接続したり(OA配電盤)、温水便座、ジェットタオルの設備を接続したり(サニタリー配電盤)することが行われる。この場合においては、説明の簡単のためにコンセント負荷はないものとすると、原配電盤のR相主幹線に親子クランプCTの親61、T相主幹線に親子クランプCTの親71を接続し、次に新配電盤のR相主幹線、T相主幹線にそれぞれ別の親子クランプCTの親を接続する。そして原配電盤のR相主幹線に接続した親子クランプCTの子62に流れる電流と、新配電盤のR相主幹線に接続した親子クランプCTの子に流れる電流を、ベクトル的に差し引く形で通常のクランプCT81のリングの中にこれらの親子クランプCTの子を通す。このことで、本発明の実施の形態と同様に、クランプCT81において一個のR相特定負荷全電流値信号を得ることができる。T相側についても同様である。このように、配電盤を分岐して、新配電盤に他負荷を設けたときでも本発明は実施できる。
【0027】
【発明の効果】
本発明に係る特定負荷の全電力測定においては、配電盤のR相主幹線、T相主幹線の電流値を測定し、前記特定負荷以外の他負荷に供給されるR相、T相の電流値を測定し、R相主幹線電流値信号とR相他負荷電流値信号をベクトル的に差し引いて、一個のR相特定負荷全電流値信号を、またT相主幹線電流値信号とT相他負荷電流値信号をベクトル的に差し引いて一個のT相特定負荷全電流値信号を得るものとしたので、同種類の特定負荷が複数有るときでも、一台の電力アナライザにより特定負荷全体の全電力の測定が容易にできた。
【0028】
また、本発明に係る特定負荷の全電力測定においては、特定負荷以外の他負荷が、R相とN相の間またはT相とN相の間の負荷の場合には、R相主幹線から前記他負荷を経由してN相主幹線に接続されるそのN相主幹線側の電流値、T相主幹線から前記他負荷を経由してN相主幹線に接続されるそのN相主幹線側の電流値を測定するので、同種類の特定負荷が複数有るときでも、一台の電力アナライザにより特定負荷全体の全電力の測定がさらに容易にできた。
【図面の簡単な説明】
【図1】本発明の実施の形態における配電盤における特定負荷の電力測定状況を示す図である。
【図2】本発明に係る特定負荷全電力測定方法を用いて、特定負荷全電力の日負荷曲線を求める例を示す図である。
【図3】本発明に係る特定負荷全電力測定方法により、特定負荷のシステム変更後の電力削減率を十日間にわたり追跡した結果を示す図である。
【図4】従来例の配電盤における特定負荷の電力測定状況を示す図である。
【符号の説明】
1 配電盤、2 R相主幹線、3 N相主幹線、4 T相主幹線、5 主幹ブレーカ、6 N相主幹線末端部、7 電力アナライザ、8 表示部、9 設定入力部、11,12,13,21,22,23 照明負荷、14,15,16,24,25,26,34,35,36,44,45,46 分岐ブレーカ、31,32,33,41,42,43 コンセント負荷、37,38,39,40,47,48,49,50 コンセント負荷の配線、51,52,53,54,55,56,81,91 クランプCT、61,63,71,73 親子クランプCTの親、62,64,72,74 親子クランプCTの子、80 R相電流入力端子、90 T相電流入力端子、100 電圧入力端子、101 標準的な蛍光灯システムの場合の特性線、102 調光機能の高周波ランプ(Hfランプ)システムの雨天の日の場合の特性線、103 調光機能の高周波ランプ(Hfランプ)システムの晴天の日の場合の特性線。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring the total power at a specific load when power is supplied to a plurality of specific loads of the same type via a switchboard.
[0002]
[Prior art]
In factories, offices, homes, and the like, various electric devices are installed, and a specific system is changed to a new system in order to save energy. In this case, it is necessary to measure the power of a specific load in order to evaluate the energy saving effect by this specific system change. For example, at a factory, lighting equipment was completely changed from a conventional standard fluorescent lamp system to a high frequency lamp (Hf lamp) with an inverter type dimming function that automatically adjusts the brightness of the light according to the brightness of external light. This is the case when it is desired to evaluate the energy saving effect when doing so. In such a case, generally, the power of the specific load may be measured using a power analyzer in a switchboard, and a change in the power of the specific load before and after the system change may be observed.
[0003]
FIG. 4 shows a power measurement situation of a specific load of a conventional example in a simple case where a switchboard is used for two types of an outlet load (so-called single-phase 100 V AC load) and a lighting load (so-called single-phase 200 V AC load). It is a thing. R-phase, N-phase, and T-phase power lines are drawn into the switchboard 1 from the outside, and conductors (also called copper strips) of the R-phase main line 2, the N-phase main line 3, and the T-phase main line 4 are respectively provided inside the switchboard. Generally, as shown in FIG. 4, three rows are provided, and the N-phase has a main trunk terminal end 6 so as to be easily connected to a load. A main breaker 5 is provided between the R-phase, N-phase, and T-phase power lines drawn from outside. Lighting loads 11, 12, 13 and 21, 22, 23 are provided between the R-phase and the T-phase above the dashed line in FIG. 14, 15, 16 and 24, 25, 26 are respective branch breakers. Outlet loads 31, 32, 33 and 41, 42, 43 are installed here between the R-phase and N-phase and the T-phase and N-phase below the one-dot chain line in FIG. 4, and the branch breakers 34, 35, 36 and 44, 45, and 46 are provided. Clamps CT51, 52, 53 and 54, 55, 56 are installed corresponding to the current paths between the R-phase and T-phase of the lighting loads 11, 12, 13, and 21, 22, 23, respectively. Connected to the current input terminal of an analyzer (not shown). A voltage input terminal of the power analyzer is connected to the R-phase main line 2 and the T-phase main line 4 by, for example, an alligator clip.
[0004]
A conventional power measurement method in this case will be described. In many cases, the N-phase conductor is at the class B ground potential, while the R-phase conductor and the T-phase conductor are charged with an AC voltage of about 105V. Therefore, the voltage between the R phase and the T phase is about 210 V, and when the branch breaker 14 or the like is tilted to the connection side, a single-phase AC power of about 210 V is supplied to the lighting load. On the other hand, the voltage between the R-phase and the N-phase and the voltage between the T-phase and the N-phase are about 105 V. When the branch breaker 34 or the like is tilted to the connection side, about 105 V of single-phase AC power is supplied to the outlet load 31 or the like. Is done. To measure the power of the entire lighting load in such a switchboard 1, the power is measured by a power analyzer using the clamps CT51 to CT56. The clamp CT is a device for measuring the current without cutting the electric current-carrying wire. Generally speaking, the clamp CT is a pinch test device that operates as a secondary winding of a current transformer, and has a ring shape. Part of the iron core can be opened and closed, and the wires pass through the ring. The coil is wound around the iron core, and when an alternating current flows through the electric wire, an electromotive force is generated in the coil, and the current can be known by reading the value with a meter, and various commercially available types can be used. .
[0005]
For example, in the case of the lighting load 11, an approximately 210 V AC current path of a route from the R-phase main line 2 to the lighting load 11 via the branch breaker 14 and to the T-phase main line 4 via the branch breaker 14 (there is a reverse direction). Current signal about the lighting load 11 flowing through the clamp CT51 can be obtained. A power analyzer (not shown) obtains a current value from the clamp CT51, obtains a voltage value from the R-phase main line 2, and a T-phase main line 4, and measures power for the lighting load 11 based on the current value and the voltage value. it can. A power analyzer is a device that obtains power from a current value signal and a voltage value signal, and various commercially available devices can be used. By totaling the power measurement values of a total of six power analyzers corresponding to the lighting load 11 and the like, the power of the entire lighting load can be known. For example, the totaling of the measurement results for an appropriate period such as one week or one month can be performed by using the lighting. By comparing before and after the system change, the power saving effect of the system change can be evaluated.
[0006]
[Problems to be solved by the invention]
As in the conventional example, by obtaining the current value signal from the clamp CT for each of a plurality of specific loads of the same type, the total power measurement of the entire specific load can be reliably performed by the power analyzer. However, when there are many specific loads of the same type, it is necessary to prepare a plurality of power analyzers, and it is necessary to perform the addition and aggregation operation by matching the time axes of the plurality of output data. There were issues of gender and economy.
[0007]
An object of the present invention is to solve the problem in the conventional total power measurement method of a specific load, and even when there are a plurality of specific loads of the same type, the total power measurement of the entire specific load can be easily performed by one power analyzer. And a specific load total power measuring method and a specific load total power measuring device.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for measuring the total power of a specific load according to the present invention provides a method for measuring a flow of current when a plurality of specific loads of the same type are installed between an R-phase main line and a T-phase main line of a switchboard. By measuring the current and voltage supplied to the specific load without cutting the electric wire, the total power of the specific load is measured by measuring the total power of the entire specific load. A main-line current measuring step of measuring the current value of the T-phase main line by the clamp CT to obtain an R-phase main line current value signal and a T-phase main line current value signal; R-phase and T-phase current values are measured by a clamp CT to obtain an R-phase and other load current value signal and a T-phase and other load current value signal. By subtracting the R-phase and other load current value signals in vector, one R A specific load current measuring step of obtaining a single T-phase specific load total current signal by vector-wise subtracting the specific load full current signal and the T-phase main line current signal and the T-phase other load current signal in vector. Then, the total power of the specific load is obtained from the obtained one R-phase specific load total current value signal and the one T-phase specific load total current value signal.
[0009]
In the total power measuring method for a specific load according to the present invention, when the other load current measuring step is a load between the R phase and the N phase or between the T phase and the N phase, The current value at the terminal end of the N-phase main line on the R-phase side connected to the terminal end of the N-phase main line via the other load from the R-phase main line, and via the other load from the T-phase main line Other load current that measures the current value of the N-phase main line terminal portion on the T-phase side connected to the terminal portion of the N-phase main line to obtain an R-phase other load current signal and a T-phase other load current signal It is a measurement step.
[0010]
Further, the total power measuring device for a specific load according to the present invention cuts an electric current flowing when a plurality of the same type of specific loads are installed between the R-phase main line and the T-phase main line of the switchboard. Measuring the current and voltage supplied to the specific load without measuring the total power of the entire specific load, wherein the R-phase main line and the T-phase main line of the switchboard Main current measuring means for measuring an electric current value of the main line by clamp CT to obtain an R-phase main line current value signal and a T-phase main line current value signal; Other load current value measuring means for measuring the phase current value by the clamp CT to obtain the R-phase other load current signal and the T-phase other load current signal, the R-phase main line current signal and the R-phase other load current The value signal is subtracted in a vector, and the total current value of one R-phase specific load And a specific load current measuring means for obtaining a single T-phase specific load total current value signal by vector-wise subtracting the T-phase main line current value signal and the T-phase and other load current value signals. A total power of the specific load is obtained from the one R-phase specific load total current value signal and the one T-phase specific load total current value signal.
[0011]
In the total power measuring device for a specific load according to the present invention, when the other load current measuring means is a load between the R phase and the N phase or between the T phase and the N phase, The current value at the terminal end of the N-phase main line on the R-phase side connected to the terminal end of the N-phase main line via the other load from the R-phase main line, and via the other load from the T-phase main line Other load current that measures the current value of the N-phase main line terminal portion on the T-phase side connected to the terminal portion of the N-phase main line to obtain an R-phase other load current signal and a T-phase other load current signal It is a measuring means.
In the method for measuring the total power of a specific load according to the present invention, the main line current measuring step includes the step of connecting the R-phase main line current through the R-phase main line in a ring-shaped core that can be opened and closed on the parent side in the first parent-child clamp CT. And a T-phase main line current value is measured through a T-phase main line in a ring-shaped core that can be opened and closed on the parent side in the second parent-child clamp CT. The current value of the R-phase supplied to the other load through the end of the N-phase main line on the R-phase side in the ring-shaped core that can be opened and closed on the parent side in the clamp CT is measured. The T-phase current value supplied to the other load through the N-phase main line terminal end on the T-phase side in the ring-shaped core that can be opened and closed is measured, and the specific load current measuring step is a child side in the first parent-child clamp CT. Flows into the closed ring of One R-phase specific load full current value signal is obtained by the standard clamp CT in such a manner that the current and the current flowing in the child-side closed ring in the second parent-child clamp CT are vector-wise subtracted. One T phase is obtained by another standard clamp CT in such a manner that the current flowing in the child-side closed ring in the clamp CT and the current flowing in the child-side closed ring in the fourth parent-child clamp CT are vectorically subtracted. It is characterized in that a specific load total current value signal is obtained.
Further, in the total power measuring device for a specific load according to the present invention, the main line current measuring means includes an R-phase main line current through an R-phase main line in a ring-shaped core that can be opened and closed on the parent side in the first parent-child clamp CT. And a T-phase main line current value is measured through a T-phase main line in a ring-shaped core that can be opened and closed on the parent side in the second parent-child clamp CT. The current value of the R-phase supplied to the other load through the end of the N-phase main line on the R-phase side in the ring-shaped core that can be opened and closed on the parent side in the clamp CT is measured. The T-phase current value supplied to the other load through the N-phase main line terminal on the T-phase side is measured in the ring-shaped core that can be opened and closed, and the specific load current measuring means is connected to the child side in the first parent-child clamp CT. Flows into the closed ring of One R-phase specific load full current value signal is obtained by the standard clamp CT in such a manner that the current and the current flowing in the child-side closed ring in the second parent-child clamp CT are vector-wise subtracted. One T phase is obtained by another standard clamp CT in such a manner that the current flowing in the child-side closed ring in the clamp CT and the current flowing in the child-side closed ring in the fourth parent-child clamp CT are vectorically subtracted. It is characterized in that a specific load total current value signal is obtained.
[0012]
In the total power measurement of the specific load according to the present invention, the current values of the R-phase main line and the T-phase main line of the switchboard are measured, and the R-phase and T-phase current values supplied to loads other than the specific load are measured. Is measured, and the R-phase main line current value signal and the R-phase and other load current value signals are vector-wise subtracted to obtain one R-phase specific load total current value signal, and the T-phase main line current value signal and the T-phase and other signals. Since the load current value signal is vector-wise subtracted to obtain one T-phase specific load total current value signal, even when there are a plurality of specific loads of the same type, the total power of the entire specific load is determined by one power analyzer. Measurement is easy.
[0013]
In the total power measurement of the specific load according to the present invention, when the load other than the specific load is a load between the R phase and the N phase or a load between the T phase and the N phase, the power from the R phase main line is used. The current value on the N-phase main line connected to the N-phase main line via the other load, and the N-phase main line connected from the T-phase main line to the N-phase main line via the other load Since the current value on the side is measured, even when there are a plurality of specific loads of the same type, the total power measurement of the entire specific load can be more easily performed by one power analyzer.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention in a case where a switchboard is used for two types of an outlet load (so-called single-phase 100 V AC load) and a lighting load (so-called single-phase 200 V AC load) for comparison with a conventional example. FIG. 4 shows a power measurement situation of a specific load in the embodiment, and the same components as those in FIG. 4 are denoted by the same reference numerals and description thereof is omitted.
[0015]
In the embodiment of the present invention, in addition to the usual type of clamp CT described in the conventional example, the clamp CT is a parent-child type clamp CT, that is, a ring-shaped core (parent) that can be opened and closed. A current having another closed ring (child) through which an electric current flowing through an electric wire passed through the parent ring-shaped iron core is detected and, for example, one-tenth of the detected value is passed is used. The reduction ratio (for example, one tenth) of the current flowing through the child of each parent-child clamp CT used in the present invention is calibrated to the same value. As the parent-child type clamp CT, for example, various types of commercially available clamp CT with an adapter can be used.
[0016]
In FIG. 1, the ring of the parent 61 of the first parent-child clamp CT has the R-phase main line 2 therein, and the ring of the parent 63 of the second parent-child clamp CT has therein a plurality of rings between the R phase and the N phase. The outlet load of the arrangement passes through wirings 37 to 40 on the side of the N-phase main trunk terminal end 6 side. Similarly, on the T-phase side, the ring of the parent 71 of the third parent-child clamp CT has a T-phase main trunk therein, and the ring of the parent 73 of the fourth parent-child clamp CT has therein the T-phase-N phase. In this case, a plurality of outlet loads are passed through wirings 47 to 50 on the end 6 side of the N-phase main trunk terminal 6. In FIG. 1, the parent 61 of the first parent-child clamp CT is shown to measure when the R-phase power outside the switchboard 1 is drawn in. However, it is possible to measure the total current of the R-phase main line 2. Other places may be used.
[0017]
The child 62 of the first parent-child clamp CT and the child 64 of the second parent-child clamp CT pass through the ring of yet another clamp CT81. The clamp CT81 is a standard ordinary type similar to the conventional clamp CT51 described with reference to FIG. In this case, the current flowing through the child 62 of the first parent-child clamp CT and the current flowing through the child 64 of the second parent-child clamp CT pass through the ring of the clamp CT81 in a vector-subtracted manner. For example, the ring of the parent 61 of the first parent-child clamp CT has the R-phase main trunk 2 therein, and the ring of the parent 63 of the second parent-child clamp CT has the plurality of outlet loads arranged between the R and N phases. Of the parent-child clamps CT, the currents flowing in the rings of the parent 61 and 63 are in the same vector direction. Therefore, when the children 62, 64 of the parent-child clamp CT are placed on the paper surface, and when the direction of the current flowing through the child 62 of the parent-child clamp CT is clockwise as viewed from above, the child 64 of the second parent-child clamp CT The children 62 and 64 of the parent-child clamp CT are placed so that the direction of the flowing current is counterclockwise as viewed from above, and the first parent and child are placed in the ring of the standard clamp CT81 in the arrangement state. The child 62 of the clamp CT and the child 64 of the second parent-child clamp CT are passed. The same applies to the relationship between the child 72 of the third parent-child clamp CT and the child 74 of the fourth parent-child clamp CT in the clamp CT91.
[0018]
The clamp CT81 is connected to the R-phase current input terminal 80 of the power analyzer 7, and the clamp CT91 is similarly connected to the T-phase current input terminal 90 of the power analyzer 7. The plurality of voltage input terminals 100 of the power analyzer 7 are connected to the R-phase main line 2, the N-phase main line 3, and the T-phase main line 4. The power analyzer 7 includes a display unit 8 and a setting input unit 9 such as a keyboard.
[0019]
The power measurement of the specific load in FIG. 1 will be described. It is assumed that the main breaker 5, the branch breaker 14, and the like are all tilted to the connection side. In the ring of the child 62 of the first parent-child clamp CT, for example, one tenth of the total current flowing through the R-phase main line 2 flows. Here, the total current flowing through the R-phase main line 2 includes components flowing from the R-phase main line 2 to the T-phase main line 4 via the lighting loads 11, 12, and 13, and the R-phase main line 2 and the outlet loads 31, 32, There is a component flowing to the N-phase main line terminal end portion 6 via 33. The latter is detected by the parent 63 of the second parent-child clamp CT, and the same reduction ratio as the reduction ratio of the current flowing through the ring of the child 62 of the first parent-child clamp CT is applied to the ring of the child 64, for example, one tenth of the current. Flows.
[0020]
Also, the first parent-child clamp is inserted into the ring of the standard clamp CT81 so that the current flowing through the child 62 of the first parent-child clamp CT and the current flowing through the child 64 of the second parent-child clamp CT are vectorically subtracted. Since the ring of the CT child 62 and the ring of the second parent-child clamp CT child 64 are arranged, the clamp CT 81 applies the R to the outlet load, which is a load other than the illumination load, based on the current flowing through the R-phase main line 2. For example, one tenth of the current obtained by subtracting the current flowing from the phase to the N phase is detected. Similarly, the clamp CT91 detects, for example, one tenth of the current obtained by subtracting the current flowing from the T phase to the N phase into the outlet load, which is a load other than the illumination load, from the current flowing through the T-phase main line.
[0021]
Here, considering the total current flowing through the R-phase main line 2, the components flowing from the R-phase main line 2 to the lighting loads 11, 12, and 13 and returning to the T-phase main line 4, and the outlet load 31 from the R-phase main line 2 , 32, 33 and returning to the N-phase main trunk terminal end 6, the current detected by the clamp CT81 is, for example, one tenth of the total current flowing through the lighting loads 11, 12, 13. Similarly, the current detected by the clamp CT91 is, for example, one tenth of the total current flowing through the lighting loads 21, 22, and 23. These current signals are input to an R-phase current input terminal 80 and a T-phase current input terminal 90 of one power analyzer 7, and R-phase, T-phase, and N-phase voltage signals are input to a voltage input terminal 100, and a setting input is performed. When the setting conditions of the phase line method (in this case, a single-phase three-wire method), the current reduction ratio (for example, one tenth) of the parent-child clamp CT, and the calendar (year, month, day, hour, minute) are input from the unit 9, the power analyzer 7 Data such as current, voltage, power, and power factor are calculated and displayed on the display unit 8.
[0022]
As described above, in the embodiment of the present invention, even when there are a plurality of specific loads of the same type, one R-phase specific load total current value signal and one T-phase specific load total current value signal can be obtained. In addition, a single power analyzer can easily measure the total power of the entire specific load. This means that even if the power measurement of a specific load is necessary to evaluate the energy saving effect due to a specific system change, only one power analyzer is connected to the switchboard for a predetermined period, so that the load of the specific system can be reduced. Since the total power can be measured, the energy saving effect can be easily evaluated by observing the change in the power of the specific load before and after the system change.
[0023]
FIG. 2 is an example of what is called a daily load curve, which represents a change in the specific load total power at each time of day using the specific load total power measurement method according to the present invention. In this example, the lighting equipment has been completely changed from a conventional standard fluorescent lamp system to a high frequency lamp (Hf lamp) with an inverter type dimming function that automatically adjusts the brightness of the light according to the brightness of external light. At this time, the total power of the lighting load is plotted on the vertical axis, and the time of day is plotted on the horizontal axis. Here, the case of a standard fluorescent lamp system is represented by a characteristic line 101 indicated by i-j-k-l, and the case of a rainy day when changing to a high-frequency lamp (Hf lamp) having a dimming function is af. A -gh-e characteristic line 102 and an abcdc-e characteristic line 103 on a sunny day are shown. The difference in the characteristic lines, that is, the difference between the characteristic lines 101 and 102 before and after the change of the lighting system, or the area of the difference between the characteristic lines 101 and 103 indicates the power reduction value (kwh). The power reduction rate is obtained from the ratio with the area, and these can be used for the evaluation value of the energy saving effect.
[0024]
FIG. 3 shows the results of tracking the power reduction rate over a period of 10 days using the total power measurement method for a specific load according to the present invention. For example, it can be seen that the power reduction rate fluctuates in relation to the weather. In this case, the power reduction rate is about 47% on a sunny day and about 42% on a rainy day. I was able to ask.
[0025]
In the embodiment of the present invention, the specific load is a lighting load, the loads other than the specific load are the R-phase and N-phase, and the outlet loads between the T-phase and N-phase, and the number of loads is symmetrically arranged at three each. However, these quantities are not limited to the type of load.
[0026]
For example, in a factory or an office, an additional conductor is branched from a conductor (main line) of an existing switchboard, a new switchboard is provided, and, for example, OA equipment is connected from the new switchboard (OA switchboard). , Hot water toilet seats and jet towels are connected (sanitary switchboard). In this case, assuming that there is no outlet load for simplicity of description, the parent 61 of the parent-child clamp CT is connected to the R-phase main trunk of the original switchboard, and the parent 71 of the parent-child clamp CT is connected to the T-phase main trunk. To the R-phase main line and the T-phase main line of the new switchboard, respectively. Then, the current flowing through the child 62 of the parent-child clamp CT connected to the R-phase main line of the original switchboard and the current flowing through the child of the parent-child clamp CT connected to the R-phase main line of the new switchboard are vector-subtracted to reduce the normal current. The children of these parent-child clamps CT are passed through the ring of the clamp CT81. Thus, as in the embodiment of the present invention, one R-phase specific load full current value signal can be obtained in the clamp CT81. The same applies to the T-phase side. As described above, the present invention can be implemented even when the switchboard is branched and another load is provided on the new switchboard.
[0027]
【The invention's effect】
In the total power measurement of the specific load according to the present invention, the current values of the R-phase main line and the T-phase main line of the switchboard are measured, and the R-phase and T-phase current values supplied to loads other than the specific load are measured. Is measured, and the R-phase main line current value signal and the R-phase and other load current value signals are vector-wise subtracted to obtain one R-phase specific load total current value signal, and the T-phase main line current value signal and the T-phase and other signals. Since the load current value signal is vector-wise subtracted to obtain one T-phase specific load total current value signal, even when there are a plurality of specific loads of the same type, the total power of the entire specific load is determined by one power analyzer. Was easily measured.
[0028]
In the total power measurement of the specific load according to the present invention, when the load other than the specific load is a load between the R phase and the N phase or a load between the T phase and the N phase, the power from the R phase main line is used. The current value on the N-phase main line connected to the N-phase main line via the other load, and the N-phase main line connected from the T-phase main line to the N-phase main line via the other load Since the current value on the side is measured, even when there are a plurality of specific loads of the same type, the total power of the entire specific load can be more easily measured by one power analyzer.
[Brief description of the drawings]
FIG. 1 is a diagram showing a power measurement state of a specific load in a switchboard according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of obtaining a daily load curve of a specific load total power using the specific load total power measurement method according to the present invention.
FIG. 3 is a diagram showing a result of tracking a power reduction rate after a system change of a specific load for ten days by a specific load total power measuring method according to the present invention.
FIG. 4 is a diagram showing a power measurement state of a specific load in a conventional switchboard.
[Explanation of symbols]
1 switchboard, 2 R-phase main line, 3 N-phase main line, 4 T-phase main line, 5 main breaker, 6 N-phase main line terminal, 7 power analyzer, 8 display, 9 setting input, 11, 12, 13, 21, 22, 23 lighting load, 14, 15, 16, 24, 25, 26, 34, 35, 36, 44, 45, 46 branch breaker, 31, 32, 33, 41, 42, 43 outlet load, 37, 38, 39, 40, 47, 48, 49, 50 Wiring of outlet load, 51, 52, 53, 54, 55, 56, 81, 91 Clamp CT, 61, 63, 71, 73 Parent of parent-child clamp CT , 62, 64, 72, 74 Child of parent-child clamp CT, 80 R-phase current input terminal, 90 T-phase current input terminal, 100 voltage input terminal, 101 Characteristic line for standard fluorescent lamp system, 102 dimming function High lap of Lamp (Hf lamp) characteristic line in the case of the system of rain day, the high-frequency lamp (Hf lamp) of 103 dimming characteristic line in the case of fine weather days in the system.

Claims (6)

複数の同種類の特定負荷が配電盤のR相主幹線とT相主幹線間に設置されるときに、電流の流れている電線を切断せずに前記特定負荷に供給される電流と電圧を測定することで、前記特定負荷全体の全電力を測定する特定負荷の全電力測定方法であって、前記配電盤のR相主幹線、T相主幹線の電流値をクランプCTにより測定して、R相主幹線電流値信号とT相主幹線電流値信号を得る主幹線電流測定工程と、前記特定負荷以外の他負荷に供給されるR相、T相の電流値をクランプCTにより測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流値測定工程と、R相主幹線電流値信号とR相他負荷電流値信号をベクトル的に差し引いて、一個のR相特定負荷全電流値信号を、またT相主幹線電流値信号とT相他負荷電流値信号をベクトル的に差し引いて一個のT相特定負荷全電流値信号を得る特定負荷電流測定工程とを有し、得られた前記一個のR相特定負荷全電流値信号と前記一個のT相特定負荷全電流値信号から前記特定負荷の全電力を求めることを特徴とする特定負荷全電力測定方法。When a plurality of specific loads of the same type are installed between the R-phase main line and the T-phase main line of the switchboard, the current and voltage supplied to the specific load are measured without cutting the current-carrying wires. A method for measuring the total power of the specific load by measuring the total power of the entire specific load, wherein a current value of the R-phase main line and the T-phase main line of the switchboard is measured by a clamp CT , and the R-phase main line is measured. A main-line current measuring step of obtaining a main-line current value signal and a T-phase main-line current value signal; measuring the R-phase and T-phase current values supplied to loads other than the specific load by a clamp CT ; Another load current value measuring step for obtaining the other-phase load current value signal and the T-phase other load current value signal, and subtracting the R-phase main-line current value signal and the R-phase other load current value signal vectorwise to obtain one R-phase The specified load total current value signal, the T-phase main line current value signal and the T-phase A specific load current measuring step of obtaining a single T-phase specific load total current value signal by subtracting the value signal in a vector manner, wherein the obtained one R-phase specific load total current value signal and the one T-phase A specific load total power measuring method, wherein a total power of the specific load is obtained from a specific load total current value signal. 請求項1に記載の特定負荷の全電力測定方法において、前記他負荷電流測定工程が、前記他負荷が、R相とN相の間またはT相とN相の間の負荷の場合には、R相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのR相側のN相主幹線末端部の電流値、T相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのT相側のN相主幹線末端部の電流値を測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流測定工程であることを特徴とする特定負荷の全電力測定方法。The method for measuring the total power of a specific load according to claim 1, wherein the other load current measuring step is performed when the other load is a load between an R phase and an N phase or a load between a T phase and an N phase. The current value at the terminal end of the N-phase main line on the R-phase side connected to the terminal end of the N-phase main line via the other load from the R-phase main line, and via the other load from the T-phase main line Other load current that measures the current value of the N-phase main line terminal portion on the T-phase side connected to the terminal portion of the N-phase main line to obtain an R-phase other load current signal and a T-phase other load current signal A method for measuring the total power of a specific load, which is a measuring step. 複数の同種類の特定負荷が配電盤のR相主幹線とT相主幹線間に設置されるときに、電流の流れている電線を切断せずに前記特定負荷に供給される電流と電圧を測定することで、前記特定負荷全体の全電力を測定する特定負荷の全電力測定装置であって、前記配電盤のR相主幹線、T相主幹線の電流値をクランプCTにより測定して、R相主幹線電流値信号とT相主幹線電流値信号を得る主幹線電流測定手段と、前記特定負荷以外の他負荷に供給されるR相、T相の電流値をクランプCTにより測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流値測定手段と、R相主幹線電流値信号とR相他負荷電流値信号をベクトル的に差し引いて、一個のR相特定負荷全電流値信号を、またT相主幹線電流値信号とT相他負荷電流値信号をベクトル的に差し引いて一個のT相特定負荷全電流値信号を得る特定負荷電流測定手段とを有し、得られた前記一個のR相特定負荷全電流値信号と前記一個のT相特定負荷全電流値信号から前記特定負荷の全電力を求めることを特徴とする特定負荷全電力測定装置。When a plurality of specific loads of the same type are installed between the R-phase main line and the T-phase main line of the switchboard, the current and voltage supplied to the specific load are measured without cutting the current-carrying wires. A total load power measuring apparatus for measuring the total power of the entire specific load, wherein the current value of the R-phase main line and the T-phase main line of the switchboard is measured by a clamp CT , and the R-phase main line is measured. Main line current measuring means for obtaining a main line current value signal and a T-phase main line current value signal; and measuring the R-phase and T-phase current values supplied to loads other than the specific load by a clamp CT , Another load current value measuring means for obtaining the other phase load current value signal and the T phase other load current value signal, and one R phase by subtracting the R phase main line current value signal and the R phase other load current value signal in vector. The specified load total current value signal, the T-phase main line current value signal and the T-phase A specific load current measuring means for obtaining one T-phase specific load total current value signal by vector-wise subtracting the value signal, wherein the obtained one R-phase specific load total current value signal and the one T phase A specific load total power measuring device, wherein a total power of the specific load is obtained from a specific load total current value signal. 請求項3に記載の特定負荷の全電力測定装置において、前記他負荷電流測定手段が、前記他負荷が、R相とN相の間またはT相とN相の間の負荷の場合には、R相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのR相側のN相主幹線末端部の電流値、T相主幹線から前記他負荷を経由してN相主幹線の末端部に接続されるそのT相側のN相主幹線末端部の電流値を測定して、R相他負荷電流値信号とT相他負荷電流値信号を得る他負荷電流測定手段であることを特徴とする特定負荷の全電力測定装置。4. The total power measuring device for a specific load according to claim 3, wherein the other load current measuring unit is configured such that, when the other load is a load between an R phase and an N phase or a load between a T phase and an N phase, The current value at the terminal end of the N-phase main line on the R-phase side connected to the terminal end of the N-phase main line via the other load from the R-phase main line, and via the other load from the T-phase main line Other load current that measures the current value of the N-phase main line terminal portion on the T-phase side connected to the terminal portion of the N-phase main line to obtain an R-phase other load current signal and a T-phase other load current signal A total power measuring device for a specific load, which is a measuring means. 請求項2に記載の特定負荷の全電力測定方法において、主幹線電流測定工程は、第1の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相主幹線を通してR相主幹線電流値を測定し、第2の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相主幹線を通してT相主幹線電流値を測定し、他負荷電流値測定工程は、第3の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相側のN相主幹線末端部を通して他負荷に供給されるR相の電流値を測定し、第4の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相側のN相主幹線末端部を通して他負荷に供給されるT相の電流値を測定し、特定負荷電流測定工程は、第1の親子クランプCTにおける子側の閉じたリングに流れる電流と、第2の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして標準的クランプCTにより一個のR相特定負荷全電流値信号を得、第3の親子クランプCTにおける子側の3. The method for measuring the total power of a specific load according to claim 2, wherein the main line current measuring step includes the steps of: And a T-phase main line current value is measured through a T-phase main line in a ring-shaped core that can be opened and closed on the parent side in the second parent-child clamp CT. The current value of the R-phase supplied to the other load through the end of the N-phase main line on the R-phase side in the ring-shaped core that can be opened and closed on the parent side in the clamp CT is measured. The T-phase current value supplied to the other load through the N-phase main line terminal end on the T-phase side in the ring-shaped core that can be opened and closed is measured, and the specific load current measuring step is a child side in the first parent-child clamp CT. Electricity flowing through the closed ring of And the current flowing in the closed ring on the child side in the second parent-child clamp CT is vector-wise subtracted to obtain one R-phase specific load full current value signal by the standard clamp CT. Child side in CT 閉じたリングに流れる電流と、第4の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして別の標準的クランプCTにより一個のT相特定負荷全電流値信号を得ることを特徴とする特定負荷の全電力測定方法。One T-phase specific load full current value signal is output by another standard clamp CT by subtracting the current flowing in the closed ring and the current flowing in the child-side closed ring in the fourth parent-child clamp CT by vector. A method for measuring the total power of a specific load. 請求項4に記載の特定負荷の全電力測定装置において、主幹線電流測定手段は、第1の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相主幹線を通してR相主幹線電流値を測定し、第2の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相主幹線を通してT相主幹線電流値を測定し、他負荷電流値測定手段は、第3の親子クランプCTにおける親側の開閉できるリング状鉄心の中にR相側のN相主幹線末端部を通して他負荷に供給されるR相の電流値を測定し、第4の親子クランプCTにおける親側の開閉できるリング状鉄心の中にT相側のN相主幹線末端部を通して他負荷に供給されるT相の電流値を測定し、特定負荷電流測定手段は、第1の親子クランプCTにおける子側の閉じたリングに流れる電流と、第2の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして標準的クランプCTにより一個のR相特定負荷全電流値信号を得、第3の親子クランプCTにおける子側の閉じたリングに流れる電流と、第4の親子クランプCTにおける子側の閉じたリングに流れる電流とをベクトル的に差し引くようにして別の標準的クランプCTにより一個のT相特定負荷全電流値信号を得ることを特徴とする特定負荷の全電力測定装置。5. The total power measuring device for a specific load according to claim 4, wherein the main line current measuring means includes an R-phase main line current through an R-phase main line in a ring-shaped core that can be opened and closed on a parent side in the first parent-child clamp CT. And a T-phase main line current value is measured through a T-phase main line in a ring-shaped core that can be opened and closed on the parent side in the second parent-child clamp CT. The current value of the R-phase supplied to the other load through the end of the N-phase main line on the R-phase side in the ring-shaped core that can be opened and closed on the parent side in the clamp CT is measured. The T-phase current value supplied to the other load through the N-phase main line terminal on the T-phase side is measured in the ring-shaped core that can be opened and closed, and the specific load current measuring means is connected to the child side in the first parent-child clamp CT. Electricity flowing through the closed ring of And the current flowing in the closed ring on the child side in the second parent-child clamp CT is vector-wise subtracted to obtain one R-phase specific load full current value signal by the standard clamp CT. One T-phase is identified by another standard clamp CT by subtracting the current flowing in the child-side closed ring in the CT and the current flowing in the child-side closed ring in the fourth parent-child clamp CT in vector. A total power measuring device for a specific load, wherein a total load value signal is obtained.
JP2001191814A 2001-06-25 2001-06-25 Total power measurement method for specific load and total power measurement device for specific load Expired - Fee Related JP3540778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191814A JP3540778B2 (en) 2001-06-25 2001-06-25 Total power measurement method for specific load and total power measurement device for specific load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001191814A JP3540778B2 (en) 2001-06-25 2001-06-25 Total power measurement method for specific load and total power measurement device for specific load

Publications (2)

Publication Number Publication Date
JP2003004778A JP2003004778A (en) 2003-01-08
JP3540778B2 true JP3540778B2 (en) 2004-07-07

Family

ID=19030371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191814A Expired - Fee Related JP3540778B2 (en) 2001-06-25 2001-06-25 Total power measurement method for specific load and total power measurement device for specific load

Country Status (1)

Country Link
JP (1) JP3540778B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931538B1 (en) * 2002-12-23 2009-12-14 주식회사 포스코 Transient Impact Analysis Method
JP5475546B2 (en) * 2010-05-25 2014-04-16 パナソニック株式会社 Energy saving diagnostic system
JP5639721B2 (en) * 2014-02-03 2014-12-10 パナソニック株式会社 Energy saving diagnostic device and energy saving diagnostic system using the same
JP6712882B2 (en) * 2016-03-18 2020-06-24 株式会社Fuji Lighting control system

Also Published As

Publication number Publication date
JP2003004778A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US9046553B2 (en) Method and apparatus for dynamic signal switching of a merging unit in an electrical power system
US5729421A (en) Circuit analyzing system
US7944654B2 (en) Multiple-pole circuit breaker with shared current sensor for arcing fault detection
TWI221906B (en) Measuring devices
EP1939634B1 (en) Current sensing apparatus
KR100583576B1 (en) Power converter
TW398106B (en) Method of automaticaly changing voltage in electric power saving transformer of three-phase system and apparatus therefor
CN109283421B (en) Low-voltage power-on detection test method and device for railway traction substation
JP3540778B2 (en) Total power measurement method for specific load and total power measurement device for specific load
TW319828B (en) Device for high-order harmonics assessment
JP3456151B2 (en) Multi-circuit wattmeter and multi-circuit watt-hour meter
JP2000235051A (en) Detector for detecting direct current component contained in alternating current
JP2010148269A (en) Protective relay system
JP2000083378A (en) Power converter
JP2006038604A (en) Leakage current measuring instrument
JPH0428065Y2 (en)
Joshi et al. Power Quality Analysis in Power distribution Network
JPH02266822A (en) Detection of disconnection in distribution line
JP3408992B2 (en) Low-voltage side ground fault relay
JP4684022B2 (en) Electric energy metering method and electric energy metering device
JP3933316B2 (en) Load estimation method
JPH03206974A (en) Method and apparatus for phase discrimination
CN116430168A (en) Method and device for diagnosing zero interruption and phase interruption faults of low-voltage distribution network
JPH06140263A (en) Current transformer and testing method thereof
JPH06308165A (en) Current integration meter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees