JP3539569B2 - Surface-treated steel sheet for battery case, method of manufacturing the same, method of manufacturing battery case - Google Patents

Surface-treated steel sheet for battery case, method of manufacturing the same, method of manufacturing battery case Download PDF

Info

Publication number
JP3539569B2
JP3539569B2 JP53975197A JP53975197A JP3539569B2 JP 3539569 B2 JP3539569 B2 JP 3539569B2 JP 53975197 A JP53975197 A JP 53975197A JP 53975197 A JP53975197 A JP 53975197A JP 3539569 B2 JP3539569 B2 JP 3539569B2
Authority
JP
Japan
Prior art keywords
nickel
steel sheet
battery case
layer
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53975197A
Other languages
Japanese (ja)
Inventor
等 大村
龍夫 友森
英雄 大村
幸男 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Application granted granted Critical
Publication of JP3539569B2 publication Critical patent/JP3539569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【技術分野】
本発明は、電池ケース用表面処理鋼板、その製造方法、その表面処理鋼板を用いた電池ケースの製造方法に関する。より詳しくは深絞り加工、しごき加工(Drawing and Ironing、以下DI加工と略す)、あるいは、ストレッチ加工(Drawing and Stretch forming、以下DS加工と略す)を施すような厳しい成形加工で成形される、底部と胴部が一体となった筒状の電池ケースに適した表面処理鋼板とその製造方法、および前記表面処理鋼板を用いた電池ケースの製造方法に関する。
【0002】
【背景技術】
近年、アルカリマンガン電池やニッケルカドミウム電池などで用いられる強アルカリ液を封入する電池ケースの製造方法として、鋼板を深絞り加工して電池ケースに成形した後バレルめっきする方法に代わって、ニッケルめっき鋼板、あるいはニッケルめっき後熱処理を施した表面処理鋼板を深絞り加工して電池ケースとするする方法が主流となってきた。特に最近では、電池容量の増加、電池ケースの胴壁の薄肉化による材料コストの削減、および電池容量の向上の観点から、DI加工により電池ケースを製造する方法も用いられるようになった。また、上記と同様な観点から、DS加工により電池ケースを製造する方法も検討されている。これらの電池ケースの製造方法の普及にともない、電池ケース用材料には電池性能に優れるだけでなく、成形加工性にも優れた材料が要求されるようになった。一般に、電池ケースの成形加工においては、付加絞り加工などの成形加工の前に、ニッケルめっき鋼板等の電池ケース用材料に潤滑剤を塗布し、成形加工後、脱脂洗浄により潤滑剤を除去し、乾燥するという方法が採用されている。
前記した従来の電池ケースの製造方法においては、プレス成形加工の直前に前記電池ケース用材料に潤滑剤を均一に塗布するか、またはさらにプレス工程で潤滑油を滴下しながらプレス加工することが必要であり、極めて煩雑な作業を必要としている。また電池ケースに成形加工した後、塗布した潤滑剤を脱脂洗浄し、さらに洗浄後の乾燥する、という二工程が不可欠である。このように従来の電池ケースの製造方法は、省力化、水資源および、熱エネルギーの消費の見地から非常に不十分なものである。
【0003】
本発明は、上記の問題点を同時に解決することを可能とするともに、電池性能および成形加工性に優れた電池ケース用表面処理鋼板とその製造方法、および前記表面処理鋼板を用いた電池ケースの製造方法を提供することを技術課題とするものである。
【0004】
【発明の開示】
本発明の請求項1に記載の電池ケース用表面処理鋼板は、
鋼板上に形成された表面処理層の上に、石油ワックス系潤滑剤が塗布されてなることを特徴とする。
請求項2に記載の電池ケース用表面処理鋼板は、請求項1において、前記表面処理層が、ニッケル層、ニッケル−リン合金層、ニッケル−鉄合金層、ニッケル−錫合金層、ニッケル−リンー錫合金層、ニッケル−錫−鉄合金層から選ばれたいずれか1の層であることを特徴とする。
請求項3に記載の電池ケース用表面処理鋼板は、請求項1において、前記表面処理層が、ニッケル層、ニッケル−リン合金層、ニッケル−鉄合金層、ニッケル−錫合金層、ニッケル−リン−錫合金層、ニッケル−錫−鉄合金層から選ばれた2種以上からなる複層であることを特徴とする。
請求項4に記載の電池ケース用表面処理鋼板は、請求項2又は3において、前記表面処理層に含まれるニッケル量が、1〜45g/m2であることを特徴とする。
請求項5に記載の電池ケース用表面処理鋼板は、請求項1において、前記表面処理層が、ニッケル−錫合金層、ニッケル−リン−錫合金層、ニッケル−錫−鉄合金層から選ばれたいずれか1の層からなり、かつ該表面処理層に含まれる錫量がニッケルめっき量に対して重量比で0.67以下であることを特徴とする。
請求項6に記載の電池ケース用表面処理鋼板は、請求項1〜5のいずれかにおいて、前記石油ワックス系潤滑剤が、パラフィンワックス、マイクロクリスタリンワックス、流動パラフィン、ペトロレータム、白色ペトロレータム、ポリエチレンワックス、ポリプロピレンワックス、エチレンープロピレンワックスの少なくともいずれか1種であることを特徴とする。
請求項7に記載の電池ケース用表面処理鋼板は、請求項6において、前記石油ワックス系潤滑剤の塗布量が、200〜2000mg/m2であることを特徴とする。
本発明の請求項8に記載の電池ケース用表面処理鋼板の製造方法は、
鋼板を脱脂し酸洗い、めっきを施しあるいはめっき後さらに熱処理を施して表面処理層を形成した後、その鋼板を塗布しようとする石油ワックス系潤滑剤の融点(Tm)〜Tm+100℃に加熱し、その表面に加熱溶融した石油ワックス系潤滑剤を塗布することを特徴とする。
請求項9に記載の電池ケース用表面処理鋼板の製造方法は、請求項8において、前記表面処理層が、ニッケルめっき層又はニッケル−リン合金めっき層であるか、あるいはその両層からなる2層であることを特徴とする。
請求項10に記載の電池ケース用表面処理鋼板の製造方法は、鋼板を脱脂し酸洗い、ニッケルめっき又はニッケル−リン合金めっきをした後、さらにその上に錫めっきをし、ついで空気中または非酸化性雰囲気中で熱処理を施して表面処理層を形成した後、その鋼板を塗布しようとする石油ワックス系潤滑剤の融点(Tm)〜Tm+100℃に加熱し、その表面に加熱溶融した石油ワックス系潤滑剤を塗布することを特徴とする。
請求項11に記載の電池ケース用表面処理鋼板の製造方法は、請求項8において、請求項6記載の石油ワックス系潤滑剤を、200〜2000mg/m2塗布することを特徴とする。
本発明の請求項12に記載の電池ケースの製造方法は、請求項1〜7のいずれかに記載の表面処理鋼板を、深絞り加工するか、深絞り加工後しごき加工するか、あるいは深絞り加工後ストレッチ加工するかして、底部と胴部が一体となった筒状の電池ケースを形成し、ついで、そのケースを200〜350℃で、3〜30分間加熱処理を施すことを特徴とする。
【0005】
【発明を実施するための最良の形態】
本発明の表面処理鋼板の製造方法は、鋼板に金属めっき、あるいは金属めっき後、空気中または非酸化性雰囲気中で熱処理を施し、形成された表面処理層の上に石油ワックス系潤滑剤を塗布することを特徴としている。塗布された石油ワックス系潤滑剤は深絞り加工等の成形加工性を著しく向上させるとともに、成形加工後、脱脂洗浄による除去も不要であり、200〜350℃の温度で加熱することにより、得られた電池ケースに付着している石油ワックス系潤滑剤の大部分を揮散除去することができ、コスト削減が可能な成形加工性に優れた電池ケース用表面処理鋼板および電池ケースが得られる。
【0006】
以下、本発明の実施例により詳細に説明する。まず、本発明の鋼板上に形成される表面処理層について説明する。一般に、電池ケース用表面処理鋼板には耐アルカリ腐食性に優れていること、電池ケースを外部端子に接続する場合、安定した低い接触抵抗値を有していること、電池製造時に各構成部品を溶接して組み立てる際のスポット溶接性に優れていることなどが要求される。これらの観点から種々検討した結果、電池ケース用表面処理鋼板における表面処理層としては、ニッケルめっき層、ニッケル−リン合金めっき層、ニッケル−鉄合金層、ニッケル−錫合金層、ニッケル−鉄−錫合金層のいずれかの1種、または2種以上からなる複層であること、すなわち鋼板上にニッケルめっき層、およびまたはニッケルを主体とする合金層からなる表面処理層の存在が、上記の要求される特性を十分満足させることが判明した。
【0007】
この表面処理層の形成には、鋼板を公知の方法で脱脂、酸洗後、水洗し、つぎに示す方法が適用可能である。
(1)電気めっきによる方法
(2)無電解めっきによる方法
(3)電気めっき後、非酸化性雰囲気中で熱処理を施す方法
(4)無電解めっき後、非酸化性雰囲気中で熱処理を施す方法
しかし、本発明の電池ケース用表面処理鋼板における表面処理層を形成する方法としては、生産性の観点から無電解めっきを利用する(2)および(4)の方法よりも電気めっきを利用する(1)および(3)の方法が好ましい。
電気めっきによる表面処理層を形成させる方法としては、次に示す方法が用いられる。例えば、ニッケルめっき層の形成には、公知のワット浴、スルファミン酸浴、ホウフッ化物浴あるいは塩化物浴を用い、鋼板を陰極として電解すればよい。また、ニッケル−鉄合金層の形成には、ニッケルイオンおよび2価鉄イオンを含む公知のニッケル−鉄合金めっき浴を用いる方法もあるが、この場合、ニッケルと鉄が共析しているにすぎず、ニッケルと鉄を合金化するには非酸化性雰囲気中で熱処理することが必要であり、ニッケルめっき後、非酸化性雰囲気中で熱処理し、めっきしたニッケルを全て合金化する方法が、めっき条件、めっき浴の管理等の見地から好ましい。ニッケル−錫合金層を形成させる場合においても、ニッケル−鉄合金層を形成させる場合と同様に、ニッケルイオンと2価錫イオンを含む公知のニッケル−錫合金めっき浴を用いる方法もあるが、公知のニッケルめっき浴と錫浴を用い、ニッケルめっき後、錫めっきあるいは錫めっき後、ニッケルめっきを施し、ぶりきの製造において公知である、空気中における抵抗加熱方式、およびまたは誘導加熱方式により熱処理(リフロー処理)、あるいは非酸化性雰囲気中で熱処理を施す方法があるが、いずれも適用できる。
【0008】
錫めっき後、ニッケルめっきを施し、ついで熱処理する方法は、めっきされた錫層上にニッケルを均一にめっきすることが困難であり好ましくない。より好ましい方法はニッケルめっき後、錫めっきを施し、ついで熱処理する方法である。
さらにニッケル−錫−鉄合金層の形成においても上記と同様に、それぞれのイオンを全て含むめっき浴を用い、合金めっきを施した後、熱処理する方法もあるが、ニッケル−錫合金層を形成させる場合と同様に、ニッケルめっき後、あるいはニッケル−鉄合金めっき後に錫めっきを施し、ついで非酸化性雰囲気中で熱処理する方法が同様な見地から好ましい。
【0009】
鋼板にニッケルめっきを施し、非酸化性雰囲気中で熱処理を施した場合、ニッケルめっき層と鋼板との間にニッケル−鉄合金層が形成される。そして、最表層にはニッケルのみ、あるいはニッケルとニッケル−鉄合金が共存する場合があるが、これはニッケルめっき量、および熱処理条件により選択制御することができる。同様に鋼板にニッケルめっきを施した後、錫めっきを施し、ついで非酸化性雰囲気中で熱処理を施した場合、鋼板に近い側からニッケル−鉄合金層、ニッケル−錫合金層、錫めっき層が形成されるか、あるいは最表層にこれらの表面処理層が共存する場合があるが、これはニッケルめっき量、錫めっき量、および熱処理条件により、容易に選択制御することができる。電池性能の観点から、電池ケースの内面となる面に金属錫が残存することは好ましいことではなく、成形加工後に電池ケースの内面となる面に施される錫めっき量は、めっきされるニッケルめっき量との関係より限定し、熱処理により金属錫が全て合金化する量とすることが必要である。この点については後記する。また、ニッケル−リン合金めっき層の形成には、公知の無電解めっき浴を用いる方法も適用可能であるが、生産性の観点から公知のニッケル−リン合金めっき浴(例えば、特開平2−129335号公報)を用いる方法が好ましい。
【0010】
本発明の電池ケース用表面処理鋼板における表面処理層の最表面は、電池性能の観点よりニッケルめっき層、あるいはニッケルを主体とする合金層であることが好ましいことを記したが、ニッケルめっき量は5〜45g/m2が好ましく、15〜35g/m2の範囲がより好ましい。ニッケルめっき量が5g/m2以下であると、鋼板表面を十分に被覆することができず、電池性能の優れた表面処理鋼板を得ることができない。また、ニッケルめっき量が45g/m2を越えると電池性能は飽和し、コスト的に有利でなくなる。
【0011】
つぎに、ニッケル−錫合金層の形成において、成形加工により電池ケースの内面となる面にめっきされる錫は全てニッケル−錫合金化させる必要がある。めっきした錫の一部がニッケルと合金化後に金属錫として残存すると、錫がアルカリ電池の電解液である水酸化カリウムに溶解し水素を発生し、電池性能を著しく損なうので好ましくない。熱処理工程において、700℃以下の温度で加熱すると、形成されるニッケルと錫の合金組成は、主としてNi3Sn、Ni3Sn2、Ni3Sn4から構成される。これらの合金組成のうち、ニッケルに対して最も錫の割合の少ない合金組成のNi3Sn(Ni:Snの原子量比が3:1)を形成するのに要するより少ない量の錫をめっきすれば、錫は全てニッケルと合金化することになる。すなわち、錫めっき量は、ニッケルめっき量に対し、少なくとも原子量比で1/3以下にすればよい。ここで、錫の原子量は118.6であり、ニッケルの原子量は58.7であるので、ニッケルめっき量に対し、錫のめっき量を次の計算式に示すように、約0.67とすれば、Ni:Snの原子量比3:1になる。すなわち、錫めっき量/ニッケルめっき量の比率=118.6/(58.7×3)=約0.67。
上記の値(約0.67)を越えた割合で錫めっきを施すと、熱処理後も金属錫が残存するおそれがあり、すでに記したように電池性能上好ましくない。また、仮に金属錫として残存しなくても、錫含有比率の高いニッケル−錫合金層となる。ニッケル−錫合金層中の錫含有比率の増加は、電池性能を低下させるおそれがあるので好ましくない。したがって、ニッケルめっき量に対する錫めっき量の重量比を0.67以下とする。
【0012】
本発明の電池ケース用表面処理鋼板のより好ましい形態は、成形加工後に電池ケースの内面となる面の表面処理層が鋼板と接する側からニッケル−鉄合金層、ニッケル−錫合金層、または鋼板と接する側からニッケル−鉄合金層、ニッケル−錫−鉄合金層から構成されるものであり、いずれにせよ表面処理層の最表面はニッケル−錫合金層、またはニッケル−錫−鉄合金層で構成されるていることがニッケル単独のめっき層で構成されるているよりも好ましい。このニッケル−錫合金層、またはニッケル−錫−鉄合金層が極めて優れた電池性能を示す。例えば、電池の接触内部抵抗を著しく低減させる。この理由は明確に説明することはできないが、前記のニッケル−錫合金層、またはニッケル−錫−鉄合金層合金層は、成形加工によりその表面に極めて凹凸の多い無数のクラックが生成され、正極合剤との接触面積が増加することにより、正極合剤と電池ケース内面との接触抵抗が低下するためと考えられる。あるいは、前記合金そのものの有する物性値の影響(例えば電気抵抗値が低い)とも推測される。
【0013】
なお、上記のより好ましい表面処理層の構成において、鋼板と接する側のニッケル−鉄合金層と、その上層に生成するニッケル−錫合金層またはニッケル−錫−鉄合金層の中間層として金属ニッケル層が存在することもあるが、特に電池性能に支障をきたすものではなく、むしろ耐食性を向上させる効果があり好ましい。
【0014】
ついで、本発明の電池ケース用表面処理鋼板の製造方法の一形態である、金属めっき後、非酸化性雰囲気中で熱処理を施す場合について説明する。この熱処理を非酸化性雰囲気中で行うことが、表面処理層の最表面の酸化を防止するうえで好ましい。しかしながら、ニッケルめっき後、錫めっきを施し、ついで熱処理により両者を合金化する場合、空気中で錫の溶融温度である232℃以上でニッケルと錫は合金化するので、ぶりきの製造において一般的に用いられている抵抗加熱方式、およびまたは誘導加熱方式により短時間加熱する方法を用いることができる。ニッケル−錫合金層の下層にニッケル−鉄合金層を形成させ、より耐食性を向上させようとする場合には、錫の溶融温度程度の加熱温度では鋼素地中にニッケルが殆ど拡散しないので、非酸化性雰囲気中で少なくとも450℃以上の温度で熱処理することが必要である。具体的には、450〜850℃で、30秒〜15時間の加熱が必要である。
【0015】
金属めっきを施した鋼板を熱処理する方法として、箱型焼鈍法と連続焼鈍法が公知であるが、本発明ではそのいずれの方法も適用可能であり、連続焼鈍法では600〜850℃、30秒〜5分、箱型焼鈍法では450〜650℃、5〜15時間の熱処理が好ましい。なお、ニッケル−錫−鉄合金層を形成させる場合には比較的高温で長時間熱処理を施し、3元素成分を相互拡散させることが必要である。このように熱処理を施した場合、熱処理が原因で発生するストレッチャーストレインを防止するため、熱処理後に調質圧延が必要である。この調質圧延は最終仕上げ圧延となるので、調質圧延で用いるワークロールの表面粗さを変えることにより、ブライト仕上げやダル仕上げなどの目的とする表面粗さや表面外観を得ることができる。
【0016】
つぎに、本発明の電池ケース用表面処理鋼板の特徴である、上記の表面処理層上に塗布される石油ワックス系潤滑剤、およびその塗布方法について説明する。
塗布される石油ワックス系潤滑剤はパラフィンワックス、マイクロクリスタリンワックス、流動パラフィン、ペトロレータム、白色ペトロレータム(ワセリン)、ポリエチレンワックス、ポリプロピレンワックス、エチレンープロピレンワックスから選択される。これらの潤滑剤は酸化状態にもよるが、融点が35〜80℃であり、一般に常温では固体またはゼリー状を呈し、低温で加熱することで流動性を帯び、塗布しやすい状態となるので取扱も容易である。その上、電池ケースに成形加工後、200〜350℃の温度で3〜30分程度空気中で加熱することによって、塗布した石油ワックス系潤滑剤を容易に揮散除去することができる。特に白色ペトロレータム(商品名:Sonojell−9、島貿易(株)販売)は融点が約42℃であり、低温で短時間加熱するだけで除去することができ、より好ましい。
【0017】
形成された表面処理層上に塗布される石油ワックス系潤滑剤の量は200〜2000mg/m2が好ましく、200〜500mg/m2の範囲がより好ましい。塗布量が200mg/m2以下であると、例えば50ケース/分の速度で連続的に10000ケース以上を深絞り成形加工することができず、電池ケースの連続生産性を阻害するだけでなく、得られた電池ケースの側面に擦り疵が入ることがあり、その上金型の摩耗も大になるおそれがあり好ましくない。また、塗布量が2000mg/m2を越えると、同様な速度で連続的に10000ケース以上を深絞り成形加工することは可能であるが、得られた電池ケースの表面に付着している前記潤滑剤の量も多く、加熱による揮散除去に長時間を要し、好ましくない。その上、多量の石油ワックス系潤滑剤の大部分が電池ケースの内外面に残存すると、電池性能を低下させるおそれがあり、また、電池ケースの外面側壁に塗布される塗料、または印刷インキの密着性を低下させることがあり好ましくない。したがって、電池ケースの連続生産性を阻害しなければ、塗布される石油ワックス系潤滑剤はできるだけ少量であることが好ましい。
【0018】
この石油ワックス系潤滑剤は、融点(Tm)〜Tm+100℃の温度に加熱して溶融し、上記の表面処理層上に塗布する。融点未満の温度では塗布が困難であり、Tm+100℃を越えた温度では揮発量が増加し、好ましくない。塗布方法としては、ロールにより塗布する方法、スプレーにより塗布する方法、静電塗布する方法のいずれも適用可能である。
【0019】
上記のように、石油ワックス系潤滑剤を塗布した電池ケース用表面処理鋼板を用いて、深絞り成形加工、DI成形加工、DS成形加工等の公知の成形加工法によって本発明の電池ケースが製造される。得られた電池ケースの内外面には用いた表面処理鋼板に塗布された石油ワックス系潤滑剤が付着している。しかしながら、得られた電池ケースに付着している石油ワックス系潤滑剤の一部は成形加工時の金型等に付着するため、用いた表面処理鋼板に塗布された量より多少は減少している。いずれにせよ、この石油ワックス系潤滑剤は高温において揮発するので、加熱により容易に除去することができる。電池ケースの加熱条件は塗布された石油ワックス系潤滑剤の種類、および塗布量にもよるが、200〜350℃という低温で1〜30分空気中で加熱するだけで、その大部分を揮散させることができる。
加熱温度が200℃以下では長時間加熱しても、十分揮散除去できず、電池ケースの生産性を阻害する。350℃以上の高温で加熱してもよいが、熱エネルギーの損失となり、経済的に好ましくない。なお、得られた電池ケースの加熱には電気オーブン、ガスオーブンのいずれも用いることができる。
【0020】
上記のようにして得られた表面処理鋼板に上記の石油ワックス系潤滑剤を塗布し、深絞り加工、または深絞り加工後しごき加工、あるいは深絞り加工後ストレッチ加工のいずれかの成形方法を用いて、底部と胴部が一体となった筒状のいわゆる2ピースの電池ケースに成形する。いずれの成形方法を採用するかは、加工の難易、電池用量、容器の強度等を考慮し、適宜選択する。成形した電池ケースを200〜350℃で、3〜30分加熱し、電池ケース表面に付着残存している石油ワックス系潤滑剤を除去する。200℃未満の加熱温度では30分を越えて加熱しても石油ワックス系潤滑剤を完全に揮発除去できない。石油ワックス系潤滑剤は加熱温度が高いほど揮発しやすくなり、加熱時間を短縮することが可能となるが、完全に揮発除去するためには少なくとも3分以上加熱する必要がある。一方、350℃を越える温度で加熱すると鋼板が軟化し、電池ケースの強度が低下する。以上の理由から、成形加工した電池ケースの加熱条件は200〜350℃の温度範囲で3〜30分に限定する。上記のようにして得られた電池ケースに、正極合剤、導電剤及び負極ゲルを充填して電池とする。
【0021】
以下、実施例と比較例によって、本発明を具体的に説明する。
(実施例)
板厚0.25mmの冷延および焼鈍済みの低炭素アルミキルド鋼板を金属めっきの原板として用いた。この原板の鋼の化学組成は下記の通りである。
C:0.03%(%は重量%、以下同じ)、Mn:0.18%、Si:0.01%、P:0.013%、S:0.12%、Al:0.054%、N:0.0038%
上記の鋼板を苛性ソーダ濃度:30g/l、浴温:80℃、陰極電流密度:10A/dm2、電解時間:20秒という条件でアルカリ陰極電解脱脂を施し、水洗後、硫酸濃度:50g/l、浴温:30℃、浸漬時間:5秒という条件で酸洗を施し、水洗後、下記に示す種々の条件で金属めっきを施した。
(1)ニッケルめっき条件
浴組成:
硫酸ニッケル320g/l、塩化ニッケル40g/l、ホウ酸30g/l、市販半光沢剤(不飽和アルコールポリオキシエチレン、不飽和カルボン酸含有)1.0g/l、ラウリル酸ソーダ0.5g/l。
pH:4.1〜4.6。
浴温度:55±2℃。
電流密度:15A/dm2
陽極:ニッケルペレット(チタンバスケットにニッケルペレットを充填、ポリプロピレン製バッグでチタンバスケットを覆う)。
(2)錫めっき条件
浴組成:硫酸第1錫30g/l、フェノールスルフォン酸(65%溶液)60g/l、エトキシ化α−ナフトール5g/l。
浴温度:50±2℃。
電流密度:20A/dm2
陽極:錫板。
(3)ニッケル−リン合金めっき条件
浴組成:硫酸ニッケル150g/l、塩化ニッケル80g/l、亜リン酸30g/l、
pH:0.6。
浴温度:50℃。
電流密度:3A/dm2
陽極:ニッケル鍍金に用いた陽極と同じ
【0022】
(実施例1〜3)
上記(1)に示す条件でニッケルめっきを施した。ニッケルめっき量は電解時間を変え、調整した。ニッケルめっき後、表1に示す石油ワックス系潤滑剤を塗布した。
【0023】
(実施例4〜6)
実施例1〜3で得られたニッケルめっき鋼板を水素が6.5%、残部が窒素からなり、露点が−40℃の非酸化性雰囲気中で、均熱温度が550℃、均熱時間が6時間という条件で熱処理を施し、ついで、伸び率1.0%の調質圧延を施した。得られた表面処理鋼板に表1に示す石油ワックス系潤滑剤を塗布した。
【0024】
(実施例7)
上記(1)に示す条件で20.0g/m2のニッケルめっきを施した後、上記(2)に示す条件で0.9g/m2の錫めっきを施し、空気中で抵抗加熱方式で表層をニッケル−錫合金化し、ついで表1に示す石油ワックス系潤滑剤を塗布した。
【0025】
(実施例8〜10)
上記(1)に示す条件でニッケルめっきを施した後、上記(2)に示す条件で錫めっきを施した表面処理鋼板を、水素が6.5%、残部が窒素からなり、露点が−40℃の非酸化性雰囲気中で、均熱温度が700℃、均熱時間3分という条件で熱処理を施し、ついで、伸び率1.2%の調質圧延を施した。得られた表面処理鋼板に表1に示す石油ワックス系潤滑剤を塗布した。なお、ニッケルめっき量および錫めっき量はそれぞれ電解時間を変え、調整した。
【0026】
(実施例11)
上記(1)に示す条件で18.0g/m2のニッケルめっきを施した後、上記(3)に示す条件で5.8g/m2のニッケル−リン合金めっき(リン含有量:12%)を施した。得られた表面処理鋼板に表1に示す石油ワックス系潤滑剤を塗布した。
【0027】
(実施例12〜14)
上記(1)に示す条件でニッケルめっきを施した後、上記(3)に示す条件でニッケル−リン合金めっき(リン含有量:10〜12%)を施した表面処理鋼板を、水素が5.5%、残部が窒素からなり、露点が−35℃の非酸化性雰囲気中で均熱温度650℃、均熱時間4時間という条件で熱処理を施し、ついで伸び率1.5%の調質圧延を施した。得られた表面処理鋼板に表1に示す石油ワックス系潤滑剤を塗布した。ニッケルめっき量、およびニッケル−リン合金めっき量はそれぞれ電解時間を変え、調整した。
【0028】
(比較例1)
上記(1)に示す条件で4.0g/mn2のニッケルめっきを施したニッケルめっき鋼板に表1に示す石油ワックス系潤滑剤を塗布した。
【0029】
(比較例2)
上記(1)に示す条件で20.5g/m2のニッケルめっきを施したニッケルめっき鋼板を実施例4〜6と同様な条件で熱処理、調質圧延を施し、ついで表1に示す石油ワックス系潤滑剤を塗布した。
【0030】
(比較例3)
上記(1)に示す条件で8.0g/m2のニッケルめっきを施した後、5.6g/m2の錫めっきを施し、空気中で抵抗加熱方式で熱処理を施した。得られた表面処理鋼板に表1に示す石油ワックス系潤滑剤を塗布した。
【0031】
(比較例4)
上記(1)に示す条件で35.0g/m2のニッケルめっきを施した後、上記(2)に示す条件で1.2g/m2の錫めっきを施した表面処理鋼板を、実施例8〜10と同様な条件で熱処理、調質圧延を施し、ついで表1に示す石油ワックス系潤滑剤を塗布した。
【0032】
(比較例5)
上記(1)に示す条件で35.0g/m2のニッケルめっきを施した後、上記(3)に示す条件でニッケル−リン合金めっき(ニッケル:5.5g/m2)を施した表面処理鋼板に表1に示す石油ワックス系潤滑剤を塗布した。
【0033】
(比較例6)
比較例5と同様な表面処理鋼板を実施例12〜14と同様な条件で熱処理、調質圧延を施し、ついで表1に示す石油ワックス系潤滑剤を塗布した。
【0034】
実施例1〜14および比較例1〜6で得られた表面処理鋼板の電池ケースの連続成形性、および電池性能を、つぎに示す方法を用い評価した。なお、評価結果は成形加工後の加熱条件とともに表3、および表4に示した。
【0035】
(1)電池ケース連続成形性の評価
実施例1〜14および比較例1〜6で得られた電池ケース用表面処理鋼板を、ブランクに打ち抜き、ついで8工程の絞り成形加工(絞り速度50ケース/分)でケース高さ49.3mm、ケース外径13.8mmの筒型ケースを連続成形した後、上部の開口端をトリミングし、電池ケースとした。
連続成形性の良否はつぎに示す基準で評価した。
◎:10000ケース以上連続成形でき、ケース側面に擦り疵の発生なし。
○:5000〜10000ケースはケース側面に擦り疵の発生なしに連続成形できるが、10000ケース以上でケース側面に擦り疵が発生。
△:2000〜5000ケース連続成形はケース側面に擦り疵の発生なしに連続成形できるが、5000ケース以上でケース側面に擦り疵が発生。
×:連続成形2000ケース以下であり、ケース側面に擦り疵が多発。
【0036】
(2)電池性能の評価
上記1に示す方法で得られた電池ケースを表3、および表4に示す条件で加熱処理を施した後、つぎに示す方法でアルカリマンガン電池を製造した。
まず、二酸化マンガンと黒鉛を重量比で10:1の割合で採取し、これに水酸化カリウム(8モル)を添加混合し、正極剤を作製した。ついで、この正極剤を金型中でプレスし、所定寸法のドーナッツ型の正極剤ペレットを作製し、得られた電池ケース内に挿入圧着した。
【0037】
つぎに、負極集電棒をスポット溶接した負極板を電池ケースに装着するため、電池ケース開口端の下部の所定位置をネックイン加工した。ついで、ビニロン製不織布からなるセパレータを、電池ケースに圧着したペレットの内周に沿って挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲルを電池ケース内に挿入した。
さらに、負極板に絶縁体のガスケットを装着し、これを電池ケース内に挿入亜した後カシメ加工を行い、アルカリマンガン電池を作製した。
このアルカリマンガン電池を、室温で24時間放置後、電池性能を測定した。電池性能は、交流インピーダンス(周波数1kHz)による内部抵抗値(mΩ)、1mΩ負荷時の短絡電流値(A)の2項目で評価した。なお、内部抵抗値、および短絡電流値の測定はいずれも20℃で行った。得られた電池ケースの連続成形性、および電池性能の評価結果は、電池ケースの加熱条件とともに、表3および表4に示した。
なお、表1、および表2において、表面処理鋼板に塗布された石油ワックス系潤滑剤の種類は下記の記号で表示した。
A:パラフィンワックス
B:マイクロクリスタリンワックス
C:流動パラフィン
D:ペトロレータム
E:白色ペトロレータム(ワセリン)
また、表3および表4において、総合評価は電池ケースの連続成形性に優れ、かつ、内部抵抗値が低く、短絡電流値が大であるものを◎、電池ケースの連続成形性は優れるが、電池性能が実用上問題ないが、やや劣るものを○、電池ケースの連続成形性、電池性能がいずれかが著しく劣るものを×で表示した。
【0038】
表3および表4の評価結果をまとめると、
(1)本発明の電池ケース用表面処理鋼板の中で、最表層がニッケル−錫合金系の表面処理鋼板(実施例7〜10)がニッケル系(実施例1〜6)およびニッケル−リン合金系(実施例11〜14)に比較し、電池性能が優れている。
(2)比較例1に示すニッケルめっき鋼板の電池性能が実施例1〜6に示すニッケル系表面処理鋼板より電池性能が劣るのは、ニッケルめっき量が少ないためであり、比較例2のニッケル系表面処理鋼板の電池ケースの連続成形性が劣るのは塗布された石油ワックス系潤滑剤が少ないためである。
(3)比較例3のニッケル−錫合金系表面処理鋼板の電池性能が劣るのは、塗布された石油ワックス系潤滑剤が多く、得られた電池ケースに多量の該潤滑剤が残存したこと、および最表層に金属錫が残存することによる。また、比較例4に示すニッケル−錫合金系の表面処理鋼板の電池性能が劣るのは、塗布された該潤滑剤が少量であるが、得られた電池ケースの加熱温度が低く、該潤滑剤が残存したためである。
(4)比較例5に示すニッケル−リン合金系表面処理鋼板は、塗布された該潤滑剤が少なく電池ケース連続成形性が劣る。その上、得られた電池ケースの加熱時間が短く、該潤滑剤が残存し、電池性能も劣る。
(5)比較例6に示すニッケル−リン合金系表面処理鋼板は、電池ケース連続成形性に優れ、かつ電池性能も実施例11〜14のニッケル−リン系表面処理鋼板と変わらないが、得られた電池ケースを長時間加熱した例であり、電池ケースの生産性およびコスト削減の観点より好ましくない例である。
これらの実施例、および比較例より、本発明の請求項に記載した電池ケース用表面処理鋼板が電池ケースの連続成形性に優れ、その上、該表面処理鋼板を用いた電池ケースを特定された条件で加熱処理後、作製した電池が優れた電池性能を有していることがわかる。
【表1】

Figure 0003539569
【表2】
Figure 0003539569
【表3】
Figure 0003539569
【表4】
Figure 0003539569
【0039】
【産業上の利用可能性】
本発明の電池ケース用表面処理鋼板は、電池ケースに成形加工する直前にブランク材や金型にその都度潤滑剤を塗布する従来の電池ケース用表面処理鋼板に比較し、効率的に成形加工することができる。その上、電池ケースに形成加工後は、塗布した潤滑剤を従来のように脱脂洗浄、乾燥することも不要であり、200〜350℃という低温で加熱処理するだけで、容易に大部分の潤滑剤を除去することができ、電池性能の優れた電池を効率的かつコスト削減が可能な製造方法を提供することが可能であり、その工業的な価値は極めて大である。[0001]
【Technical field】
The present invention relates to a surface-treated steel sheet for a battery case, a method for manufacturing the same, and a method for manufacturing a battery case using the surface-treated steel sheet. More specifically, the bottom part is formed by severe forming such as deep drawing, ironing (Drawing and Ironing, hereinafter abbreviated as DI), or stretching (Drawing and Stretch forming, abbreviated as DS). TECHNICAL FIELD The present invention relates to a surface-treated steel sheet suitable for a cylindrical battery case in which a body and a body are integrated, a method for manufacturing the same, and a method for manufacturing a battery case using the surface-treated steel sheet.
[0002]
[Background Art]
In recent years, nickel-plated steel sheet has been replaced by a method of manufacturing a battery case that encloses a strong alkaline solution used in alkaline manganese batteries and nickel cadmium batteries, etc. Alternatively, a method of forming a battery case by deep drawing a surface-treated steel sheet that has been subjected to a heat treatment after nickel plating has become mainstream. In particular, in recent years, a method of manufacturing a battery case by DI processing has been used from the viewpoint of increasing the battery capacity, reducing the material cost by making the body wall of the battery case thinner, and improving the battery capacity. Also, from the same viewpoint as above, a method of manufacturing a battery case by DS processing has been studied. With the widespread use of these battery case manufacturing methods, materials for battery cases that are not only excellent in battery performance but also excellent in moldability have come to be required. Generally, in the forming process of a battery case, a lubricant is applied to a battery case material such as a nickel-plated steel plate before a forming process such as an additional drawing process, and after the forming process, the lubricant is removed by degreasing and washing, The method of drying is adopted.
In the conventional method for manufacturing a battery case described above, it is necessary to apply a lubricant uniformly to the battery case material immediately before press forming, or to perform press working while dripping lubricating oil in a pressing step. Therefore, extremely complicated work is required. In addition, it is essential to perform two steps of forming the battery case, performing a degreasing cleaning of the applied lubricant, and drying after cleaning. As described above, the conventional method for manufacturing a battery case is very insufficient from the viewpoint of labor saving, water resources, and heat energy consumption.
[0003]
The present invention makes it possible to simultaneously solve the above-mentioned problems, and at the same time, a surface-treated steel sheet for a battery case excellent in battery performance and molding workability, a method for producing the same, and a battery case using the surface-treated steel sheet. It is an object of the present invention to provide a manufacturing method.
[0004]
DISCLOSURE OF THE INVENTION
The surface-treated steel sheet for a battery case according to claim 1 of the present invention,
A petroleum wax-based lubricant is applied on a surface treatment layer formed on a steel plate.
The surface-treated steel sheet for a battery case according to claim 2 is the method according to claim 1, wherein the surface-treated layer is a nickel layer, a nickel-phosphorus alloy layer, a nickel-iron alloy layer, a nickel-tin alloy layer, or a nickel-phosphorous-tin layer. It is characterized by being any one layer selected from an alloy layer and a nickel-tin-iron alloy layer.
The surface-treated steel sheet for a battery case according to claim 3 is characterized in that, in claim 1, the surface-treated layer is a nickel layer, a nickel-phosphorus alloy layer, a nickel-iron alloy layer, a nickel-tin alloy layer, a nickel-phosphorus alloy layer. It is a multi-layer comprising two or more types selected from a tin alloy layer and a nickel-tin-iron alloy layer.
The surface-treated steel sheet for a battery case according to claim 4 is the battery according to claim 2 or 3, wherein the amount of nickel contained in the surface treatment layer is 1 to 45 g / m 2. Two It is characterized by being.
In the surface-treated steel sheet for a battery case according to claim 5, in claim 1, the surface-treated layer is selected from a nickel-tin alloy layer, a nickel-phosphorus-tin alloy layer, and a nickel-tin-iron alloy layer. It is characterized by being composed of any one of the layers, and wherein the amount of tin contained in the surface treatment layer is 0.67 or less by weight with respect to the amount of nickel plating.
The surface-treated steel sheet for a battery case according to claim 6, wherein the petroleum wax-based lubricant according to any one of claims 1 to 5, wherein paraffin wax, microcrystalline wax, liquid paraffin, petrolatum, white petrolatum, polyethylene wax, It is characterized by being at least one of polypropylene wax and ethylene-propylene wax.
The surface-treated steel sheet for a battery case according to claim 7, wherein the coating amount of the petroleum wax-based lubricant according to claim 6 is 200 to 2000 mg / m 2. Two It is characterized by being.
The method for producing a surface-treated steel sheet for a battery case according to claim 8 of the present invention comprises:
After the steel sheet is degreased and pickled, subjected to plating or subjected to further heat treatment after plating to form a surface treatment layer, the steel sheet is heated to a melting point (Tm) of a petroleum wax-based lubricant to be applied to Tm + 100 ° C. It is characterized in that a petroleum wax-based lubricant melted by heating is applied to the surface.
The method of manufacturing a surface-treated steel sheet for a battery case according to claim 9 is the method according to claim 8, wherein the surface-treated layer is a nickel plating layer or a nickel-phosphorus alloy plating layer, or a two-layer structure including both layers. It is characterized by being.
The method for producing a surface-treated steel sheet for a battery case according to claim 10, wherein the steel sheet is degreased and pickled, nickel-plated or nickel-phosphorus alloy-plated, and then tin-plated thereon, and then in air or non-air. After applying a heat treatment in an oxidizing atmosphere to form a surface treatment layer, the steel plate is heated to the melting point (Tm) to Tm + 100 ° C of the petroleum wax-based lubricant to be applied, and the surface of the petroleum wax-based lubricant is heated and melted. It is characterized by applying a lubricant.
The method for producing a surface-treated steel sheet for a battery case according to claim 11 is the method according to claim 8, wherein the petroleum wax-based lubricant according to claim 6 is used in an amount of 200 to 2000 mg / m 2. Two It is characterized by being applied.
The method for manufacturing a battery case according to claim 12 of the present invention includes deep-drawing, ironing after deep-drawing, or deep-drawing the surface-treated steel sheet according to any one of claims 1 to 7. Stretching after processing or forming a cylindrical battery case with the bottom and body integrated, and then heating the case at 200-350 ° C for 3-30 minutes I do.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing a surface-treated steel sheet of the present invention, the steel sheet is subjected to heat treatment in air or a non-oxidizing atmosphere after metal plating or metal plating, and a petroleum wax-based lubricant is applied on the formed surface treatment layer. It is characterized by doing. The applied petroleum wax-based lubricant significantly improves the formability such as deep drawing, and does not require removal by degreasing after forming, and is obtained by heating at a temperature of 200 to 350 ° C. Most of the petroleum wax-based lubricant adhering to the battery case can be volatilized and removed, and a surface-treated steel sheet for a battery case and a battery case excellent in formability and capable of reducing costs can be obtained.
[0006]
Hereinafter, an embodiment of the present invention will be described in detail. First, the surface treatment layer formed on the steel sheet of the present invention will be described. In general, surface-treated steel sheets for battery cases have excellent alkali corrosion resistance, and when connecting the battery case to external terminals, have a stable and low contact resistance. It is required to have excellent spot weldability when assembling by welding. As a result of various studies from these viewpoints, the surface treated layers in the surface treated steel sheet for a battery case include a nickel plating layer, a nickel-phosphorus alloy plating layer, a nickel-iron alloy layer, a nickel-tin alloy layer, and a nickel-iron-tin layer. The above-mentioned requirement is that the alloy layer be a multilayer composed of any one or two or more kinds, that is, the presence of a nickel plating layer and / or a surface treatment layer composed of an alloy layer mainly composed of nickel on a steel sheet. It has been found that the required characteristics are sufficiently satisfied.
[0007]
For the formation of the surface treatment layer, a steel plate may be degreased and pickled by a known method, then washed with water, and the following method can be applied.
(1) Method by electroplating
(2) Method by electroless plating
(3) A method of performing heat treatment in a non-oxidizing atmosphere after electroplating
(4) A method of performing heat treatment in a non-oxidizing atmosphere after electroless plating
However, as a method of forming a surface treatment layer in the surface-treated steel sheet for a battery case of the present invention, electroplating is used rather than the methods (2) and (4) using electroless plating from the viewpoint of productivity ( The methods 1) and (3) are preferred.
As a method for forming a surface treatment layer by electroplating, the following method is used. For example, in order to form a nickel plating layer, a known Watt bath, sulfamic acid bath, borofluoride bath or chloride bath may be used, and electrolysis may be performed using a steel plate as a cathode. There is also a method of forming a nickel-iron alloy layer using a known nickel-iron alloy plating bath containing nickel ions and ferrous iron ions. In this case, however, only nickel and iron are eutectoid. In order to alloy nickel and iron, it is necessary to perform heat treatment in a non-oxidizing atmosphere, and after nickel plating, heat-treat in a non-oxidizing atmosphere and alloy all of the plated nickel. It is preferable from the viewpoints of conditions, plating bath management and the like. In the case of forming a nickel-tin alloy layer, similarly to the case of forming a nickel-iron alloy layer, there is a method of using a known nickel-tin alloy plating bath containing nickel ions and divalent tin ions. Nickel plating, tin plating or tin plating, and then nickel plating using a nickel plating bath and a tin bath, and heat treatment by a resistance heating method in air and / or an induction heating method known in the production of tinplate ( Reflow treatment) or a heat treatment in a non-oxidizing atmosphere.
[0008]
The method of applying nickel plating after tin plating and then performing heat treatment is not preferable because it is difficult to uniformly plate nickel on the plated tin layer. A more preferable method is a method in which tin plating is performed after nickel plating, and then heat treatment is performed.
Further, in the formation of the nickel-tin-iron alloy layer, similarly to the above, there is a method of performing a heat treatment after performing alloy plating using a plating bath containing all the respective ions, but the nickel-tin alloy layer is formed. As in the case, it is preferable from the same viewpoint that tin plating is performed after nickel plating or nickel-iron alloy plating and then heat treatment is performed in a non-oxidizing atmosphere.
[0009]
When a steel plate is subjected to nickel plating and subjected to a heat treatment in a non-oxidizing atmosphere, a nickel-iron alloy layer is formed between the nickel plating layer and the steel plate. In some cases, only nickel or nickel and a nickel-iron alloy coexist in the outermost layer. This can be selectively controlled by the nickel plating amount and heat treatment conditions. Similarly, when a steel sheet is nickel-plated, tin-plated, and then heat-treated in a non-oxidizing atmosphere, the nickel-iron alloy layer, the nickel-tin alloy layer, and the tin-plated layer are arranged from the side close to the steel sheet. These surface treatment layers may be formed or coexist on the outermost layer, and this can be easily selected and controlled by the nickel plating amount, tin plating amount, and heat treatment conditions. From the viewpoint of battery performance, it is not preferable that metal tin remains on the inner surface of the battery case, and the amount of tin plating applied to the inner surface of the battery case after the forming process is equal to the amount of nickel plating to be plated. It is necessary to limit the relationship with the amount, and to set the amount so that all the metallic tin is alloyed by the heat treatment. This will be described later. For forming the nickel-phosphorus alloy plating layer, a method using a known electroless plating bath is also applicable. However, from the viewpoint of productivity, a known nickel-phosphorus alloy plating bath (for example, Japanese Unexamined Patent Application Publication No. Is preferred.
[0010]
Although the outermost surface of the surface treatment layer in the battery case surface-treated steel sheet of the present invention is preferably a nickel plating layer or an alloy layer mainly composed of nickel from the viewpoint of battery performance, the nickel plating amount is 5-45g / m Two Is preferred, 15-35 g / m Two Is more preferable. Nickel plating amount is 5g / m Two If it is below, the surface of the steel sheet cannot be sufficiently covered, and a surface-treated steel sheet having excellent battery performance cannot be obtained. Also, nickel plating amount is 45g / m Two If it exceeds, the battery performance is saturated, and the cost is not advantageous.
[0011]
Next, in forming the nickel-tin alloy layer, it is necessary to convert all tin plated on the inner surface of the battery case into a nickel-tin alloy by molding. If part of the plated tin remains as metallic tin after alloying with nickel, the tin dissolves in potassium hydroxide, which is an electrolyte of an alkaline battery, and generates hydrogen, which is not preferable because battery performance is significantly impaired. In the heat treatment step, when heated at a temperature of 700 ° C. or less, the formed nickel and tin alloy composition is mainly Ni Three Sn, Ni Three Sn Two , Ni Three Sn Four Consists of Among these alloy compositions, the alloy composition of Ni, which has the smallest ratio of tin to nickel, Three Plating a smaller amount of tin than required to form Sn (Ni: Sn atomic weight ratio of 3: 1) will result in all tin alloying with nickel. That is, the amount of tin plating may be at least 1/3 or less in atomic weight ratio with respect to the amount of nickel plating. Here, since the atomic weight of tin is 118.6 and the atomic weight of nickel is 58.7, if the plating amount of tin is about 0.67 as shown in the following formula, the Ni: Sn The atomic weight ratio becomes 3: 1. That is, the ratio of the amount of tin plating / the amount of nickel plating = 118.6 / (58.7 × 3) = about 0.67.
When tin plating is performed at a ratio exceeding the above value (about 0.67), there is a possibility that metallic tin may remain even after the heat treatment, which is not preferable in battery performance as described above. Further, even if it does not remain as metallic tin, it becomes a nickel-tin alloy layer having a high tin content ratio. An increase in the tin content ratio in the nickel-tin alloy layer is not preferable because battery performance may be reduced. Therefore, the weight ratio of the tin plating amount to the nickel plating amount is set to 0.67 or less.
[0012]
A more preferred form of the battery case surface-treated steel sheet of the present invention is a nickel-iron alloy layer, a nickel-tin alloy layer, or a steel sheet from the side where the surface treatment layer on the inner surface of the battery case after molding is in contact with the steel sheet. It is composed of a nickel-iron alloy layer and a nickel-tin-iron alloy layer from the contact side, and in any case, the outermost surface of the surface treatment layer is composed of a nickel-tin alloy layer or a nickel-tin-iron alloy layer It is more preferable that the plating is performed by a plating layer made of nickel alone. This nickel-tin alloy layer or nickel-tin-iron alloy layer shows extremely excellent battery performance. For example, the contact internal resistance of the battery is significantly reduced. Although the reason for this cannot be explained clearly, the nickel-tin alloy layer or the nickel-tin-iron alloy layer alloy layer has an infinite number of cracks with extremely irregularities formed on the surface thereof due to the forming process. It is considered that the contact area between the positive electrode mixture and the inner surface of the battery case decreases due to the increase in the contact area with the mixture. Alternatively, it is presumed that the influence of the physical property value of the alloy itself (for example, the electric resistance value is low).
[0013]
In the configuration of the more preferable surface treatment layer described above, a nickel-iron alloy layer on the side in contact with the steel sheet and a metal nickel layer as an intermediate layer of a nickel-tin alloy layer or a nickel-tin-iron alloy layer formed thereon. May be present, but it does not particularly hinder the battery performance, but rather has the effect of improving the corrosion resistance, which is preferable.
[0014]
Next, a case of performing heat treatment in a non-oxidizing atmosphere after metal plating, which is one mode of a method for manufacturing a surface-treated steel sheet for a battery case of the present invention, will be described. It is preferable to perform this heat treatment in a non-oxidizing atmosphere in order to prevent oxidation of the outermost surface of the surface treatment layer. However, when tin plating is applied after nickel plating and then both are alloyed by heat treatment, nickel and tin are alloyed at a temperature of 232 ° C. or higher, which is the melting temperature of tin in the air, so it is common in tinplate production. A method of heating for a short time by a resistance heating method and / or an induction heating method used in the method can be used. When a nickel-iron alloy layer is formed below the nickel-tin alloy layer to further improve corrosion resistance, nickel hardly diffuses into the steel base at a heating temperature about the melting temperature of tin. It is necessary to perform heat treatment at a temperature of at least 450 ° C. in an oxidizing atmosphere. Specifically, heating at 450 to 850 ° C. for 30 seconds to 15 hours is required.
[0015]
As a method of heat-treating a metal-plated steel sheet, a box-type annealing method and a continuous annealing method are known, but in the present invention, any of these methods is applicable, and in the continuous annealing method, 600 to 850 ° C. for 30 seconds. In the box-type annealing method, heat treatment at 450 to 650 ° C. for 5 to 15 hours is preferable. In the case of forming a nickel-tin-iron alloy layer, it is necessary to perform a heat treatment at a relatively high temperature for a long time to mutually diffuse the three element components. When heat treatment is performed in this way, temper rolling is necessary after heat treatment in order to prevent stretcher strain caused by heat treatment. Since the temper rolling is the final finish rolling, by changing the surface roughness of the work roll used in the temper rolling, the desired surface roughness and surface appearance such as bright finish and dull finish can be obtained.
[0016]
Next, a petroleum wax-based lubricant applied to the above-mentioned surface treatment layer, which is a feature of the surface-treated steel sheet for a battery case of the present invention, and a method of applying the same will be described.
The applied petroleum wax-based lubricant is selected from paraffin wax, microcrystalline wax, liquid paraffin, petrolatum, white petrolatum (vaseline), polyethylene wax, polypropylene wax, and ethylene-propylene wax. These lubricants have a melting point of 35 to 80 ° C, depending on the oxidation state, and generally have a solid or jelly-like shape at room temperature, become fluid when heated at a low temperature, and become easy to apply. Is also easy. In addition, by heating the battery case at a temperature of 200 to 350 ° C. for about 3 to 30 minutes after forming the battery case, the applied petroleum wax-based lubricant can be easily volatilized and removed. In particular, white petroleum (trade name: Sonojell-9, sold by Shima Trading Co., Ltd.) has a melting point of about 42 ° C., and can be removed only by heating at a low temperature for a short time.
[0017]
The amount of petroleum wax-based lubricant applied on the formed surface treatment layer is 200-2000mg / m Two Is preferred, 200 to 500 mg / m Two Is more preferable. 200mg / m Two If it is below, for example, it is not possible to continuously deep-draw more than 10,000 cases at a speed of 50 cases / minute, which not only impairs the continuous productivity of the battery case, but also obtains a side surface of the obtained battery case. May be scratched, and the mold may be worn too much, which is not preferable. In addition, the application amount is 2000mg / m Two Above, it is possible to continuously deep-draw more than 10,000 cases at the same speed, but the amount of the lubricant adhering to the surface of the obtained battery case is large, and volatilization by heating is caused. Removal takes a long time, which is not preferable. In addition, if most of a large amount of petroleum wax-based lubricant remains on the inner and outer surfaces of the battery case, the battery performance may be deteriorated, and the paint or printing ink applied to the outer surface side wall of the battery case may adhere. It is not preferable because the properties may be reduced. Therefore, as long as the continuous productivity of the battery case is not hindered, it is preferable that the applied petroleum wax-based lubricant be as small as possible.
[0018]
This petroleum wax-based lubricant is melted by heating to a temperature of melting point (Tm) to Tm + 100 ° C., and is applied on the above-mentioned surface treatment layer. If the temperature is lower than the melting point, application is difficult, and if the temperature exceeds Tm + 100 ° C., the amount of volatilization increases, which is not preferable. As a coating method, any of a method of applying by a roll, a method of applying by spraying, and a method of electrostatic applying can be applied.
[0019]
As described above, the battery case of the present invention is manufactured using a surface-treated steel sheet for a battery case coated with a petroleum wax-based lubricant by a known forming method such as deep drawing, DI forming, or DS forming. Is done. A petroleum wax-based lubricant applied to the used surface-treated steel sheet adheres to the inner and outer surfaces of the obtained battery case. However, since a part of the petroleum wax-based lubricant attached to the obtained battery case adheres to the mold and the like at the time of molding, the amount is slightly reduced from the amount applied to the used surface-treated steel sheet. . In any case, since the petroleum wax-based lubricant volatilizes at high temperature, it can be easily removed by heating. The heating conditions of the battery case depend on the type of petroleum wax-based lubricant applied and the amount of application, but most of them can be volatilized by heating in air at a low temperature of 200-350 ° C for 1-30 minutes. be able to.
If the heating temperature is 200 ° C. or lower, even if the heating is performed for a long time, sufficient volatilization and removal cannot be performed, which hinders the productivity of the battery case. Although heating may be performed at a high temperature of 350 ° C. or more, heat energy is lost, which is not economically preferable. In addition, any of an electric oven and a gas oven can be used for heating the obtained battery case.
[0020]
Apply the above-mentioned petroleum wax-based lubricant to the surface-treated steel sheet obtained as described above, and use any forming method of deep drawing, ironing after deep drawing, or stretching after deep drawing. Then, it is formed into a cylindrical so-called two-piece battery case in which the bottom and the body are integrated. Which molding method is used is appropriately selected in consideration of processing difficulty, battery capacity, container strength, and the like. The molded battery case is heated at 200 to 350 ° C. for 3 to 30 minutes to remove the petroleum wax-based lubricant remaining on the battery case surface. If the heating temperature is lower than 200 ° C, the petroleum wax-based lubricant cannot be completely volatilized and removed even if the heating is performed for more than 30 minutes. The petroleum wax-based lubricant is more likely to volatilize as the heating temperature is higher, and the heating time can be shortened. However, it is necessary to heat at least 3 minutes or more in order to completely volatilize and remove. On the other hand, when heated at a temperature exceeding 350 ° C., the steel sheet softens and the strength of the battery case decreases. For the above reasons, the heating conditions of the molded battery case are limited to a temperature range of 200 to 350 ° C. for 3 to 30 minutes. The battery case obtained as described above is filled with the positive electrode mixture, the conductive agent, and the negative electrode gel to form a battery.
[0021]
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(Example)
A cold-rolled and annealed low carbon aluminum killed steel sheet having a thickness of 0.25 mm was used as a base plate for metal plating. The chemical composition of the steel of this master plate is as follows.
C: 0.03% (% is% by weight, the same applies hereinafter), Mn: 0.18%, Si: 0.01%, P: 0.013%, S: 0.12%, Al: 0.054%, N: 0.0038%
Caustic soda concentration: 30 g / l, bath temperature: 80 ° C, cathode current density: 10 A / dm Two Electrolysis time: subjected to alkaline cathodic electrolytic degreasing under the condition of 20 seconds, washed with water, sulfuric acid concentration: 50 g / l, bath temperature: 30 ° C, immersion time: subjected to pickling under the condition of 5 seconds, washed with water, Metal plating was performed under various conditions shown.
(1) Nickel plating conditions
Bath composition:
Nickel sulfate 320g / l, nickel chloride 40g / l, boric acid 30g / l, commercially available semi-brightener (containing unsaturated alcohol polyoxyethylene, unsaturated carboxylic acid) 1.0g / l, sodium laurate 0.5g / l.
pH: 4.1-4.6.
Bath temperature: 55 ± 2 ° C.
Current density: 15A / dm Two .
Anode: Nickel pellets (fill titanium baskets with nickel pellets, cover titanium baskets with polypropylene bags).
(2) Tin plating conditions
Bath composition: stannous sulfate 30 g / l, phenolsulfonic acid (65% solution) 60 g / l, ethoxylated α-naphthol 5 g / l.
Bath temperature: 50 ± 2 ° C.
Current density: 20A / dm Two ,
Anode: tin plate.
(3) Nickel-phosphorus alloy plating conditions
Bath composition: nickel sulfate 150g / l, nickel chloride 80g / l, phosphorous acid 30g / l,
pH: 0.6.
Bath temperature: 50 ° C.
Current density: 3A / dm Two .
Anode: Same as the anode used for nickel plating
[0022]
(Examples 1 to 3)
Nickel plating was performed under the conditions shown in (1) above. The nickel plating amount was adjusted by changing the electrolysis time. After nickel plating, a petroleum wax-based lubricant shown in Table 1 was applied.
[0023]
(Examples 4 to 6)
The nickel-plated steel sheets obtained in Examples 1 to 3 were 6.5% hydrogen, the balance being nitrogen, in a non-oxidizing atmosphere having a dew point of -40 ° C, a soaking temperature of 550 ° C, and a soaking time of 6 hours. And then temper rolling at an elongation of 1.0%. A petroleum wax-based lubricant shown in Table 1 was applied to the obtained surface-treated steel sheet.
[0024]
(Example 7)
20.0g / m under the conditions shown in (1) above Two 0.9g / m2 under the conditions shown in (2) above Two And the surface layer was nickel-tin alloyed by a resistance heating method in air, and a petroleum wax-based lubricant shown in Table 1 was applied.
[0025]
(Examples 8 to 10)
After nickel plating under the conditions shown in (1) above, the surface-treated steel sheet subjected to tin plating under the conditions shown in (2) above was converted to 6.5% hydrogen, the balance being nitrogen, and a dew point of -40 ° C. In a non-oxidizing atmosphere, heat treatment was performed under the conditions of a soaking temperature of 700 ° C. and a soaking time of 3 minutes, followed by temper rolling at an elongation of 1.2%. A petroleum wax-based lubricant shown in Table 1 was applied to the obtained surface-treated steel sheet. The amount of nickel plating and the amount of tin plating were adjusted by changing the electrolysis time.
[0026]
(Example 11)
18.0g / m under the conditions shown in (1) above Two 5.8g / m2 under the conditions shown in (3) above Two Nickel-phosphorus alloy plating (phosphorus content: 12%). A petroleum wax-based lubricant shown in Table 1 was applied to the obtained surface-treated steel sheet.
[0027]
(Examples 12 to 14)
After nickel plating under the conditions shown in (1) above, the surface-treated steel sheet subjected to nickel-phosphorus alloy plating (phosphorus content: 10 to 12%) under the conditions shown in the above (3) was converted to 5.5% hydrogen. The remainder was made of nitrogen and heat-treated in a non-oxidizing atmosphere having a dew point of -35 ° C under the conditions of a soaking temperature of 650 ° C and a soaking time of 4 hours, followed by temper rolling at an elongation of 1.5%. A petroleum wax-based lubricant shown in Table 1 was applied to the obtained surface-treated steel sheet. The nickel plating amount and the nickel-phosphorus alloy plating amount were each adjusted by changing the electrolysis time.
[0028]
(Comparative Example 1)
4.0g / mn under the conditions shown in (1) above Two A petroleum wax-based lubricant shown in Table 1 was applied to a nickel-plated steel sheet plated with nickel.
[0029]
(Comparative Example 2)
20.5g / m under the conditions shown in (1) above Two The nickel-plated nickel-plated steel sheet was subjected to heat treatment and temper rolling under the same conditions as in Examples 4 to 6, and then a petroleum wax-based lubricant shown in Table 1 was applied.
[0030]
(Comparative Example 3)
8.0g / m under the conditions shown in (1) above Two 5.6g / m after nickel plating Two And heat-treated in air by a resistance heating method. A petroleum wax-based lubricant shown in Table 1 was applied to the obtained surface-treated steel sheet.
[0031]
(Comparative Example 4)
35.0g / m under the conditions shown in (1) above Two After nickel plating of 1.2 g / m2 under the conditions shown in (2) above Two The tin-plated surface-treated steel sheet was subjected to heat treatment and temper rolling under the same conditions as in Examples 8 to 10, and then a petroleum wax-based lubricant shown in Table 1 was applied.
[0032]
(Comparative Example 5)
35.0g / m under the conditions shown in (1) above Two After nickel plating, nickel-phosphorus alloy plating (nickel: 5.5 g / m Two ) Was coated with a petroleum wax-based lubricant shown in Table 1.
[0033]
(Comparative Example 6)
The same surface-treated steel sheet as in Comparative Example 5 was subjected to heat treatment and temper rolling under the same conditions as in Examples 12 to 14, and then a petroleum wax-based lubricant shown in Table 1 was applied.
[0034]
The continuous formability and battery performance of the battery case of the surface-treated steel sheets obtained in Examples 1 to 14 and Comparative Examples 1 to 6 were evaluated using the following methods. The evaluation results are shown in Tables 3 and 4 together with the heating conditions after the forming.
[0035]
(1) Evaluation of battery case continuous formability
The surface-treated steel sheets for battery cases obtained in Examples 1 to 14 and Comparative Examples 1 to 6 were punched into blanks, and were then subjected to eight steps of drawing (a drawing speed of 50 cases / min) to a case height of 49.3 mm and a case of 49.3 mm. After continuously forming a cylindrical case having an outer diameter of 13.8 mm, the upper open end was trimmed to obtain a battery case.
The quality of the continuous formability was evaluated according to the following criteria.
◎: Continuous molding of 10,000 cases or more, no scratches on the side of the case.
:: 5000 to 10,000 cases can be continuously formed without scratches on the side of the case, but scratches occur on the side of the case with 10,000 or more cases.
Δ: 2000 to 5000 case continuous molding can be performed continuously without occurrence of scratches on the side of the case, but scratches occur on the side of the case after 5000 cases or more.
×: Less than 2000 cases of continuous molding, with many scratches on the side of the case.
[0036]
(2) Evaluation of battery performance
After the battery case obtained by the method shown in the above 1 was subjected to heat treatment under the conditions shown in Tables 3 and 4, an alkaline manganese battery was manufactured by the following method.
First, manganese dioxide and graphite were collected at a weight ratio of 10: 1, and potassium hydroxide (8 mol) was added thereto and mixed to prepare a positive electrode agent. Next, the positive electrode material was pressed in a mold to produce a donut-shaped positive electrode material pellet having a predetermined size, and was inserted and crimped into the obtained battery case.
[0037]
Next, in order to mount the negative electrode plate on which the negative electrode current collector rod was spot-welded to the battery case, a predetermined position below the opening end of the battery case was neck-in processed. Next, a separator made of vinylon nonwoven fabric was inserted along the inner periphery of the pellet pressed into the battery case, and a negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide was inserted into the battery case.
Further, an insulator gasket was mounted on the negative electrode plate, inserted into a battery case, and then caulked to produce an alkaline manganese battery.
After leaving the alkaline manganese battery at room temperature for 24 hours, the battery performance was measured. The battery performance was evaluated by two items: an internal resistance value (mΩ) based on AC impedance (frequency 1 kHz), and a short-circuit current value (A) under a load of 1 mΩ. The measurement of the internal resistance value and the short-circuit current value were all performed at 20 ° C. The evaluation results of the continuous formability and battery performance of the obtained battery case are shown in Tables 3 and 4 together with the heating conditions of the battery case.
In Tables 1 and 2, the type of petroleum wax-based lubricant applied to the surface-treated steel sheet is indicated by the following symbols.
A: Paraffin wax
B: Microcrystalline wax
C: Liquid paraffin
D: Petrolatum
E: White petrolatum (Vaseline)
In Tables 3 and 4, the overall evaluation was excellent when the battery case was excellent in continuous formability, and the internal resistance was low and the short-circuit current value was large. The battery performance was not problematic in practice, but was slightly inferior, and the one in which the continuous formability of the battery case or the battery performance was extremely poor was indicated by x.
[0038]
To summarize the evaluation results in Tables 3 and 4,
(1) Among the surface-treated steel sheets for a battery case of the present invention, the outermost layer is a nickel-tin alloy-based surface-treated steel sheet (Examples 7 to 10) is a nickel-based (Examples 1 to 6) and nickel-phosphorus alloy Compared with the system (Examples 11 to 14), the battery performance was excellent.
(2) The battery performance of the nickel-plated steel sheet shown in Comparative Example 1 was inferior to that of the nickel-based surface-treated steel sheets shown in Examples 1 to 6 because the nickel plating amount was small. The continuous formability of the battery case made of the surface-treated steel sheet is inferior because the amount of the applied petroleum wax-based lubricant is small.
(3) The inferior battery performance of the nickel-tin alloy-based surface-treated steel sheet of Comparative Example 3 is due to a large amount of the applied petroleum wax-based lubricant and a large amount of the lubricant remaining in the obtained battery case; And that metallic tin remains in the outermost layer. The battery performance of the nickel-tin alloy-based surface-treated steel sheet shown in Comparative Example 4 was inferior because the amount of the applied lubricant was small, but the heating temperature of the obtained battery case was low, Was left.
(4) The nickel-phosphorus alloy-based surface-treated steel sheet shown in Comparative Example 5 has a small amount of the applied lubricant and is inferior in battery case continuous formability. In addition, the heating time of the obtained battery case is short, the lubricant remains, and the battery performance is poor.
(5) The nickel-phosphorus alloy-based surface-treated steel sheet shown in Comparative Example 6 is excellent in battery case continuous formability and has the same battery performance as the nickel-phosphorus-based surface-treated steel sheets of Examples 11 to 14, but is obtained. This is an example in which the heated battery case is heated for a long time, which is not preferable from the viewpoint of productivity and cost reduction of the battery case.
From these Examples and Comparative Examples, the surface-treated steel sheet for a battery case described in the claims of the present invention was excellent in the continuous formability of the battery case, and further, a battery case using the surface-treated steel sheet was identified. It can be seen that after the heat treatment under the conditions, the manufactured battery has excellent battery performance.
[Table 1]
Figure 0003539569
[Table 2]
Figure 0003539569
[Table 3]
Figure 0003539569
[Table 4]
Figure 0003539569
[0039]
[Industrial applicability]
The surface-treated steel sheet for a battery case of the present invention is formed more efficiently than a conventional surface-treated steel sheet for a battery case in which a lubricant is applied to a blank material or a mold each time immediately before being formed into a battery case. be able to. In addition, after forming the battery case, it is not necessary to degrease, wash and dry the applied lubricant as in the past. It is possible to provide a manufacturing method capable of removing the agent and efficiently and reducing the cost of a battery having excellent battery performance, and its industrial value is extremely large.

Claims (12)

鋼板上に形成された表面処理層の上に、石油ワックス系潤滑剤が塗布されてなる電池ケース用表面処理鋼板。A surface-treated steel sheet for a battery case in which a petroleum wax-based lubricant is applied on a surface-treated layer formed on the steel sheet. 前記表面処理層が、ニッケル層、ニッケル−リン合金層、ニッケル−鉄合金層、ニッケル−錫合金層、ニッケル−リンー錫合金層、ニッケル−錫−鉄合金層から選ばれたいずれか1の層であることを特徴とする請求項1に記載の電池ケース用表面処理鋼板。The surface treatment layer is any one layer selected from a nickel layer, a nickel-phosphorus alloy layer, a nickel-iron alloy layer, a nickel-tin alloy layer, a nickel-phosphorus-tin alloy layer, and a nickel-tin-iron alloy layer The surface-treated steel sheet for a battery case according to claim 1, wherein: 前記表面処理層が、ニッケル層、ニッケル−リン合金層、ニッケル−鉄合金層、ニッケル−錫合金層、ニッケル−リン−錫合金層、ニッケル−錫−鉄合金層から選ばれた2種以上からなる複層である請求項1に記載の電池ケース用表面処理鋼板。The surface treatment layer is a nickel layer, a nickel-phosphorus alloy layer, a nickel-iron alloy layer, a nickel-tin alloy layer, a nickel-phosphorus-tin alloy layer, and a nickel-tin-iron alloy layer selected from two or more. The surface-treated steel sheet for a battery case according to claim 1, wherein the steel sheet is a multilayered steel sheet. 前記表面処理層に含まれるニッケル量が、1〜45g/m2である請求項2又は3に記載の電池ケース用表面処理鋼板。4. The surface-treated steel sheet for a battery case according to claim 2 , wherein the amount of nickel contained in the surface-treated layer is 1 to 45 g / m 2. 5 . 前記表面処理層が、ニッケル−錫合金層、ニッケル−リン−錫合金層、ニッケル−錫−鉄合金層から選ばれたいずれか1の層からなり、かつ該表面処理層に含まれる錫量がニッケルめっき量に対して重量比で0.67以下である請求項1に記載の電池ケース用表面処理鋼板。The surface treatment layer is composed of any one layer selected from a nickel-tin alloy layer, a nickel-phosphorus-tin alloy layer, and a nickel-tin-iron alloy layer, and the amount of tin contained in the surface treatment layer is The surface-treated steel sheet for a battery case according to claim 1, wherein the weight ratio is 0.67 or less with respect to the nickel plating amount. 前記石油ワックス系潤滑剤が、パラフィンワックス、マイクロクリスタリンワックス、流動パラフィン、ペトロレータム、白色ペトロレータム、ポリエチレンワックス、ポリプロピレンワックス、エチレンープロピレンワックスの少なくともいずれか1種である請求項1〜5のいずれかに記載の電池ケース用表面処理鋼板。The petroleum wax-based lubricant is at least one of paraffin wax, microcrystalline wax, liquid paraffin, petroleum, white petroleum, polyethylene wax, polypropylene wax, and ethylene-propylene wax. The surface-treated steel sheet for a battery case according to the above. 前記石油ワックス系潤滑剤の塗布量が、200〜2000mg/m2である請求項6に記載の電池ケース用表面処理鋼板。The coating amount of petroleum wax-based lubricant, a surface treated steel sheet for a battery case according to claim 6 which is 200 to 2000 / m 2. 鋼板を脱脂し酸洗い、めっきを施しあるいはめっき後さらに熱処理を施して表面処理層を形成した後、その鋼板を塗布しようとする石油ワックス系潤滑剤の融点(Tm)〜Tm+100℃に加熱し、その表面に加熱溶融した石油ワックス系潤滑剤を塗布することを特徴とする電池ケース用表面処理鋼板の製造方法。After the steel sheet is degreased and pickled, subjected to plating or subjected to further heat treatment after plating to form a surface treatment layer, the steel sheet is heated to the melting point (Tm) of the petroleum wax-based lubricant to be applied to Tm + 100 ° C. A method for producing a surface-treated steel sheet for a battery case, comprising applying a petroleum wax-based lubricant heated and melted to the surface thereof. 前記表面処理層が、ニッケルめっき層又はニッケル−リン合金めっき層であるか、あるいはその両層からなる2層である請求項8に記載の電池ケース用表面処理鋼板の製造方法。The method for producing a surface-treated steel sheet for a battery case according to claim 8, wherein the surface-treated layer is a nickel-plated layer or a nickel-phosphorus alloy-plated layer, or is a two-layer structure comprising both layers. 鋼板を脱脂し酸洗い、ニッケルめっき又はニッケル−リン合金めっきをした後、さらにその上に錫めっきをし、ついで空気中または非酸化性雰囲気中で熱処理を施して表面処理層を形成した後、その鋼板を塗布しようとする石油ワックス系潤滑剤の融点(Tm)〜Tm+100℃に加熱し、その表面に加熱溶融した石油ワックス系潤滑剤を塗布することを特徴とする電池ケース用表面処理鋼板の製造方法。After the steel sheet is degreased and pickled, nickel-plated or nickel-phosphorus alloy-plated, and further tin-plated thereon, and then heat-treated in air or a non-oxidizing atmosphere to form a surface-treated layer, Heating the petroleum wax-based lubricant to the melting point (Tm) to Tm + 100 ° C of the petroleum wax-based lubricant to which the steel sheet is to be applied, and applying the heat-melted petroleum wax-based lubricant to the surface thereof, Production method. 請求項6記載の石油ワックス系潤滑剤を、200〜2000mg/m2塗布することを特徴とする請求項8に記載の電池ケース用表面処理鋼板の製造方法。The claim 6 petroleum wax-based lubricant as claimed method for producing a battery case for surface treated steel sheet according to claim 8, characterized in that the coating 200 to 2000 / m 2. 請求項1〜7のいずれかに記載の表面処理鋼板を、深絞り加工するか、深絞り加工後しごき加工するか、あるいは深絞り加工後ストレッチ加工するかして、底部と胴部が一体となった筒状の電池ケースを形成し、ついで、そのケースを200〜350℃で、3〜30分間加熱処理を施すことを特徴とする電池ケースの製造方法。By subjecting the surface-treated steel sheet according to any one of claims 1 to 7 to deep drawing, ironing after deep drawing, or stretching after deep drawing, the bottom and the body are integrally formed. A method of manufacturing a battery case, comprising: forming a cylindrical battery case, and then subjecting the case to heat treatment at 200 to 350 ° C. for 3 to 30 minutes.
JP53975197A 1996-05-09 1997-05-09 Surface-treated steel sheet for battery case, method of manufacturing the same, method of manufacturing battery case Expired - Fee Related JP3539569B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13775196 1996-05-09
PCT/JP1997/001577 WO1997042668A1 (en) 1996-05-09 1997-05-09 Surface-treatment steel plate for battery case, its manufacture, battery case and battery

Publications (1)

Publication Number Publication Date
JP3539569B2 true JP3539569B2 (en) 2004-07-07

Family

ID=15205990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53975197A Expired - Fee Related JP3539569B2 (en) 1996-05-09 1997-05-09 Surface-treated steel sheet for battery case, method of manufacturing the same, method of manufacturing battery case

Country Status (4)

Country Link
JP (1) JP3539569B2 (en)
AU (1) AU2652297A (en)
TW (1) TW430698B (en)
WO (1) WO1997042668A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065672A1 (en) * 1999-04-23 2000-11-02 Toyo Kohan Co., Ltd. Battery case and surface treated steel sheet for battery case
WO2001042537A1 (en) * 1999-12-09 2001-06-14 Toyo Kohan Co., Ltd. Surface treated steel sheet for battery case, battery case using it, and battery using the case
KR100696929B1 (en) * 2002-04-22 2007-03-20 도요 고한 가부시키가이샤 Surface treated steel sheet for battery case, battery case and battery using the case
CN101147909B (en) 2002-05-20 2010-06-09 松下电器产业株式会社 Washing method
JP4798953B2 (en) * 2003-11-21 2011-10-19 東洋鋼鈑株式会社 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4817724B2 (en) * 2004-08-23 2011-11-16 東洋鋼鈑株式会社 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4698205B2 (en) * 2004-11-11 2011-06-08 東洋鋼鈑株式会社 Steel plate for battery case, surface-treated steel plate for battery case, battery case and battery
JP4851708B2 (en) * 2004-12-15 2012-01-11 セイコーインスツル株式会社 Alkaline battery and manufacturing method thereof
JP2012114097A (en) * 2004-12-27 2012-06-14 Toyo Kohan Co Ltd Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container
JP4911952B2 (en) * 2005-01-11 2012-04-04 東洋鋼鈑株式会社 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP5245858B2 (en) * 2009-01-21 2013-07-24 新日鐵住金株式会社 Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle
JP2011084304A (en) * 2009-10-15 2011-04-28 Central Kikai Shoji Kk Method for printing information on resin surface by ink jet printer
CN102117896B (en) * 2011-01-28 2012-12-05 福建南平南孚电池有限公司 Line rolling method of cylindrical battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920000B2 (en) * 1981-02-20 1984-05-10 松下電器産業株式会社 Rust prevention and drying method after plating steel battery cases
JPH0577357A (en) * 1991-09-20 1993-03-30 Sumitomo Metal Ind Ltd Resin coated composite steel plate excellent in after-processing appearance
JP2963318B2 (en) * 1993-10-25 1999-10-18 東洋鋼鈑株式会社 Surface treated steel sheet for battery case and battery case

Also Published As

Publication number Publication date
WO1997042668A1 (en) 1997-11-13
AU2652297A (en) 1997-11-26
TW430698B (en) 2001-04-21

Similar Documents

Publication Publication Date Title
US5993994A (en) Surface treated steel sheet for battery containers, a battery container, and a battery produced thereof
JP3539569B2 (en) Surface-treated steel sheet for battery case, method of manufacturing the same, method of manufacturing battery case
WO2002013289A1 (en) Surface-treated steel plate for battery case and battery case
KR100428831B1 (en) Surface-treated steel plate for battery case, battery case and battery using the case
KR20040097285A (en) Surface treated steel sheet for battery case, battery case and battery using the case
JP3432521B2 (en) Plated steel sheet for battery case, method for manufacturing the same, battery case, and battery
JP2963318B2 (en) Surface treated steel sheet for battery case and battery case
JP3439912B2 (en) Battery can material excellent in deep drawability and method for producing the same
JP2534604B2 (en) Highly workable nickel-tin plated steel strip for battery cases
JP3272866B2 (en) Surface treated steel sheet for alkaline battery case, alkaline battery case and alkaline battery
EP1111697A1 (en) Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
JP2784746B2 (en) Battery case
WO2004018739A1 (en) Surface treated steel plate for battery cases and battery case using same
JP3631143B2 (en) Battery case and surface-treated steel sheet for battery case
JP3664046B2 (en) Method for producing Ni-plated steel sheet for positive electrode can of alkaline manganese battery
JP3678347B2 (en) Battery case and surface-treated steel sheet for battery case
JP2000192281A (en) Surface treated steel sheet for electric cell case, its production, electric cell case using the surface treated steel sheet and electric cell using the same
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2003328158A (en) Surface treated steel sheet for battery case and battery case
JP2012114097A (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP4798955B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP3643473B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JPS5917198B2 (en) Seamless can manufacturing method

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20031211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees