JP3540591B2 - Storage battery and method of manufacturing the same - Google Patents

Storage battery and method of manufacturing the same Download PDF

Info

Publication number
JP3540591B2
JP3540591B2 JP03919598A JP3919598A JP3540591B2 JP 3540591 B2 JP3540591 B2 JP 3540591B2 JP 03919598 A JP03919598 A JP 03919598A JP 3919598 A JP3919598 A JP 3919598A JP 3540591 B2 JP3540591 B2 JP 3540591B2
Authority
JP
Japan
Prior art keywords
lead plate
battery
sealing body
collecting lead
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03919598A
Other languages
Japanese (ja)
Other versions
JPH11238499A (en
Inventor
雅行 寺坂
和樹 下園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03919598A priority Critical patent/JP3540591B2/en
Publication of JPH11238499A publication Critical patent/JPH11238499A/en
Application granted granted Critical
Publication of JP3540591B2 publication Critical patent/JP3540591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一方極の端子を兼ねる開口部を備えた電池缶と、この開口部を密封する他方極の端子を兼ねる封口体と、これら電池缶および封口体よりなる電池容器内に収納される正・負極と電解液からなる発電要素とを備えた蓄電池およびその製造方法に関するものであり、特に、正・負極の一方から導出した集電リード板を封口体の下面に溶接する集電構造および溶接方法に関するものである。
【0002】
【従来の技術】
一般に、ニッケル−カドミウム蓄電池、ニッケル−水素化物蓄電池などのアルカリ蓄電池あるいはリチウムイオン蓄電池等の蓄電池は、正極および負極の間にセパレータを介在させ、これらを渦巻状に巻回あるいは積層して電極体を形成し、この電極体を円筒状あるいは角形の金属製電池缶に収納して正極あるいは負極より延出する集電リード板を封口体下面の一個所で溶接し、電解液を注入した後、電池缶の開口部に絶縁ガスケットを介在させて封口体を装着することにより密閉して構成されている。
【0003】
近年、この種のアルカリ蓄電池あるいはリチウムイオン蓄電池等の蓄電池は各種の携帯用電子・通信機器あるいは電動工具、電気自転車、電動バイク等の電源として使用されるようになり、大電流で放電可能であることが要求されるようになった。ところで、この種の蓄電池を大電流で放電可能とするためには、極力電池内部抵抗を低減させる必要がある。しかしながら、上述したような集電リード板を封口体下面の一個所で溶接するようにすると、電池内部抵抗も十分に満足できる程度には低くならなく、内部抵抗に基づく電圧降下が生じて作動電圧が低下し、大電流放電に対する要求を充分に満足させることができなかった。
【0004】
そこで、本発明者等は、集電リード板を封口体下面の一個所で溶接して構成した蓄電池の正・負極端子間に電圧を印加して、正・負極間に電流を流し、集電リード板と封口体下面との接触部に第2の溶着部を形成して電池の内部抵抗を低減させることを特願平9−41177号において提案した。
【0005】
この特願平9−41177号において提案した蓄電池は、図3に示すように、ニッケル正極1とカドミウム負極2との間にセパレータ3を介在させて巻回して渦巻状電極体とし、この渦巻状電極体を有底筒状の電池缶5内に収納し、カドミウム負極2に溶接された負極集電体(図示せず)をこの電池ケース5の内底面にスポット溶接する。次いで、ニッケル正極1に溶接された正極集電体4から延出する正極集電リード板6の先端部を封口体7の底面にスポット溶接し、正極集電体4と封口体7との間に第1の溶着部Aを形成する。
【0006】
こうして、第1の溶着部Aにおいて正極集電リード板6と封口体7とを溶接した後、封口体7を電池缶5の開口部に絶縁ガスケット13を介して配置し、電池缶5の開口端縁を内方にかしめることによって電池を封口して、ニッケル−カドミウム電池を組み立てる。この封口時点では、正極集電リード板6は、封口体7の下方突出部の周縁のエッジ部分近傍Bに接触した状態になっている。ついで、封口体7の正極キャップ(正極外部端子)9と電池ケース5の底面(負極外部端子)の間に電圧を印加し、ニッケル正極1とカドミウム負極2との間に大電流を短時間流すことにより、正極集電リード板6と封口体7の接触部分Bが溶接され、第2の溶着部Bが形成される。
【0007】
【発明が解決しようとする課題】
上記特願平9−41177号にて提案した発明においては、蓄電池の正・負極端子間に電圧を印加して電池内に大電流を短時間流して、集電リード板と封口体下面との接触部に第2の溶着部を形成するため、集電リード板と封口体下面とを確実に接触させて、正・負極端子間に電圧を印加した際に、これの間に電流が充分に流れ得る状態にすることが重要である。
【0008】
しかしながら、特願平9−41177号にて提案した発明にあっては、集電リード板と封口体下面との間には空間部が存在するだけであるので、電池缶5の開口部を封口体7で封口して集電リード板と封口体下面とを安定して接触させることが困難となる。このため、集電リード板と封口体下面とが接触しない状態になることが生じて、蓄電池の正・負極端子間に電圧を印加しても集電リード板と封口体下面との間に電流が流れない事態となることも生じて、第2の溶着部の溶接歩留まりが低くなるという問題を生じた。
【0009】
【課題を解決するための手段およびその作用・効果】
そこで、本発明は上記問題点に鑑みてなされたものであり、集電リード板と封口体下面とを確実に接触させて第2の溶着部を確実に形成できるようにし、電池内部抵抗が低くて放電時の作動電圧が向上した蓄電池を歩留まり良く得られるようにすることにある。
【0010】
このため、本発明の蓄電池は、正・負極のいずれか一方に接続される集電体と、この集電体から延出して封口体下面の少なくとも1個所で溶着された第1溶着部を有する集電リード板と、集電体と集電リード板との間に介在するスペーサと、集電リード板の第1溶着部以外の封口体下面の一部に溶着された第2溶着部とを備えるようにしたことを特徴とする。
【0011】
このように、集電体と集電リード板との間にスペーサを備えるようにすると、電池缶の開口部に封口体を載置した際に、集電リード板を封口体の下面に安定して接触させることが可能となる。このため、電池を構成した後、この電池の正・負極端子間に電圧を印加して正・負極に大電流を短時間流すことにより、安定して形成された接触部がジュール熱により溶着して溶着部を形成することが可能になり、簡単、容易に内部抵抗が低くて放電時の作動電圧が向上した蓄電池が得られるようになる。
【0012】
そして、このスペーサとして導電体を用いると、正・負極端子間に電圧を印加して正・負極間に大電流を短時間流した際に、スペーサを経て集電体に流れる電流が発生するため、集電リード板と封口体との接触部に流れる電流が減少することとなる。このため、スペーサの材質は耐電解液性で機械的強度を有する絶縁体とすることが好ましい。
【0013】
また、本発明の蓄電池の製造方法は、まず、収納工程により発電要素を電池缶内に収納した後、第1溶接工程により集電体から延出する集電リード板を封口体下面の少なくとも1個所に溶接し、集電体と集電リード板との間にスペーサを配置した状態で封口工程により電池缶の開口部に封口体を載置して集電リード板と封口体下面とを接触させて密閉するようにしている。このように、集電体と集電リード板との間にスペーサを配置した状態で封口体を密閉すると、スペーサは集電リード板を封口体下面に押圧させるように作用するため、集電リード板の溶接箇所以外でも集電リード板は封口体下面に確実に接触して確実に接触部を形成するようになる。
【0014】
そして、この後、第2溶接工程により封口体(一方の外部端子)と電池缶(他方の外部端子)との間に電圧を印加して正・負極間に大電流を短時間流すと、集電リード板は封口体下面に確実に接触しているため、集電リード板の封口体下面との接触部に接触抵抗に基づくジュール熱が発生する。これにより、集電リード板の封口体下面との接触部は抵抗溶接されて溶着し、確実に第2の溶着部が形成されるようになる。この結果、簡単、容易に内部抵抗が低くて放電時の作動電圧が向上した蓄電池が製造歩留まり良く得られるようになる。
【0015】
【発明の実施の形態】
以下に、本発明の一実施形態を図に基づいて説明する。なお、図1は本発明をニッケル−カドミウム蓄電池に適用した本実施形態のアルカリ蓄電池の要部を示す断面図であり、図2は本実施形態のアルカリ蓄電池の封口前の要部を示す断面図である。
【0016】
本実施形態のニッケル−カドミウム蓄電池は、パンチングメタルからなる極板芯体の表面にニッケル焼結多孔体を形成した後、化学含浸法により水酸化ニッケルを主体とする活物質を同ニッケル焼結多孔体内に充填して製造した焼結式ニッケル正極21と、同様に化学含浸法により水酸化カドミウムを主体とする活物質を同ニッケル焼結多孔体内に充填して製造した焼結式カドミウム負極22とを備えている。
【0017】
これらのニッケル正極21とカドミウム負極22は、これらのニッケル正極21とカドミウム負極22との間にセパレータ23を介在させて巻回して渦巻状電極体20を形成する。この渦巻状電極体20の上面部には、ニッケル正極21の極板芯体であるパンチングメタルの端部21aが露出し、また、渦巻状電極体20の下面部にはカドミウム負極2の極板芯体であるパンチングメタルの端部(図示せず)が露出している。そして、この渦巻状電極体20の上面に露出する正極芯体の端部21aには多数の開口を有する板状の正極集電体30が溶接されており、渦巻状電極体20の下面に露出する負極芯体の端部(図示せず)には多数の開口を有する板状の負極集電体(図示せず)が溶接されている。
【0018】
このニッケル−カドミウム蓄電池を組み立てるに際しては、図2に示すように、まず、上述のように、渦巻状電極体20の上下面に正極集電体30および負極集電体(図示せず)を溶接した後、鉄にニッケルメッキを施した有底筒状の電池缶40内に収納し、カドミウム負極22に溶接された負極集電体(図示せず)をこの電池缶40の内底面にスポット溶接する。次いで、ニッケル正極21に溶接された正極集電体30から延出する正極集電リード板31の先端部を封口体50の蓋体51の底面にスポット溶接し、正極集電リード板31と封口体50の蓋体51の底面との間に第1の溶着部Aを形成する。
【0019】
ここにおいて、封口体50は、底面に円形状の下方突出部を形成してなる蓋体51と、正極キャップ(正極外部端子)52、これら蓋体51および正極キャップ52間に介在されるスプリング53aと弁板53bからなる弁体53とから構成されており、蓋体51の中央にはガス抜孔51aが形成されている。また、正極集電リード板31は、封口体50のガス抜孔51aと対向する部分に透孔32が形成されており、この透孔32の存在により、電池内部ガス圧が上昇した場合においても、集電リード板31がガス抜孔51aを塞ぐことはなく、電池内部のガスを集電リード板31の透孔32を通して封口体50のガス抜孔51aからスムーズに電池外部に放出することができる。
【0020】
こうして、第1の溶着部Aにおいて正極集電リード板31と封口体50の蓋体51の下面とを溶接した後、正極集電体30の上面にスペーサ33を配置し、封口体50を電池缶40の開口部41に絶縁ガスケット42を介して載置し、電池缶40の開口部41の端部を内方にかしめることによって電池を封口して、公称容量1.3AhのSCサイズのニッケル−カドミウム電池を組み立てる。この封口工程において、スペーサ33は封口圧力により正極集電リード板31を封口体50の蓋体51の下面に押圧するように作用する。このため、正極集電リード板31の一部は蓋体51の下方突出部の周縁のエッジ部分Bに接触した状態になる。
【0021】
ここで、スペーサ33は、電解液に対して耐食性があるとともに機械的強度を有する材料、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン等の合成樹脂材料を用いる。そして、正極集電体30と集電リード板31との間の空間部より若干薄くなるような所定の厚みで、円形、角形あるいは楕円形等の適宜の形状の板状体に成型したものを用いている。なお、スペーサ33の中央部の前記ガス抜孔51aに対向する位置に所定の開孔を設けるようにすると、電池内部で発生したガスをこの開口を通して、集電リード板31の透孔32および封口体50のガス抜孔51aからスムーズに電池外部に放出することができるようになるが、開口を設けなくてもガスを排出することが可能であるので、開口は必要に応じて設けるようにすればよい。
【0022】
ついで、上記のようにして組み立てた電池の正極キャップ(正極外部端子)52と電池缶40の底面(負極外部端子)(図示せず)の間に、電池の放電方向に24Vの電圧を印加し、2KAの電流を約10msecの時間流した。この通電処理によって、図1に示すように、正極集電リード板31と封口体50の蓋体51の下面との接触部分Bが溶接され、第2の溶着部Bが形成される。
【0023】
一方、比較例の蓄電池として、正極集電リード板と正極集電体との間に本発明のスペーサを配置しない従来例のニッケル−カドミウム蓄電池を図3に示すように作製した。
このようにして作製した本発明と比較例のニッケル−カドミウム蓄電池を各々10000個ずつ用意し、正極集電リード板31と封口体50の蓋体51の下面との接触部分Bにおける溶接歩留まりを測定すると、下記の表1に示すような結果となった。
【0024】
【表1】

Figure 0003540591
【0025】
上記表1より明らかなように、正極集電体30と正極集電リード板31との間にスペーサ33を配置した状態で封口体50により封口した本発明のニッケル−カドミウム蓄電池は、スペーサ33を配置しない比較例のニッケル−カドミウム蓄電池より接触部分Bにおける溶接不良が格段に減少すること、即ち、接触部分Bにおける溶接歩留まりが格段に向上することが分かる。
【0026】
これは、正極集電体30と正極集電リード板31との間にスペーサ33を配置することで、封口体50の封口時にスペーサ33が正極集電リード板31を蓋体51の下面に押圧するように作用する。このため、正極集電リード板31が蓋体51の下面との接触部分Bにおいて確実に接触するようになり、封口後に正極キャップ(正極外部端子)52と電池缶40の底面(負極外部端子)との間に電圧を印加して、正極板21と負極板22との間に大電流を短時間流すことにより、接触部分Bの接触抵抗に基づくジュール熱が発生し、接触部分Bが溶着して第2の溶着部が確実に形成されたためと考えることができる。
【0027】
このように、本発明の蓄電池は、正極集電リード板31と蓋体51の下面との接触部分Bが確実に形成された後、電池の正極端子52と負極端子40との間に電圧を印加して短時間の間だけ大電流を流すことにより、接触部分Bが抵抗溶接されるようになるので、第2の溶着部が確実に形成されるようになり、溶接歩留まりが格段に向上する。
【0028】
また、集電リード板31と封口体50とを2個所以上で溶接しているので、電池の内部抵抗が低下して放電時の作動電圧も向上する。そして、集電リード板31と封口体50との第2の溶着部Bを電池の封口後に行うので、集電リード板31の長さを短くすることが可能となり、電池内部抵抗をさらに低減することが可能になるとともに、放電時の作動電圧がさらに向上した蓄電池が製造歩留まり良く得られるようになる。
【0029】
なお、本実施形態のニッケル−カドミウム蓄電池に印加する電流の方向には相関性はなく、電池に対して充電方向及び放電方向のどちらに印加しても同様の結果が得られた。また、印加する電流値については、電池のサイズには関係なく、300A以上で同様の効果が得られる。但し、極端に過大な電流を印加した場合には、短時間の印加であっても、正極集電リード板31が溶断し、この溶断する電流値は正極集電リード板31の材質および形状により上限値は変化するので、電流値は、300A以上で正極集電リード板6が溶断しない値とする必要がある。更に、印加時間については、0.25msec以上であれば同様の効果が得られるが、1秒もの長い時間に渡って印加すれば、正極集電リード板31が溶断するため好ましくない。
【0030】
なお、封口体50の蓋体51の底部下面に円錐状の突起部を設けたり、あるいは正極集電リード板31の封口体50に対向する面に円錐状の突起部を設けて、封口体50の蓋体51の底面と正極集電リード板31とを確実に接触させ、接触部Bの通電時の電流密度を増加させて、接触部Bのジュール熱の発生を大きくして赤熱し易い状態にすると、より強固に第2K溶着部が形成されるようになる。
【0031】
なお、上述した実施形態のニッケル−カドミウム蓄電池は、正極及び負極の何れも焼結式電極を用いたが、ペースト式などの非焼結式電極を用いた電池で実験した場合も同様な結果が得られた。
【0032】
また、上述した実施形態においては、本発明をニッケル−カドミウム蓄電池に適用した例について説明したが、これに限らず、ニッケル−水素化物蓄電池等のアルカリ蓄電池、あるいはリチウムイオン蓄電池等の各種の蓄電池に本発明を適用できることはいうまでもない。
【0033】
さらに、上述した実施形態においては、本発明を円筒型の蓄電池に適用した例について説明したが、これに限らず、角形等の各種の形状の蓄電池に本発明を適用できることもいうまでもない。
【図面の簡単な説明】
【図1】本発明の一実施形態のアルカリ蓄電池の要部を示す断面図である。
【図2】図1のアルカリ蓄電池の封口前の要部を示す断面図である。
【図3】従来例のアルカリ蓄電池の要部を示す断面図である。
【符号の説明】
20…電極体、21…正極板、22…負極板、23…セパレータ、30…集電体、31…集電リード板、32…透孔、40…電池缶(負極外部端子)、41…開口部、50…封口体、51…蓋体、51a…ガス抜孔、52…正極キャップ(正極外部端子)、53……弁体、A…第1の溶着部、B…第2の溶着部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a battery can having an opening also serving as a terminal of one pole, a sealing body sealing the opening, also serving as a terminal of the other pole, and a battery can including the battery can and the sealing body. The present invention relates to a storage battery including a positive / negative electrode and a power generating element composed of an electrolytic solution and a method for manufacturing the same, particularly, a current collecting structure in which a current collecting lead plate derived from one of the positive and negative electrodes is welded to the lower surface of a sealing body and It relates to a welding method.
[0002]
[Prior art]
In general, a storage battery such as an alkaline storage battery such as a nickel-cadmium storage battery and a nickel-hydride storage battery or a lithium ion storage battery has a separator interposed between a positive electrode and a negative electrode, and these are spirally wound or laminated to form an electrode body. After forming this electrode body in a cylindrical or square metal battery can and welding a current collecting lead plate extending from the positive electrode or negative electrode at one place on the bottom surface of the sealing body, injecting the electrolyte, It is hermetically sealed by mounting a sealing body with an insulating gasket interposed in the opening of the can.
[0003]
In recent years, storage batteries such as alkaline storage batteries or lithium ion storage batteries of this kind have been used as power sources for various portable electronic and communication devices or electric tools, electric bicycles, electric motorcycles, and the like, and can be discharged with a large current. Is required. By the way, in order to discharge this type of storage battery with a large current, it is necessary to reduce the internal resistance of the battery as much as possible. However, if the above-described current collecting lead plate is welded at one place on the lower surface of the sealing body, the internal resistance of the battery does not become sufficiently low, and a voltage drop based on the internal resistance occurs and the operating voltage is reduced. And the demand for large-current discharge could not be sufficiently satisfied.
[0004]
Therefore, the present inventors applied a voltage between the positive and negative terminals of a storage battery formed by welding a current collecting lead plate at one location on the lower surface of a sealing body, flowed a current between the positive and negative electrodes, It has been proposed in Japanese Patent Application No. 9-41177 that a second welded portion is formed at the contact portion between the lead plate and the lower surface of the sealing body to reduce the internal resistance of the battery.
[0005]
As shown in FIG. 3, the storage battery proposed in Japanese Patent Application No. 9-41177 is wound with a separator 3 interposed between a nickel positive electrode 1 and a cadmium negative electrode 2 to form a spiral electrode body. The electrode body is housed in a bottomed cylindrical battery can 5, and a negative electrode current collector (not shown) welded to the cadmium negative electrode 2 is spot-welded to the inner bottom surface of the battery case 5. Next, the front end of the positive electrode current collector lead plate 6 extending from the positive electrode current collector 4 welded to the nickel positive electrode 1 is spot-welded to the bottom surface of the sealing body 7, and the gap between the positive electrode current collector 4 and the sealing body 7 is formed. Then, a first welded portion A is formed.
[0006]
After welding the positive electrode current collecting lead plate 6 and the sealing body 7 at the first welded portion A in this manner, the sealing body 7 is arranged at the opening of the battery can 5 via the insulating gasket 13, and the opening of the battery can 5 is opened. The battery is sealed by crimping the edges inward to assemble the nickel-cadmium battery. At the time of this sealing, the positive electrode current collecting lead plate 6 is in contact with the vicinity B near the peripheral edge of the downwardly projecting portion of the sealing body 7. Then, a voltage is applied between the positive electrode cap (positive external terminal) 9 of the sealing body 7 and the bottom surface (negative external terminal) of the battery case 5 to flow a large current between the nickel positive electrode 1 and the cadmium negative electrode 2 for a short time. Thereby, the contact portion B between the positive electrode current collecting lead plate 6 and the sealing body 7 is welded, and the second welded portion B is formed.
[0007]
[Problems to be solved by the invention]
In the invention proposed in the above-mentioned Japanese Patent Application No. 9-41177, a voltage is applied between the positive and negative terminals of the storage battery to flow a large current in the battery for a short period of time. To form the second welded part at the contact part, the current collecting lead plate and the lower surface of the sealing body are surely brought into contact with each other, and when a voltage is applied between the positive and negative terminals, a sufficient current flows between them. It is important to be able to flow.
[0008]
However, in the invention proposed in Japanese Patent Application No. 9-41177, since only a space exists between the current collecting lead plate and the lower surface of the sealing body, the opening of the battery can 5 is sealed. It is difficult to stably contact the current collecting lead plate and the lower surface of the sealing body by sealing with the body 7. For this reason, the current collecting lead plate and the lower surface of the sealing body may not be in contact with each other, and even if a voltage is applied between the positive and negative terminals of the storage battery, a current flows between the current collecting lead plate and the lower surface of the sealing body. As a result, a problem arises in that the welding yield of the second welded portion is reduced.
[0009]
[Means for Solving the Problems and Their Functions and Effects]
In view of the above, the present invention has been made in view of the above-described problems, and ensures that the current-collecting lead plate and the lower surface of the sealing body are in contact with each other so that the second welded portion can be reliably formed. Therefore, it is possible to obtain a storage battery having an improved operating voltage at the time of discharging with a high yield.
[0010]
For this reason, the storage battery of the present invention has a current collector connected to one of the positive electrode and the negative electrode, and a first welded portion extending from the current collector and welded at at least one location on the lower surface of the sealing body. A current collecting lead plate, a spacer interposed between the current collector and the current collecting lead plate, and a second welded portion welded to a part of the lower surface of the sealing body other than the first welded portion of the current collector lead plate. It is characterized by being provided.
[0011]
As described above, when the spacer is provided between the current collector and the current collecting lead plate, when the sealing member is placed on the opening of the battery can, the current collecting lead plate is stabilized on the lower surface of the sealing member. Contact. For this reason, after the battery is constructed, a voltage is applied between the positive and negative terminals of the battery and a large current flows through the positive and negative electrodes for a short period of time. Thus, it is possible to easily and easily obtain a storage battery having a low internal resistance and an improved operating voltage during discharging.
[0012]
When a conductor is used as the spacer, when a voltage is applied between the positive and negative terminals and a large current flows between the positive and negative electrodes for a short time, a current that flows through the current collector through the spacer is generated. As a result, the current flowing in the contact portion between the current collecting lead plate and the sealing member is reduced. For this reason, it is preferable that the material of the spacer is an insulator having resistance to electrolyte and mechanical strength.
[0013]
In the method for manufacturing a storage battery according to the present invention, first, after the power generation element is housed in the battery can in the housing step, the current collecting lead plate extending from the current collector in the first welding step is attached to at least one of the lower surface of the sealing body. Welded in place, placed the sealing body at the opening of the battery can in the sealing process with the spacer arranged between the current collector and the current collecting lead plate, and brought the current collecting lead plate into contact with the lower surface of the sealing body Let it be sealed. When the sealing body is sealed in a state where the spacer is arranged between the current collector and the current collecting lead plate, the spacer acts to press the current collecting lead plate against the lower surface of the sealing body. The current collecting lead plate surely comes into contact with the lower surface of the sealing body at a position other than the welding portion of the plate, so that the contact portion is reliably formed.
[0014]
Then, after this, when a voltage is applied between the sealing body (one external terminal) and the battery can (the other external terminal) in the second welding step to flow a large current between the positive and negative electrodes for a short time, Since the current lead plate is securely in contact with the lower surface of the sealing body, Joule heat based on the contact resistance is generated at the contact portion of the current collecting lead plate with the lower surface of the sealing body. Thereby, the contact portion of the current collecting lead plate with the lower surface of the sealing body is resistance-welded and welded, so that the second welded portion is formed reliably. As a result, a storage battery having a low internal resistance and an improved operating voltage during discharging can be obtained easily and easily with a high production yield.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a main part of an alkaline storage battery of the present embodiment in which the present invention is applied to a nickel-cadmium storage battery. FIG. 2 is a cross-sectional view showing a main part of the alkaline storage battery of the present embodiment before sealing. It is.
[0016]
The nickel-cadmium storage battery according to the present embodiment is obtained by forming a nickel sintered porous body on the surface of an electrode plate core body made of a punched metal, and then applying an active material mainly composed of nickel hydroxide to the nickel sintered porous body by a chemical impregnation method. A sintered nickel positive electrode 21 manufactured by filling the body and a sintered cadmium negative electrode 22 manufactured by filling an active material mainly composed of cadmium hydroxide into the nickel sintered porous body by a chemical impregnation method. It has.
[0017]
The nickel positive electrode 21 and the cadmium negative electrode 22 are wound with the separator 23 interposed between the nickel positive electrode 21 and the cadmium negative electrode 22 to form the spiral electrode body 20. On the upper surface of the spiral electrode body 20, an end 21 a of a punched metal which is the electrode plate core of the nickel positive electrode 21 is exposed, and on the lower surface of the spiral electrode body 20, the electrode plate of the cadmium negative electrode 2 is formed. An end (not shown) of the punching metal as the core is exposed. A plate-like positive electrode current collector 30 having a large number of openings is welded to the end portion 21a of the positive electrode core exposed on the upper surface of the spiral electrode body 20, and is exposed on the lower surface of the spiral electrode body 20. A plate-shaped negative electrode current collector (not shown) having a large number of openings is welded to an end (not shown) of the negative electrode core.
[0018]
When assembling the nickel-cadmium storage battery, first, as shown in FIG. 2, the positive electrode current collector 30 and the negative electrode current collector (not shown) are welded to the upper and lower surfaces of the spiral electrode body 20 as described above. After that, the negative electrode current collector (not shown) welded to the cadmium negative electrode 22 is spot-welded to the inner bottom surface of the battery can 40 by being housed in a bottomed cylindrical battery can 40 in which nickel is plated on iron. I do. Next, the front end portion of the positive electrode current collector lead plate 31 extending from the positive electrode current collector 30 welded to the nickel positive electrode 21 is spot-welded to the bottom surface of the lid body 51 of the sealing body 50, and the positive electrode current collecting lead plate 31 is sealed. A first welded portion A is formed between the body 50 and the bottom surface of the lid 51.
[0019]
Here, the sealing body 50 includes a lid 51 having a circular downward projection formed on the bottom surface, a positive electrode cap (positive electrode external terminal) 52, and a spring 53 a interposed between the lid 51 and the positive electrode cap 52. And a valve body 53 composed of a valve plate 53b. A gas vent hole 51a is formed in the center of the lid body 51. Further, the positive electrode current collecting lead plate 31 has a through hole 32 formed at a portion of the sealing body 50 facing the gas vent hole 51a, and even when the gas pressure inside the battery increases due to the presence of the through hole 32, The current collecting lead plate 31 does not block the gas vent hole 51a, and the gas inside the battery can be smoothly discharged to the outside of the battery from the gas vent hole 51a of the sealing body 50 through the through hole 32 of the current collecting lead plate 31.
[0020]
After welding the positive electrode current collector lead plate 31 and the lower surface of the lid 51 of the sealing body 50 at the first welded portion A, the spacer 33 is disposed on the upper surface of the positive electrode current collector 30 and the sealing body 50 is attached to the battery. The battery is placed in the opening 41 of the can 40 via the insulating gasket 42, and the end of the opening 41 of the battery can 40 is crimped inward to seal the battery, and the SC size of the nominal capacity is 1.3 Ah. Assemble the nickel-cadmium battery. In this sealing step, the spacer 33 acts so as to press the positive electrode current collecting lead plate 31 against the lower surface of the lid 51 of the sealing body 50 by the sealing pressure. For this reason, a part of the positive electrode current collecting lead plate 31 comes into contact with the peripheral edge portion B of the lower protruding portion of the lid 51.
[0021]
Here, the spacer 33 is made of a material having corrosion resistance to the electrolytic solution and having mechanical strength, for example, a synthetic resin material such as polypropylene (PP), polyethylene (PE), and nylon. Then, it is formed into a plate-shaped body having an appropriate shape such as a circle, a square, or an ellipse with a predetermined thickness that is slightly thinner than a space between the positive electrode current collector 30 and the current collecting lead plate 31. Used. If a predetermined opening is provided at the center of the spacer 33 at a position opposite to the gas vent 51a, gas generated inside the battery passes through the opening through the opening 32 of the current collecting lead plate 31 and the sealing body. The gas can be discharged smoothly from the gas vent hole 51a to the outside of the battery, but the gas can be discharged without providing the opening. Therefore, the opening may be provided as needed. .
[0022]
Then, a voltage of 24 V is applied between the positive electrode cap (positive external terminal) 52 of the battery assembled as described above and the bottom surface (negative external terminal) (not shown) of the battery can 40 in the discharge direction of the battery. A current of 2 KA was passed for about 10 msec. By this energization process, as shown in FIG. 1, the contact portion B between the positive electrode current collecting lead plate 31 and the lower surface of the lid 51 of the sealing body 50 is welded to form a second welded portion B.
[0023]
On the other hand, as a storage battery of a comparative example, a nickel-cadmium storage battery of a conventional example in which the spacer of the present invention was not disposed between the positive electrode current collector lead plate and the positive electrode current collector was manufactured as shown in FIG.
10000 nickel-cadmium storage batteries of the present invention and the comparative example thus prepared were prepared, and the welding yield at the contact portion B between the positive electrode current collecting lead plate 31 and the lower surface of the lid 51 of the sealing body 50 was measured. Then, the results as shown in Table 1 below were obtained.
[0024]
[Table 1]
Figure 0003540591
[0025]
As is clear from Table 1, the nickel-cadmium storage battery of the present invention in which the spacer 33 is disposed between the positive electrode current collector 30 and the positive electrode current collector lead plate 31 and sealed by the sealing It can be seen that the poor welding at the contact portion B is significantly reduced as compared with the nickel-cadmium storage battery of the comparative example where no arrangement is provided, that is, the welding yield at the contact portion B is significantly improved.
[0026]
This is because by disposing the spacer 33 between the positive electrode current collector 30 and the positive electrode current collector lead plate 31, the spacer 33 presses the positive electrode current collector lead plate 31 against the lower surface of the lid 51 when the sealing body 50 is closed. Act to do. For this reason, the positive electrode current collecting lead plate 31 comes into reliable contact at the contact portion B with the lower surface of the lid 51, and after sealing, the positive electrode cap (positive external terminal) 52 and the bottom surface of the battery can 40 (negative external terminal). And a large current flows between the positive electrode plate 21 and the negative electrode plate 22 for a short time to generate Joule heat based on the contact resistance of the contact portion B, and the contact portion B is welded. Therefore, it can be considered that the second welded portion is formed reliably.
[0027]
As described above, in the storage battery of the present invention, after the contact portion B between the positive current collecting lead plate 31 and the lower surface of the lid 51 is securely formed, a voltage is applied between the positive terminal 52 and the negative terminal 40 of the battery. By applying a large current only for a short period of time by applying the voltage, the contact portion B is resistance-welded, so that the second welded portion is reliably formed, and the welding yield is significantly improved. .
[0028]
Further, since the current collecting lead plate 31 and the sealing body 50 are welded at two or more places, the internal resistance of the battery is reduced, and the operating voltage at the time of discharging is also improved. Since the second welding portion B between the current collecting lead plate 31 and the sealing body 50 is performed after the battery is sealed, the length of the current collecting lead plate 31 can be shortened, and the internal resistance of the battery can be further reduced. This makes it possible to obtain a storage battery having a further improved operating voltage at the time of discharging, with a high production yield.
[0029]
The direction of the current applied to the nickel-cadmium storage battery of the present embodiment has no correlation, and similar results were obtained when the battery was applied in either the charging direction or the discharging direction. Regarding the applied current value, the same effect can be obtained at 300 A or more regardless of the size of the battery. However, when an extremely large current is applied, even if the application is performed for a short time, the positive current collecting lead plate 31 is blown, and the current value to be blown depends on the material and shape of the positive current collecting lead plate 31. Since the upper limit value changes, the current value needs to be a value that is 300 A or more and does not blow the positive electrode current collecting lead plate 6. Further, the same effect can be obtained if the application time is 0.25 msec or more. However, if the application time is as long as 1 second, the positive electrode current collecting lead plate 31 is undesirably melted.
[0030]
In addition, a conical projection is provided on the lower surface of the bottom of the lid 51 of the sealing body 50, or a conical projection is provided on the surface of the positive electrode current collecting lead plate 31 facing the sealing body 50. A state in which the bottom surface of the cover body 51 and the positive electrode current collecting lead plate 31 are securely brought into contact with each other to increase the current density when the contact portion B is energized, thereby increasing the generation of Joule heat in the contact portion B and easily causing red heat. Then, the second K welded portion is formed more firmly.
[0031]
Although the nickel-cadmium storage battery of the above-described embodiment uses sintered electrodes for both the positive electrode and the negative electrode, similar results are obtained when experiments are performed using a battery using a non-sintered electrode such as a paste type. Obtained.
[0032]
Further, in the above-described embodiment, an example in which the present invention is applied to a nickel-cadmium storage battery has been described. However, the present invention is not limited to this. It goes without saying that the present invention can be applied.
[0033]
Furthermore, in the above-described embodiment, an example in which the present invention is applied to a cylindrical storage battery has been described. However, the present invention is not limited to this, and it goes without saying that the present invention can be applied to various shapes of storage batteries such as a rectangular shape.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a main part of an alkaline storage battery according to an embodiment of the present invention.
FIG. 2 is a sectional view showing a main part of the alkaline storage battery of FIG. 1 before sealing;
FIG. 3 is a cross-sectional view showing a main part of a conventional alkaline storage battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 20 ... Electrode body, 21 ... Positive electrode plate, 22 ... Negative electrode plate, 23 ... Separator, 30 ... Current collector, 31 ... Current collection lead plate, 32 ... Through-hole, 40 ... Battery can (negative electrode external terminal), 41 ... Opening Part, 50: Sealing body, 51: Lid, 51a: Gas vent hole, 52: Positive electrode cap (positive electrode external terminal), 53: Valve element, A: First welded part, B: Second welded part

Claims (4)

一方極の端子を兼ねる開口部を備えた電池缶と、前記開口部を密封する他方極の端子を兼ねる封口体と、これら電池缶および封口体よりなる電池容器内に収納される正・負極と電解液からなる発電要素とを備えた蓄電池であって、
前記正・負極のいずれか一方に接続される集電体と、
前記集電体から延出して前記封口体下面の少なくとも1個所で溶着された第1溶着部を有する集電リード板と、
前記集電体と前記集電リード板との間に介在するスペーサと、
前記集電リード板の前記第1溶着部以外の前記封口体下面に溶着された第2溶着部とを備えるようにしたことを特徴とする蓄電池。
A battery can having an opening also serving as a terminal of one pole, a sealing body also serving as a terminal of the other pole sealing the opening, and a positive / negative electrode housed in a battery container comprising the battery can and the sealing body; A power generating element comprising an electrolytic solution,
A current collector connected to one of the positive and negative electrodes,
A current collecting lead plate having a first welded portion extending from the current collector and welded at at least one location on the lower surface of the sealing body;
A spacer interposed between the current collector and the current collecting lead plate,
A second welded portion welded to the lower surface of the sealing body other than the first welded portion of the current collecting lead plate.
前記スペーサは耐電解液性で機械的強度を有する絶縁物により構成したことを特徴とする請求項1に記載の蓄電池。The storage battery according to claim 1, wherein the spacer is formed of an insulator having an electrolytic solution resistance and a mechanical strength. 一方極の端子を兼ねる開口部を備えた電池缶内に正・負極と電解液からなる発電要素を収納した後、前記開口部を他方極の端子を兼ねる封口体により密封して製造する蓄電池の製造方法であって、
前記正・負極のいずれか一方に集電体を接続した後、前記電池缶内に前記発電要素を収納する収納工程と、
前記集電体から延出する集電リード板を前記封口体下面の少なくとも1個所に溶接して溶着部を形成する第1溶接工程と、
前記集電体と前記集電リード板との間にスペーサを配置した後、前記開口部を前記封口体により密閉して前記溶着部以外の前記集電リード板の一部を前記封口体下面に接触させる封口工程と、
封口後の前記電池缶と前記封口体との間に電圧を印加して前記正・負極間に電流を流すことにより、前記集電リード板と封口体下面との接触部分を溶接する第2溶接工程とを備えたことを特徴とする蓄電池の製造方法。
After storing a power generating element composed of a positive electrode, a negative electrode, and an electrolyte in a battery can having an opening also serving as a terminal of one electrode, the opening is sealed with a sealing body also serving as a terminal of the other electrode. A manufacturing method,
After connecting a current collector to one of the positive and negative electrodes, a housing step of housing the power generating element in the battery can,
A first welding step of welding a current collecting lead plate extending from the current collector to at least one portion of the lower surface of the sealing body to form a welded portion;
After arranging a spacer between the current collector and the current collecting lead plate, the opening is sealed with the sealing member and a part of the current collecting lead plate other than the welded portion is formed on the lower surface of the sealing member. A contacting sealing step;
A second welding for welding a contact portion between the current collecting lead plate and the lower surface of the sealing body by applying a voltage between the battery can and the sealing body after the sealing and flowing a current between the positive and negative electrodes. And a method for manufacturing a storage battery.
前記スペーサは耐電解液性で機械的強度を有する絶縁物により構成したことを特徴とする請求項3に記載の蓄電池の製造方法。The method for manufacturing a storage battery according to claim 3, wherein the spacer is made of an insulator having an electrolytic solution resistance and a mechanical strength.
JP03919598A 1998-02-20 1998-02-20 Storage battery and method of manufacturing the same Expired - Fee Related JP3540591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03919598A JP3540591B2 (en) 1998-02-20 1998-02-20 Storage battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03919598A JP3540591B2 (en) 1998-02-20 1998-02-20 Storage battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11238499A JPH11238499A (en) 1999-08-31
JP3540591B2 true JP3540591B2 (en) 2004-07-07

Family

ID=12546350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03919598A Expired - Fee Related JP3540591B2 (en) 1998-02-20 1998-02-20 Storage battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3540591B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698134B2 (en) * 2003-09-03 2011-06-08 三洋電機株式会社 Battery and manufacturing method thereof
JP4596842B2 (en) * 2004-07-21 2010-12-15 三洋電機株式会社 Sealed battery and manufacturing method thereof
CN112589246B (en) * 2020-12-08 2022-05-03 湖北林锂新能源有限公司 Be used for lithium cell gasket spot welding equipment

Also Published As

Publication number Publication date
JPH11238499A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
JP3723433B2 (en) Battery pack and manufacturing method thereof
KR100375903B1 (en) Alkaline Battery and Method for Preparing the Same
WO2005020351A1 (en) Cylindrical cell and manufacturing method thereof
JP2004171980A (en) Alkaline battery and its manufacturing method
US20090029244A1 (en) Battery, and battery manufacturing method
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
US20020009634A1 (en) Sealed battery
JP3540591B2 (en) Storage battery and method of manufacturing the same
JP3547931B2 (en) Manufacturing method of storage battery
JP3733009B2 (en) Manufacturing method and manufacturing apparatus of assembled battery
JP2017183619A (en) Power storage device
JP4090167B2 (en) Storage battery and manufacturing method thereof
KR100788559B1 (en) Secondary battery
JP4079563B2 (en) Storage battery and manufacturing method thereof
JP4251829B2 (en) Battery and manufacturing method thereof
JP3540566B2 (en) Sealed alkaline storage battery and method of manufacturing the same
JP4168592B2 (en) Secondary battery and method for manufacturing secondary battery
JP2000268850A (en) Alkaline storage battery and its manufacture
WO2014068869A1 (en) Storage battery module
JP3540554B2 (en) Alkaline storage battery and method for manufacturing the same
JP3913384B2 (en) Alkaline storage battery
JP3619706B2 (en) Storage battery
JP3588249B2 (en) Alkaline storage battery and method for manufacturing the same
JP2997997B2 (en) Stepped insulating ring and method for manufacturing cylindrical nickel-metal hydride secondary battery using the same
JPH11102688A (en) Manufacture of rectangular battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

LAPS Cancellation because of no payment of annual fees