JP3539425B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP3539425B2
JP3539425B2 JP2002233854A JP2002233854A JP3539425B2 JP 3539425 B2 JP3539425 B2 JP 3539425B2 JP 2002233854 A JP2002233854 A JP 2002233854A JP 2002233854 A JP2002233854 A JP 2002233854A JP 3539425 B2 JP3539425 B2 JP 3539425B2
Authority
JP
Japan
Prior art keywords
liquid crystal
spatial light
light modulator
writing type
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002233854A
Other languages
Japanese (ja)
Other versions
JP2003140108A (en
Inventor
弘綱 三浦
淳 尼子
富雄 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002233854A priority Critical patent/JP3539425B2/en
Publication of JP2003140108A publication Critical patent/JP2003140108A/en
Application granted granted Critical
Publication of JP3539425B2 publication Critical patent/JP3539425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2231Reflection reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2263Multicoloured holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • G03H2001/2292Using scanning means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/30Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique discrete holograms only
    • G03H2001/303Interleaved sub-holograms, e.g. three RGB sub-holograms having interleaved pixels for reconstructing coloured holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/17White light
    • G03H2222/18RGB trichrome light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/18Prism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/20Nature, e.g. e-beam addressed
    • G03H2225/25Optically addressed SLM [OA-SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/60Multiple SLMs
    • G03H2225/61Multiple SLMs for multicolour processing

Landscapes

  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光学装置に関する。
【0002】
【従来の技術】
従来の光学装置は、図8に示すように、電気アドレス型液晶パネル802に記録したホログラムを直接レーザで再生するものであった(第1の光学装置)。或いは図9に示すように、光書き込み型液晶空間光変調器904にレーザ走査によってホログラムを記録するものであった(第2の光学装置)。
【0003】
【発明が解決しようとする課題】
しかし、従来の第1の光学装置には、再生像の視角が十分取れるほど液晶パネルの画素ピッチを小さくすることも、視域が十分取れるほどの大型のパネルを製造することも困難であるという問題があった。また、従来の第2の光学装置では、レーザ光が書き込み部に照射されるのが一瞬なので液晶にメモリ性が必要で、強誘電性液晶が使用されている。しかし強誘電性液晶は2階調でしか光を制御できないため、ホログラフィ再生を行うと光の利用効率が極端に低下するという問題があった。本発明は、このような問題点を解決するものであって、その目的は、簡便な手段により高性能な光学装置を提供するところにある。
【0004】
【課題を解決するための手段】
本発明の光学装置は、波面再生をおこなうための光学装置において、複数の電気書き込み型空間光変調器と、前記電気電気書き込み型空間光変調器にて発生した像が書き込まれる光書き込み型空間光変調器と、を有してなり、各電気書き込み型空間光変調器は、前記光書き込み型空間光変調器に複数の像を投影し、前記複数の像間の位置には他の前記電気書き込み型空間光変調器にて発生した像が投影されることを特徴とする。
【0005】
また、各前記電気書き込み型空間光変調器はブラックストライプを有するとともに、前記複数の像、及び前記ブラックストライプによる陰、を前記光書き込み型空間光変調器に投影し、前記陰の部分には他の前記電気書き込み型空間光変調器にて発生した象が投影されることを特徴とする。
【0012】
【実施例】
以下、実施例及び参考例により本発明の詳細を示す。
【0013】
参考例1
図1に本発明の参考例1に係わる光学装置の構成を示す。
【0014】
光書き込み型液晶空間光変調器104にTFT駆動方式の液晶パネル102の像を光学系103を通して縮小投影する。液晶パネル102には分割されたホログラムがそれぞれ記録されている。一方、読み出し用のレーザ光源105から出射されたレーザ光はコリメートレンズ109と偏光ビ−ムスプリッタ107を通って光書き込み型液晶空間光変調器の読みだし側に入射する。反射光(ホログラフィの再生像)は偏光ビ−ムスプリッタ107を通って観測者106に達する。
【0015】
書き込み用の光源101は本実施例ではレーザをコリメートレンズ108でコリメートして用いた。これは面内で均一な光強度を得るためである。面内のばらつきを抑えることができれば、インコヒーレント光源を用いてもよい。
【0016】
TFT駆動方式の液晶パネル102はTN(ツイステッド ネマティック)モードで、光の透過率を変調できる。一方、光書き込み型液晶空間光変調器はホモジニアス配向のECB(電界制御複屈折)モードで、光の位相変調が可能である。本実施例で用いたTFT液晶パネルは、画素数が1440×1024、画素ピッチが40μmのものである。
【0017】
光学系103は斜め入射による像の歪を補正し、光書き込み型液晶空間光変調器に結像させる。このとき隣の液晶パネルからの像との間に隙間ができないようにする。また、わずかにデフォーカス状態にすることにより、液晶パネルのブラックストライプによってできる暗線をなくした。
【0018】
光書き込み型液晶空間光変調器については例えばSID’90 DIGEST,327に詳細な記述があるが、ここでその動作について簡単に触れる。
【0019】
図2に本参考例で使用した光書き込み型液晶空間光変調器の構成を示す。TFT液晶パネルの像をアモルファスシリコン層203に投影する。すると光強度に応じて各点の導電率が変化し、液晶層207に印加される電圧が変わる。この電圧によって液晶の配向状態を変化させて光を制御する。
【0020】
参考例では光書き込み型液晶空間光変調器はホモジニアス配向であり、ネマティック液晶をツイストせずに使用している。このため電圧印加により液晶分子の傾きが変わり、液晶の複屈折のために光の位相を変化させることができる。本実施例の光書き込み型液晶空間光変調器はほぼ線形に2π以上位相を変化させることができた。
【0021】
参考例では誘電体ミラ−204上に位相板205を配置した。これにより読みだし光とその反射光の偏光方向が直交し、偏光ビームスプリッタを用いて容易に光路分離できる。
【0022】
参考例ではホログラムとしてキノフォームを用いた。キノフォームとは原画像にランダムな位相を乗せてフーリエ変換し、位相成分だけを取り出したものである。詳細についてはAppl.Opt.12(1973)2328を参照されたい。
【0023】
キノフォームは位相分布として与えられるが、これを振幅分布としてTNモードの液晶パネルに記録する。すなわち0から2πの位相を0から1の透過率に変換して記録する。この振幅分布を光書き込み型液晶空間光変調器に投影すると光強度に応じて読み出し光の位相を変調できる。こうして光書き込み型液晶空間光変調器上に位相ホログラム(本実施例ではキノフォーム)が記録できた。
【0024】
参考例ではTFT液晶パネルを縦横10枚づつ(合計100枚)配置し、それぞれを10分の1に縮小投影した。従って光書き込み型液晶空間光変調器に書き込まれたホログラムは画素ピッチ4μm、画素数14400×10240、大きさが58mm×41mmである。このホログラムからの再生像は40cm離れたところから見て6cm角程度の大きさがある。空間光変調器を用いた書き換え可能なホログラムなので容易に動画が実現できる。
【0025】
なお、赤、青、緑の3原色のレーザを高速で切り替え、それに同期してホログラムを書き換えれば、カラーの3次元動画再生が可能である。
【0026】
参考例の書き込み方法ではレーザスキャンの方法と違って、常に書き込みデータがアモルファスシリコン層に照射されているので、メモリ性を持たないネマティック液晶を用いることができる。従って書き込みの光強度に応じて位相を連続的に変調することができる。もちろん、スキャニングのための可動部がなく、取扱いやすいという効果もある。
【0027】
また使用する液晶パネルの数を増やせばいくらでも画素数を増やすことができる。このとき液晶パネルの駆動回路はそれぞれの液晶パネルに付いているので画面のちらつきなどの問題もない。さらに、光学系の倍率を変えれば画素ピッチを細かくできる。これにより、大きくて解像度の高いホログラフィ再生像を得ることができる。
【0028】
(実施例1)
図3に本発明の実施例の構成を示す。本実施例では、あるTFT液晶パネルのブラックストライプの陰の部分に、別の液晶パネルの像を投影することにより、開口率をあげるとともに、画素ピッチを更に細かくした。
【0029】
図4(a)はTFT液晶パネルの画素の様子である。401が開口部で402がブラックストライプである。
【0030】
図4(b)は光書き込み型空間光変調器の書き込み面での投影像の様子である。実線で示した403が1つの液晶パネルからの投影像で、点線で示した404が他の3枚の液晶パネルからの投影像である。他の液晶パネルからの投影像を互いに間に入れることにより開口率はほぼ100%、画素ピッチは半分にできた。
【0031】
本実施例では、開口率が100%なのでホログラムの再生像に高次の複製像が現れない。
【0032】
参考例2
図5に参考例2の構成を示す。本参考例では光学系103のかわりにホログラム素子503を用いた。光源はレーザを用いた。
【0033】
このホログラム素子は斜め入射の歪補正をしながら像を縮小できる。さらに、光源の光量むらも補正できる。
【0034】
このホログラム素子はコンピュータによってパターンを設計し、電子ビ−ム描画装置によって作成した。
【0035】
これにより部品点数の大幅な削減ができ、装置の小型化、低コスト化が可能となった。
【0036】
参考例3
図6に参考例3の構成を示す。本参考例ではデータ書き込みにもホログラフィを使った。
【0037】
位相変調型のTFT液晶パネル602にキノフォームを記録しレーザ光源601からの光を照射する。このキノフォームの再生像は光書き込み型液晶空間光変調器104の書き込み面に結像する。この再生像がちょうど空間光変調器に書き込むべき光強度分布となる。
【0038】
この方法では、液晶パネルに入力するデータに、斜め入射による歪補正ホログラムを重ね合わせることができるため、光学系103をフーリエ変換レンズで置き換えることができる。
【0039】
参考例4
図7に参考例4の構成を示す。本参考例では光書き込み型空間光変調器を振幅位相変調型にした。
【0040】
参考例の光書き込み型液晶空間光変調器704は図2のガラス基板210にフォトクロミックガラスを使用している。このため波長400nm以下の光を照射すると透過率を変化させることができる。読み出しの際には633nmのHe−Neレーザを用いたので透過率は変化しない。
【0041】
液晶層で位相を変化させることができるので、各点で読み出し光の振幅と位相を変調できる。これによりほぼ完全な光波面制御ができ、良好な再生像を得ることができた。なお、ホログラムはフレネル変換型のものを使用した。
【0042】
以上本発明の実施例及び参考例について述べてきたが、本発明はこのほかにも、広く光情報処理や表示装置などに応用が可能である。
【0043】
【発明の効果】
本発明によれば、レーザスキャンの方法と違って、常に書き込みデータがアモルファスシリコン層に照射されているので、メモリ性を持たないネマティック液晶を用いることができる。従って書き込みの光強度に応じて位相を連続的に変調することができる。もちろんスキャニングのための可動部がなく、取扱いやすいという効果もある。
【0044】
また使用する液晶パネルの数を増やせばいくらでも画素数を増やすことができる。このとき液晶パネルの駆動回路はそれぞれの液晶パネルに付いているので画面のちらつきなどの問題もない。さらに、光学系の倍率を変えれば画素ピッチを細かくできる。これにより、大きくて解像度の高いホログラフィ再生像を得ることができる。
【図面の簡単な説明】
【図1】参考例1に係わる光学装置の構成を示す側面図である。
【図2】本発明の実施例及び参考例で使用した光書き込み型液晶空間光変調器の構成を示す断面図である。
【図3】本発明の実施例に係わる光学装置の構成を示す側面図である。
【図4】(a)は本発明の実施例で使用したTFT液晶パネルの画素を示す上面図である。(b)は本発明の実施例で使用した光書き込み型空間光変調器の書き込み面での投影像を示す上面図である。
【図5】参考例2に係わる光学装置の構成を示す側面図である。
【図6】参考例3に係わる光学装置の構成を示す側面図である。
【図7】参考例4に係わる光学装置の構成を示す側面図である。
【図8】従来の光学装置の構成を示す側面図である。
【図9】従来の光学装置の構成を示す側面図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical device.
[0002]
[Prior art]
As shown in FIG. 8, a conventional optical device directly reproduces a hologram recorded on an electric address type liquid crystal panel 802 with a laser (first optical device). Alternatively, as shown in FIG. 9, a hologram is recorded on the optical writing type liquid crystal spatial light modulator 904 by laser scanning (second optical device).
[0003]
[Problems to be solved by the invention]
However, in the first conventional optical device, it is difficult to reduce the pixel pitch of the liquid crystal panel so that the viewing angle of the reproduced image can be sufficiently obtained, or to manufacture a large panel having a sufficient viewing area. There was a problem. Further, in the second conventional optical device, since the writing of the laser beam to the writing portion is instantaneous, the liquid crystal needs to have a memory property, and a ferroelectric liquid crystal is used. However, since the ferroelectric liquid crystal can control light only in two gradations, there is a problem that the light utilization efficiency is extremely reduced when performing holographic reproduction. The present invention solves such a problem, and an object of the present invention is to provide a high-performance optical device by simple means.
[0004]
[Means for Solving the Problems]
An optical device according to the present invention is an optical device for performing wavefront reproduction, comprising: a plurality of electric writing spatial light modulators; and an optical writing spatial light on which an image generated by the electric writing spatial light modulator is written. And a modulator, wherein each of the electric writing type spatial light modulators projects a plurality of images onto the optical writing type spatial light modulator, and the other electric writing type is provided at a position between the plurality of images. The image generated by the spatial light modulator is projected.
[0005]
In addition, each of the electric writing type spatial light modulators has a black stripe, and the plurality of images, and shadows of the black stripes are projected on the optical writing type spatial light modulator, and the shaded portions have other portions. The elephant generated by the electric writing type spatial light modulator is projected.
[0012]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Reference Examples .
[0013]
( Reference Example 1 )
FIG. 1 shows the configuration of an optical device according to Embodiment 1 of the present invention .
[0014]
An image of the TFT driving type liquid crystal panel 102 is reduced and projected through the optical system 103 onto the optical writing type liquid crystal spatial light modulator 104. Each of the divided holograms is recorded on the liquid crystal panel 102. On the other hand, the laser light emitted from the reading laser light source 105 passes through the collimating lens 109 and the polarizing beam splitter 107 and enters the reading side of the optical writing type liquid crystal spatial light modulator. The reflected light (holographic reproduction image) passes through the polarizing beam splitter 107 and reaches the observer 106.
[0015]
In this embodiment, the light source 101 for writing uses a laser collimated by a collimating lens 108. This is to obtain a uniform light intensity in the plane. An incoherent light source may be used as long as in-plane variation can be suppressed.
[0016]
The TFT driving type liquid crystal panel 102 can modulate the light transmittance in a TN (twisted nematic) mode. On the other hand, the optical writing type liquid crystal spatial light modulator is capable of phase modulation of light in a homogeneously oriented ECB (Electric Field Controlled Birefringence) mode. The TFT liquid crystal panel used in this embodiment has 1440 × 1024 pixels and a pixel pitch of 40 μm.
[0017]
The optical system 103 corrects image distortion due to oblique incidence and forms an image on an optical writing type liquid crystal spatial light modulator. At this time, no gap is formed between the image from the adjacent liquid crystal panel. Also, by slightly defocusing, the dark lines formed by the black stripes of the liquid crystal panel were eliminated.
[0018]
The optical writing type liquid crystal spatial light modulator has a detailed description in, for example, SID'90 DIgest, 327, but the operation will be briefly described here.
[0019]
FIG. 2 shows the configuration of the optical writing type liquid crystal spatial light modulator used in this embodiment. An image of the TFT liquid crystal panel is projected on the amorphous silicon layer 203. Then, the conductivity of each point changes according to the light intensity, and the voltage applied to the liquid crystal layer 207 changes. This voltage controls the light by changing the alignment state of the liquid crystal.
[0020]
In this embodiment , the optical writing type liquid crystal spatial light modulator has a homogeneous alignment, and uses a nematic liquid crystal without twisting. Therefore, the inclination of the liquid crystal molecules is changed by applying a voltage, and the phase of light can be changed due to the birefringence of the liquid crystal. The optical writing type liquid crystal spatial light modulator of this embodiment could change the phase by 2π or more almost linearly.
[0021]
In this embodiment , the phase plate 205 is disposed on the dielectric mirror 204. As a result, the polarization directions of the read light and the reflected light are orthogonal to each other, and the optical path can be easily separated using the polarization beam splitter.
[0022]
In the present reference example , a kinoform was used as the hologram. The kinoform is obtained by applying a random phase to an original image and performing a Fourier transform to extract only a phase component. See Appl. Opt. 12 (1973) 2328.
[0023]
The kinoform is given as a phase distribution, which is recorded as an amplitude distribution on a TN mode liquid crystal panel. That is, the phase from 0 to 2π is converted into the transmittance from 0 to 1 for recording. When this amplitude distribution is projected onto the optical writing type liquid crystal spatial light modulator, the phase of the reading light can be modulated according to the light intensity. Thus, a phase hologram (a kinoform in this embodiment) could be recorded on the optical writing type liquid crystal spatial light modulator.
[0024]
In this reference example , ten TFT liquid crystal panels were arranged vertically and horizontally (a total of 100), and each was reduced and projected to one tenth. Therefore, the hologram written in the optical writing type liquid crystal spatial light modulator has a pixel pitch of 4 μm, a number of pixels of 14400 × 10240, and a size of 58 mm × 41 mm. The reproduced image from this hologram has a size of about 6 cm square as viewed from a place 40 cm away. Since the hologram can be rewritten using a spatial light modulator, a moving image can be easily realized.
[0025]
It is possible to reproduce a color three-dimensional moving image by switching the lasers of the three primary colors of red, blue, and green at a high speed and rewriting the hologram in synchronization therewith.
[0026]
In the writing method of the present embodiment , unlike the laser scanning method, the writing data is always applied to the amorphous silicon layer, so that a nematic liquid crystal having no memory property can be used. Therefore, the phase can be continuously modulated according to the light intensity of writing. Of course, there is no moving part for scanning, and there is an effect that it is easy to handle.
[0027]
The number of pixels can be increased by increasing the number of liquid crystal panels used. At this time, since the liquid crystal panel drive circuit is provided in each liquid crystal panel, there is no problem such as flickering of the screen. Further, the pixel pitch can be reduced by changing the magnification of the optical system. As a result, a large holographic reproduction image with high resolution can be obtained.
[0028]
(Example 1)
FIG. 3 shows the configuration of the embodiment of the present invention. In this embodiment, an image of another liquid crystal panel is projected on a shadow portion of a black stripe of a certain TFT liquid crystal panel to increase the aperture ratio and further reduce the pixel pitch.
[0029]
FIG. 4A shows a state of a pixel of the TFT liquid crystal panel. 401 is an opening and 402 is a black stripe.
[0030]
FIG. 4B shows a state of a projected image on a writing surface of the optical writing type spatial light modulator. A solid line 403 is a projected image from one liquid crystal panel, and a dotted line 404 is a projected image from the other three liquid crystal panels. By inserting projection images from other liquid crystal panels between each other, the aperture ratio was almost 100%, and the pixel pitch was halved.
[0031]
In this embodiment, since the aperture ratio is 100%, no higher-order duplicated image appears in the reproduced image of the hologram.
[0032]
( Reference Example 2 )
FIG. 5 shows the configuration of Reference Example 2 . In this reference example , a hologram element 503 was used instead of the optical system 103. The light source used was a laser.
[0033]
This hologram element can reduce an image while correcting distortion at oblique incidence. Further, the light amount unevenness of the light source can be corrected.
[0034]
The pattern of this hologram element was designed by a computer and was created by an electronic beam drawing apparatus.
[0035]
As a result, the number of components can be significantly reduced, and the size and cost of the device can be reduced.
[0036]
( Reference example 3 )
FIG. 6 shows the configuration of Reference Example 3 . In this reference example , holography was also used for writing data.
[0037]
A kinoform is recorded on the phase modulation type TFT liquid crystal panel 602 and irradiated with light from a laser light source 601. The reproduced image of the kinoform is formed on the writing surface of the optical writing type liquid crystal spatial light modulator 104. This reproduced image becomes the light intensity distribution to be written into the spatial light modulator.
[0038]
In this method, since the distortion correction hologram due to oblique incidence can be superimposed on the data input to the liquid crystal panel, the optical system 103 can be replaced with a Fourier transform lens.
[0039]
( Reference example 4 )
FIG. 7 shows the configuration of Reference Example 4 . In this embodiment , the optical writing type spatial light modulator is an amplitude phase modulation type.
[0040]
An optical writing type liquid crystal spatial light modulator 704 of the present embodiment uses a photochromic glass to a glass substrate 210 of FIG. Therefore, when light having a wavelength of 400 nm or less is irradiated, the transmittance can be changed. At the time of reading, the transmittance does not change because a 633 nm He-Ne laser is used.
[0041]
Since the phase can be changed by the liquid crystal layer, the amplitude and phase of the readout light can be modulated at each point. As a result, almost complete control of the light wavefront was achieved, and a good reproduced image was obtained. The hologram used was a Fresnel conversion type hologram.
[0042]
Although the embodiments and reference examples of the present invention have been described above, the present invention can be widely applied to optical information processing, display devices, and the like.
[0043]
【The invention's effect】
According to the present invention, unlike the laser scanning method, since the write data is always irradiated to the amorphous silicon layer, a nematic liquid crystal having no memory property can be used. Therefore, the phase can be continuously modulated according to the light intensity of writing. Of course, there is no moving part for scanning, and there is also an effect that it is easy to handle.
[0044]
The number of pixels can be increased by increasing the number of liquid crystal panels used. At this time, since the liquid crystal panel drive circuit is provided in each liquid crystal panel, there is no problem such as flickering of the screen. Further, the pixel pitch can be reduced by changing the magnification of the optical system. As a result, a large holographic reproduction image with high resolution can be obtained.
[Brief description of the drawings]
FIG. 1 is a side view illustrating a configuration of an optical device according to Reference Example 1 .
FIG. 2 is a cross-sectional view illustrating a configuration of a light-writing type liquid crystal spatial light modulator used in an example and a reference example of the present invention.
FIG. 3 is a side view illustrating a configuration of an optical device according to an embodiment of the present invention.
FIG. 4A is a top view showing a pixel of a TFT liquid crystal panel used in an embodiment of the present invention. (B) is a top view showing a projected image on the writing surface of the optical writing type spatial light modulator used in the embodiment of the present invention.
FIG. 5 is a side view illustrating a configuration of an optical device according to Reference Example 2 .
FIG. 6 is a side view illustrating a configuration of an optical device according to a third embodiment .
FIG. 7 is a side view illustrating a configuration of an optical device according to Reference Example 4 .
FIG. 8 is a side view showing a configuration of a conventional optical device.
FIG. 9 is a side view illustrating a configuration of a conventional optical device.

Claims (2)

波面再生をおこなうための光学装置において、In an optical device for performing wavefront reproduction,
複数の電気書き込み型空間光変調器と、A plurality of electrically written spatial light modulators;
前記電気電気書き込み型空間光変調器にて発生した像が書き込まれる光書き込み型空間光変調器と、を有してなり、An optically-written spatial light modulator on which an image generated by the electric / electrical-written spatial light modulator is written,
各電気書き込み型空間光変調器は、前記光書き込み型空間光変調器に複数の像を投影し、前記複数の像の間の位置には他の前記電気書き込み型空間光変調器にて発生した像が投影されることを特徴とする光学装置。Each electric writing type spatial light modulator projects a plurality of images on the optical writing type spatial light modulator, and a position between the plurality of images is generated by the other electric writing type spatial light modulator. An optical device on which an image is projected.
請求項1に記載の光学装置において、The optical device according to claim 1,
各前記電気書き込み型空間光変調器はブラックストライプを有するとともに、前記複数の像、及び前記ブラックストライプによる陰、を前記光書き込み型空間光変調器に投影し、前記陰の部分には他の前記電気書き込み型空間光変調器にて発生した象が投影されることを特徴とする光学装置。Each of the electric writing type spatial light modulators has a black stripe, and projects the plurality of images, and shades by the black stripes onto the optical writing type spatial light modulator, and the shaded portion has the other portions. An optical device wherein an elephant generated by an electric writing type spatial light modulator is projected.
JP2002233854A 2002-08-09 2002-08-09 Optical device Expired - Lifetime JP3539425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233854A JP3539425B2 (en) 2002-08-09 2002-08-09 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233854A JP3539425B2 (en) 2002-08-09 2002-08-09 Optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13299792A Division JP3473027B2 (en) 1992-05-26 1992-05-26 Optical device

Publications (2)

Publication Number Publication Date
JP2003140108A JP2003140108A (en) 2003-05-14
JP3539425B2 true JP3539425B2 (en) 2004-07-07

Family

ID=19196341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233854A Expired - Lifetime JP3539425B2 (en) 2002-08-09 2002-08-09 Optical device

Country Status (1)

Country Link
JP (1) JP3539425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111459005A (en) * 2020-04-22 2020-07-28 北京航空航天大学 Space division multiplexing color holographic reproduction system and implementation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707609B1 (en) 2005-12-02 2007-04-13 삼성에스디아이 주식회사 2d and 3d image selectable display device
GB2446617A (en) * 2007-02-16 2008-08-20 Indepth Optics Ltd 3D holographic display
CN102681198B (en) * 2011-03-17 2014-07-02 宏瞻科技股份有限公司 Laser spot inhibiting device of laser projection system and inhibiting method
JP5975318B2 (en) * 2011-11-30 2016-08-23 大日本印刷株式会社 Display device
GB2610875A (en) * 2021-09-21 2023-03-22 Envisics Ltd Compact head-up display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111459005A (en) * 2020-04-22 2020-07-28 北京航空航天大学 Space division multiplexing color holographic reproduction system and implementation method
CN111459005B (en) * 2020-04-22 2021-08-27 北京航空航天大学 Space division multiplexing color holographic reproduction system and implementation method

Also Published As

Publication number Publication date
JP2003140108A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP5069824B2 (en) Dynamic image generating device for display
TWI409532B (en) Contains a regular arrangement of controllable light modulating elements An optical modulation method, and an optical modulation device for a total image reproduction apparatus
JP3512150B2 (en) Polarization independent optical phase modulator
US5682214A (en) Optical apparatus for controlling the wavefront of a coherent light
JP3878758B2 (en) Spatial light modulator
WO2008094948A1 (en) Image transfer apparatus
KR102102905B1 (en) Beam combiner, method for fabricating the same, digital hologram image display device including the same
JP3141440B2 (en) Optical device
Collings et al. Real-time phase-only spatial light modulators for 2D holographic display
JP3539425B2 (en) Optical device
JP2001194626A (en) Optical device
JP2001100172A (en) Spatial optical modulating device
US11353763B2 (en) Phase modulation device and display apparatus
KR101857818B1 (en) Beam Combining Panel Using Patterned Halfwave Retarder And Method For Manufacturing The Same
JP3473027B2 (en) Optical device
WO2020144950A1 (en) Display device and method for adjusting display device
JP2009540351A (en) Hologram display using a liquid crystal display operating with non-polarized light
JP2000259068A (en) Spatial optical modulator and holography device
JPWO2015141336A1 (en) Optical device
JP5846770B2 (en) Electrode structure of liquid crystal display panel and hologram recording apparatus
JP3071999B2 (en) Reflective LCD projector
JP2809912B2 (en) Hologram display device
JPH07129067A (en) Spatial light modulating device and cgh device
JP2006243760A (en) Spatial light modulating device
JPH057717B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9