JP3539318B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP3539318B2
JP3539318B2 JP33183299A JP33183299A JP3539318B2 JP 3539318 B2 JP3539318 B2 JP 3539318B2 JP 33183299 A JP33183299 A JP 33183299A JP 33183299 A JP33183299 A JP 33183299A JP 3539318 B2 JP3539318 B2 JP 3539318B2
Authority
JP
Japan
Prior art keywords
injection hole
fuel
valve
opening
seat portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33183299A
Other languages
Japanese (ja)
Other versions
JP2001153003A (en
Inventor
優紀夫 小関
啓壮 武田
知士郎 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33183299A priority Critical patent/JP3539318B2/en
Publication of JP2001153003A publication Critical patent/JP2001153003A/en
Application granted granted Critical
Publication of JP3539318B2 publication Critical patent/JP3539318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料噴射弁に関する。
【0002】
【従来の技術】
従来、噴孔を備えたノズルと、噴孔を開閉するための噴孔開閉弁とを具備し、噴孔から噴射される燃料噴霧の形状を変更可能な燃料噴射弁が知られている。この種の燃料噴射弁の例としては、例えば特開平5−44598号公報に記載されたものがある。特開平5−44598号公報に記載された燃料噴射弁では、噴孔から噴射された燃料噴霧に対し高圧空気をあてることにより燃料噴霧の形状を変更することができる。
【0003】
【発明が解決しようとする課題】
ところが、特開平5−44598号公報に記載された燃料噴射弁では、噴孔から噴射される燃料噴霧の形状を変更するために高圧空気供給装置が必要となる。それゆえ、高圧空気供給装置に相当する分だけ燃料噴射弁のノズル部分が大型化してしまい、コストがアップしてしまう。
【0004】
前記問題点に鑑み、本発明は、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる燃料噴射弁を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明によれば、噴孔を備えたノズルと、前記噴孔を開閉するための噴孔開閉弁とを具備し、前記噴孔から噴射される燃料噴霧の形状を変更可能な燃料噴射弁において、噴孔開閉弁の全閉時に前記噴孔開閉弁が着座するシート部をノズル内周面に形成し、前記噴孔開閉弁のリフト時に前記シート部付近の燃料の流れが噴孔開閉弁の周方向に不均一になるように前記ノズル内周面又は噴孔開閉弁外周面を周方向不均一に形成し、前記噴孔開閉弁のリフト時のリフト量を変更するためのリフト量変更手段を設け、前記シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化するようにした燃料噴射弁であって、前記噴孔がシート部側に単一の入口開口を有すると共に、シート部の反対側にそれぞれ形状の異なる複数の出口開口を有する燃料噴射弁が提供される。
【0006】
請求項1に記載の燃料噴射弁では、噴孔開閉弁のリフト時にシート部付近の燃料の流れが噴孔開閉弁の周方向に不均一になるようにノズル内周面又は噴孔開閉弁外周面が周方向不均一に形成され、シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられる。そのため、高圧空気供給装置を設けた従来の場合と異なり、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。詳細には、シート部付近の燃料の流れが噴孔開閉弁の周方向不均一にされることにより、噴孔内の燃料の流れを噴孔開閉弁の周方向に不均一にすることができ、噴孔から噴射される燃料噴霧の形状を噴孔開閉弁の周方向に不均一にすることができる。更に、シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられることにより、リフト量が小さい時と大きい時とで、噴孔内の燃料の流れの周方向不均一度合いを変更することができ、それゆえ、噴孔から噴射される燃料噴霧の形状の周方向不均一度合いを変更することができる。つまり、噴孔から噴射される燃料噴霧の形状を変更することができる。
特に、請求項1に記載の燃料噴射弁では、噴孔がシート部側に単一の入口開口を有するため、燃料通路の最小断面積が単一の入口開口により画定される。それゆえ、リフト量の変更にかかわらず、燃料噴射率を一定に維持することができる。更に、形状の異なる複数の出口開口が設けられるため、リフト量の変更に伴って噴孔内の燃料の流れの周方向不均一度合いが変更されると、燃料の噴射に使用される出口開口が変更せしめられる。それゆえ、出口開口の形状に応じて燃料噴霧の形状を変更することができる。つまり、燃料噴射率を一定に維持しつつ、燃料噴霧の形状を効果的に変更することができる。
【0007】
請求項2に記載の発明によれば、噴孔を備えたノズルと、前記噴孔を開閉するための噴孔開閉弁とを具備し、前記噴孔から噴射される燃料噴霧の形状を変更可能な燃料噴射弁において、噴孔開閉弁の全閉時に前記噴孔開閉弁が着座するシート部をノズル内周面に形成し、前記噴孔と前記シート部との間に燃料だまり部を形成し、前記噴孔開閉弁の端部を前記シート部よりも噴孔側に突出させ、前記燃料だまり部を噴孔開閉弁の中心軸線に対し偏心して配置し、前記噴孔開閉弁のリフト時に前記シート部付近の燃料の流れが噴孔開閉弁の周方向に不均一になるように前記シート部から前記燃料だまり部までのノズル内周面の長さを噴孔開閉弁の周方向に不均一にし、前記噴孔開閉弁のリフト時のリフト量を変更するためのリフト量変更手段を設け、前記シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化するようにした燃料噴射弁であって、前記噴孔がシート部側に単一の入口開口を有すると共に、シート部の反対側にそれぞれ形状の異なる複数の出口開口を有する燃料噴射弁が提供される。
【0008】
請求項2に記載の燃料噴射弁では、噴孔開閉弁のリフト時にシート部付近の燃料の流れが噴孔開閉弁の周方向に不均一になるように、燃料だまり部が噴孔開閉弁の中心軸線に対し偏心して配置され、シート部から燃料だまり部までのノズル内周面の長さが噴孔開閉弁の周方向に不均一にされる。その上、シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられる。そのため、高圧空気供給装置を設けた従来の場合と異なり、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。詳細には、燃料だまり部が噴孔開閉弁の中心軸線に対し偏心して配置され、シート部から燃料だまり部までのノズル内周面の長さが噴孔開閉弁の周方向に不均一にされるため、シート部付近の燃料の流れが噴孔開閉弁の周方向不均一にされる。それゆえ、噴孔内の燃料の流れを噴孔開閉弁の周方向に不均一にすることができ、噴孔から噴射される燃料噴霧の形状を噴孔開閉弁の周方向に不均一にすることができる。更に、シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられることにより、リフト量が小さい時と大きい時とで、噴孔内の燃料の流れの周方向不均一度合いを変更することができ、それゆえ、噴孔から噴射される燃料噴霧の形状の周方向不均一度合いを変更することができる。つまり、噴孔から噴射される燃料噴霧の形状を変更することができる。
特に、請求項2に記載の燃料噴射弁では、噴孔がシート部側に単一の入口開口を有するため、燃料通路の最小断面積が単一の入口開口により画定される。それゆえ、リフト量の変更にかかわらず、燃料噴射率を一定に維持することができる。更に、形状の異なる複数の出口開口が設けられるため、リフト量の変更に伴って噴孔内の燃料の流れの周方向不均一度合いが変更されると、燃料の噴射に使用される出口開口が変更せしめられる。それゆえ、出口開口の形状に応じて燃料噴霧の形状を変更することができる。つまり、燃料噴射率を一定に維持しつつ、燃料噴霧の形状を効果的に変更することができる。
【0009】
請求項3に記載の発明によれば、噴孔を備えたノズルと、前記噴孔を開閉するための噴孔開閉弁とを具備し、前記噴孔から噴射される燃料噴霧の形状を変更可能な燃料噴射弁において、噴孔開閉弁の全閉時に前記噴孔開閉弁が着座するシート部をノズル内周面に形成し、前記噴孔と前記シート部との間に燃料だまり部を形成し、前記噴孔開閉弁の端部を前記シート部よりも噴孔側に突出させ、前記噴孔開閉弁の端部の外周面と前記ノズル内周面との間隔が噴孔開閉弁の周方向に不均一になるように前記噴孔開閉弁の端部の外周面又は前記ノズル内周面を形成し、前記噴孔開閉弁のリフト時のリフト量を変更するためのリフト量変更手段を設け、前記シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化するようにした燃料噴射弁であって、前記噴孔がシート部側に単一の入口開口を有すると共に、シート部の反対側にそれぞれ形状の異なる複数の出口開口を有する燃料噴射弁が提供される。
【0010】
請求項3に記載の燃料噴射弁では、噴孔開閉弁の端部の外周面とノズル内周面との間隔が噴孔開閉弁の周方向に不均一になるように噴孔開閉弁の端部の外周面又はノズル内周面が形成され、シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられる。そのため、高圧空気供給装置を設けた従来の場合と異なり、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。詳細には、噴孔開閉弁の端部の外周面とノズル内周面との間隔が噴孔開閉弁の周方向に不均一にされるため、シート部付近の燃料の流れが噴孔開閉弁の周方向不均一にされる。それゆえ、噴孔内の燃料の流れを噴孔開閉弁の周方向に不均一にすることができ、噴孔から噴射される燃料噴霧の形状を噴孔開閉弁の周方向に不均一にすることができる。更に、シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられることにより、リフト量が小さい時と大きい時とで、噴孔内の燃料の流れの周方向不均一度合いを変更することができ、それゆえ、噴孔から噴射される燃料噴霧の形状の周方向不均一度合いを変更することができる。つまり、噴孔から噴射される燃料噴霧の形状を変更することができる。
特に、請求項3に記載の燃料噴射弁では、噴孔がシート部側に単一の入口開口を有するため、燃料通路の最小断面積が単一の入口開口により画定される。それゆえ、リフト量の変更にかかわらず、燃料噴射率を一定に維持することができる。更に、形状の異なる複数の出口開口が設けられるため、リフト量の変更に伴って噴孔内の燃料の流れの周方向不均一度合いが変更されると、燃料の噴射に使用される出口開口が変更せしめられる。それゆえ、出口開口の形状に応じて燃料噴霧の形状を変更することができる。つまり、燃料噴射率を一定に維持しつつ、燃料噴霧の形状を効果的に変更することができる。
【0013】
請求項に記載の発明によれば、入口開口から出口開口への燃料通路の広がり度合いが各出口開口で異なる請求項1〜3のいずれか一項に記載の燃料噴射弁が提供される。
【0014】
請求項に記載の燃料噴射弁では、入口開口から出口開口への燃料通路の広がり度合いが各出口開口で異ならされる。そのため、リフト量の変更に伴って燃料の噴射に使用される出口開口が変更されると、燃料噴霧の広がり角度を変更することができる。
【0015】
請求項5に記載の発明によれば、前記噴孔がスリット状噴孔であり前記複数の出口開口が前記燃料だまり部の偏心方向に並べられている請求項2に記載の燃料噴射弁が提供される。
【0016】
請求項に記載の燃料噴射弁では、燃料だまり部が噴孔開閉弁の中心軸線に対し偏心して配置され、噴孔開閉弁のリフト時のリフト量が変更されるため、リフト量の変更に伴って噴孔内の燃料の流れの向きが燃料だまり部の偏心方向にシフトされる。更に、複数の出口開口が燃料だまり部の偏心方向に並べられているため、リフト量の変更に伴って形状の異なる複数の出口開口を効果的に使い分けることができる。つまり、リフト量の変更に伴って燃料噴霧の形状を効果的に変更することができる。
【0017】
請求項に記載の発明によれば、前記噴孔開閉弁の端部に切り欠きが形成されている請求項1又は3に記載の燃料噴射弁が提供される。
【0018】
請求項に記載の燃料噴射弁では、噴孔開閉弁の端部に切り欠きが形成されているため、シート部付近の燃料の流れを効果的に噴孔開閉弁の周方向不均一にすることができる。それゆえ、噴孔内の燃料の流れを噴孔開閉弁の周方向に不均一にすることができ、噴孔から噴射される燃料噴霧の形状を噴孔開閉弁の周方向に不均一にすることができる。
【0019】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
【0020】
図1は本発明の燃料噴射弁の第一の実施形態の全体構成を示す部分断面側面図、図2は図1の噴孔付近の拡大図、図3は図2を左側から見た図2と同様の拡大図である。詳細には、図2(a)及び図3(a)はニードル弁がリフトされている時の図であり、図2(b)及び図3(b)はニードル弁が全閉されている時の図である。図1〜図3において、1はスリット状噴孔、2はスリット状噴孔を備えたノズル、3は噴孔1を開閉するためのニードル弁、4はノズル内周面、5はニードル弁3の全閉時にニードル弁3が着座するためにノズル内周面4に形成されたシート部、6はニードル弁外周面である。
【0021】
7はニードル弁3がリフトされている時のリフト量を決定するためのストッパ、8はニードル弁3がリフトされている時のリフト量が大きくなる側にストッパ7を付勢するためのストッパ用ソレノイドである。9はニードル弁3がリフトされている時のリフト量が小さくなる側にストッパ7を付勢するためのストッパ用スプリング、10は噴孔1とシート部5との間に形成された燃料だまり部、11はシート部5よりも噴孔側(図1〜図3の下側)に突出せしめられたニードル弁端部である。20はニードル弁3がリフトされている時にストッパ7に突き当てられるためにニードル弁3に連結されているアーマチュア、21はニードル弁3をリフトすべき時にアーマチュア20をストッパ側に付勢するアーマチュア用ソレノイドである。22はニードル弁3に連結されたアーマチュア20を閉弁側(図1〜図3の下側)に付勢するためのアーマチュア用スプリング、23はノズル2とニードル弁3との間に画定された燃料通路である。C1はニードル弁3の中心軸線、C2は燃料だまり部10の中心軸線である。
【0022】
図3(b)に詳細に示すように、燃料だまり部10の中心軸線C2はニードル弁3の中心軸線C1に対し偏心して配置されている。そのため、燃料の流れに対する抵抗が相対的に大きい側と小さい側との対向する二つ(あるいは一対)の領域を形成するように、図3(b)の左側のシート部5から燃料だまり部10までのノズル内周面4の長さL1が、図3(b)の右側のシート部5から燃料だまり部10までのノズル内周面4の長さL2よりも長くなっている。つまり、図3(a)に示すようにニードル弁3が開弁されている時、図3(a)の左側の燃料の流れF1に対する抵抗が図3(a)の右側の燃料の流れF2に対する抵抗よりも大きくなり、図3(a)の左側の燃料の流れF1が図3(a)の右側の燃料の流れF2よりも弱くなる。
【0023】
噴孔1はシート部側(図2及び図3の上側)に単一の入口開口30を有すると共に、シート部の反対側(図2及び図3の下側)に形状の異なる第一の出口開口31と第二の出口開口32とを有する。図2に詳細に示すように、入口開口30から第一の出口開口31まで延びている第一の燃料通路と、入口開口30から第二の出口開口32まで延びている第二の燃料通路とは共に扇形断面を有するが、第一の燃料通路の広がり角度θ1は第二の燃料通路の広がり角度θ2よりも小さくなっている。また、図3に詳細に示すように、入口開口30から第一の出口開口31まで延びている第一の燃料通路と、入口開口30から第二の出口開口32まで延びている第二の燃料通路とは、二つ(あるいは一対)の領域の対向する方向と同一方向に並べられ、詳細には、ニードル弁3の中心軸線C1に対する燃料だまり部10の中心軸線C2の偏心方向(図3の左右方向)と同一方向に並べられている。
【0024】
図4は噴孔1の拡大図である。詳細には、図4(a)は噴孔1を燃料だまり部側(図2及び図3の上側)から見た図であり、図4(b)は噴孔1を燃料だまり部の反対側(図2及び図3の下側)から見た図である。
【0025】
図5はリフト量とシート部付近の燃料の流れ及び噴孔内の燃料の流れとの関係を示した図である。詳細には、図5(a)はニードル弁3がリフトされている時のリフト量が小さい(リフト量=LS)とき、つまり、噴孔側(図1の下側)に突き当てられたストッパ7にアーマチュア20が突き当てられているときの燃料の流れを示した図であり、図5(b)はニードル弁3がリフトされている時のリフト量が大きい(リフト量=LL)とき、つまり、噴孔の反対側(図1の上側)に突き当てられたストッパ7にアーマチュア20が突き当てられているときの燃料の流れを示した図である。
【0026】
図5(a)に示すようにリフト量が小さい(リフト量=LS)とき、図3(b)について説明した場合と同様ように、燃料だまり部10の中心軸線C2がニードル弁3の中心軸線C1に対し偏心して配置され、図5(a)の左側のシート部5から燃料だまり部10までのノズル内周面4の長さL1が図5(a)の右側のシート部5から燃料だまり部10までのノズル内周面4の長さL2よりも長くなっているという理由から、図5(a)の左側の燃料の流れF1に対する抵抗が図5(a)の右側の燃料の流れF2に対する抵抗よりも大きくなり、図5(a)の左側の燃料の流れF1が図5(a)の右側の燃料の流れF2よりも弱くなる。そのため、噴孔1内において、燃料の流れF3は主に入口開口30から第一の出口開口31まで延びている第一の燃料通路を通過する。図2(a)に示したように第一の燃料通路の広がり角度θ1は第二の燃料通路の広がり角度θ2よりも小さくなっているため、噴孔1から噴射される燃料噴霧の広がり角度は、第一の燃料通路の広がり角度θ1に応じて比較的小さくなる。燃料噴霧の広がり角度が小さい噴射は成層燃焼に好適であるため、成層燃焼を行うべきときに図5(a)に示すようにリフト量が小さくせしめられる。
【0027】
一方、図5(b)に示すようにリフト量が大きい(リフト量=LL)とき、シート部5付近の燃料通路があまり絞られなくなるという理由から、図5(b)の左側の燃料の流れF4に対する抵抗が図5(b)の右側の燃料の流れF5に対する抵抗とほぼ等しくなり、図5(b)の左側の燃料の流れF4の強さが図5(b)の右側の燃料の流れF5の強さとほぼ等しくなる。そのため、噴孔1内において、燃料の流れF6は主に入口開口30から第二の出口開口32まで延びている第二の燃料通路を通過する。図2(a)に示したように第二の燃料通路の広がり角度θ2は第一の燃料通路の広がり角度θ1よりも大きくなっているため、噴孔1から噴射される燃料噴霧の広がり角度は、第二の燃料通路の広がり角度θ2に応じて比較的大きくなる。燃料噴霧の広がり角度が大きい噴射は均質燃焼に好適であるため、均質燃焼を行うべきときに図5(b)に示すようにリフト量が大きくせしめられる。
【0028】
本実施形態によれば、ニードル弁3が小さいリフト量(LS)でリフトされている時(図5(a))、シート部5付近の燃料の流れが図5(a)の左側の燃料の流れF1と右側の燃料の流れF2とで異なるように、つまり、シート部5付近の燃料の流れがニードル弁3の周方向に不均一になるようにノズル内周面4が周方向不均一に形成される。更に図5(a)及び図5(b)に示すように、シート部5付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられる。そのため、高圧空気供給装置を設けた従来の場合と異なり、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。
【0029】
詳細には、燃料だまり部10がニードル弁3の中心軸線C1に対し偏心して配置され、シート部5から燃料だまり部10までのノズル内周面4の長さL1、L2がニードル弁3の周方向に不均一にされるため、シート部5付近の燃料の流れF1、F2がニードル弁3の周方向不均一にされる。その結果、噴孔1内の燃料の流れがニードル弁3の周方向に不均一にされる。つまり、噴孔1内において、燃料の流れが入口開口30から第一の出口開口31まで延びている第一の燃料通路の方に偏って通過する。その結果、シート部5付近の燃料の流れがニードル弁3の周方向不均一にされない場合に比べ、噴孔1から噴射される燃料噴霧の形状をニードル弁3の周方向に不均一にすることができる。
【0030】
更に、シート部5付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化せしめられるため、リフト量が小さい時(図5(a))と大きい時(図5(b))とで、噴孔1内の燃料の流れの周方向不均一度合いを変更することができる。それゆえ、噴孔1から噴射される燃料噴霧の形状の周方向不均一度合いを変更することができる。つまり、噴孔1から噴射される燃料噴霧の形状を変更することができる。
【0031】
また、噴孔1がシート部側(図1〜図3の上側)に単一の入口開口30を有するため、リフト時の燃料通路の最小断面積が単一の入口開口30により画定される。それゆえ、リフト量の変更にかかわらず、燃料噴射率を一定に維持することができる。更に、形状の異なる二つの出口開口31、32が設けられるため、リフト量の変更に伴って噴孔1内の燃料の流れの周方向不均一度合いが変更されると、燃料の噴射に使用される出口開口31、32が変更せしめられる。それゆえ、出口開口31、32の形状に応じて燃料噴霧の形状を変更することができる。つまり、燃料噴射率を一定に維持しつつ、燃料噴霧の形状を効果的に変更することができる。
【0032】
その上、入口開口30から出口開口31、32への燃料通路の広がり度合いθ1、θ2が各出口開口31、32で異なっているため、リフト量の変更に伴って燃料の噴射に使用される出口開口31、32が変更されると、燃料噴霧の広がり角度を変更することができる。また、燃料だまり部10がニードル弁3の中心軸線C1に対し偏心して配置され、ニードル弁3のリフト時のリフト量が変更されるため、リフト量の変更に伴って噴孔1内の燃料の流れF3、F6の向きが燃料だまり部10の偏心方向(図5の左右方向)にシフトされる。更に、二つの出口開口31、32が燃料だまり部10の偏心方向に並べられているため、リフト量の変更に伴って形状の異なる二つの出口開口31、32を効果的に使い分けることができる。つまり、リフト量の変更に伴って燃料噴霧の形状を効果的に変更することができる。
【0033】
尚、本実施形態では噴孔1がスリット状噴孔であるが、噴孔が平面断面や半円断面のものであっても、本実施形態と同様の方法で燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。
【0034】
以下、本発明の燃料噴射弁の第二の実施形態について説明する。本実施形態の全体構成は図1に示した第一の実施形態の全体構成とほぼ同様である。そのため、本実施形態も第一の実施形態とほぼ同様の効果を奏することができる。図6は図3(a)と同様の噴孔付近の拡大図である。図6において、図1〜図5に示した参照番号と同一の参照番号は図1〜図5に示した部品又は部分と同一の部品又は部分を示しており、102はスリット状噴孔を備えたノズル、104はノズル内周面、150はノズル内周面104に形成された凹部である。
【0035】
図6に示すように、本実施形態ではニードル弁端部11の外周面6とノズル内周面104との間隔S1、S2がニードル弁3の周方向に不均一になるようにノズル内周面104に凹部150が形成されている。本実施形態によれば、ニードル弁端部11の外周面6とノズル内周面104との間隔S1、S2がニードル弁3の周方向に不均一になるようにノズル内周面104に凹部150が形成され、シート部5付近の燃料の流れF101、F102の周方向不均一度合いがリフト量の変更に伴って変化せしめられる。そのため、高圧空気供給装置を設けた従来の場合と異なり、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。
【0036】
詳細には、ニードル弁端部11の外周面6とノズル内周面104との間隔S1、S2が図6の右側と左側とで不均一にされるため、シート部5付近の燃料の流れF101、F102がニードル弁3の周方向不均一にされる。それゆえ、第一の実施形態の場合と同様に、噴孔1内の燃料の流れF103をニードル弁3の周方向に不均一にすることができ、噴孔1から噴射される燃料噴霧の形状をニードル弁3の周方向に不均一にすることができる。更に、第一の実施形態の場合と同様に、シート部5付近の燃料の流れF101、F102の周方向不均一度合いがリフト量の変更に伴って変化せしめられることにより、リフト量が小さい時と大きい時とで、噴孔1内の燃料の流れの周方向不均一度合いを変更することができ、それゆえ、噴孔1から噴射される燃料噴霧の形状の周方向不均一度合いを変更することができる。つまり、噴孔1から噴射される燃料噴霧の形状を変更することができる。
【0037】
尚、本実施形態では噴孔1がスリット状噴孔であるが、噴孔が平面断面や半円断面のものであっても、本実施形態と同様の方法で燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。
【0038】
以下、本発明の燃料噴射弁の第三の実施形態について説明する。本実施形態の全体構成は図1に示した第一の実施形態の全体構成とほぼ同様である。そのため、本実施形態も第一の実施形態とほぼ同様の効果を奏することができる。図7は図3(a)と同様の噴孔付近の拡大図である。図7において、図1〜図5に示した参照番号と同一の参照番号は図1〜図5に示した部品又は部分と同一の部品又は部分を示しており、203は噴孔1を開閉するためのニードル弁、206はニードル弁外周面、211はシート部5よりも噴孔側(図7の下側)に突出せしめられたニードル弁端部である。
【0039】
図7に示すように、本実施形態ではニードル弁端部211の外周面206とノズル内周面4との間隔S3、S4がニードル弁3の周方向に不均一になるようにニードル弁端部211に切り欠き230が形成されている。本実施形態によれば、ニードル弁端部211の外周面206とノズル内周面4との間隔S3、S4がニードル弁203の周方向に不均一になるようにニードル弁端部211に切り欠き230が形成され、シート部5付近の燃料の流れF201、F202の周方向不均一度合いがリフト量の変更に伴って変化せしめられる。そのため、高圧空気供給装置を設けた従来の場合と異なり、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。
【0040】
詳細には、ニードル弁端部211の外周面206とノズル内周面4との間隔S3、S4が図7の右側と左側とで不均一にされるため、シート部5付近の燃料の流れF201、F202がニードル弁203の周方向不均一にされる。それゆえ、第一の実施形態の場合と同様に、噴孔1内の燃料の流れF203をニードル弁203の周方向に不均一にすることができ、噴孔1から噴射される燃料噴霧の形状をニードル弁203の周方向に不均一にすることができる。更に、第一の実施形態の場合と同様に、シート部5付近の燃料の流れF201、F202の周方向不均一度合いがリフト量の変更に伴って変化せしめられることにより、リフト量が小さい時と大きい時とで、噴孔1内の燃料の流れの周方向不均一度合いを変更することができ、それゆえ、噴孔1から噴射される燃料噴霧の形状の周方向不均一度合いを変更することができる。つまり、噴孔1から噴射される燃料噴霧の形状を変更することができる。
【0041】
尚、本実施形態では噴孔1がスリット状噴孔であるが、噴孔が平面断面や半円断面のものであっても、本実施形態と同様の方法で燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。
【0042】
【発明の効果】
請求項1から3に記載の発明によれば、高圧空気供給装置を設けた従来の場合と異なり、燃料噴射弁のノズル部分の大型化及びコストアップを回避しつつ、噴孔から噴射される燃料噴霧の形状を変更することができる。詳細には、噴孔内の燃料の流れを噴孔開閉弁の周方向に不均一にすることができ、噴孔から噴射される燃料噴霧の形状を噴孔開閉弁の周方向に不均一にすることができる。更に、リフト量が小さい時と大きい時とで、噴孔内の燃料の流れの周方向不均一度合いを変更することができ、それゆえ、噴孔から噴射される燃料噴霧の形状の周方向不均一度合いを変更することができる。つまり、噴孔から噴射される燃料噴霧の形状を変更することができる。
【0043】
また、請求項1から3に記載の発明によれば、燃料通路の最小断面積が単一の入口開口により画定される。それゆえ、リフト量の変更にかかわらず、燃料噴射率を一定に維持することができる。更に、リフト量の変更に伴って噴孔内の燃料の流れの周方向不均一度合いが変更されると、燃料の噴射に使用される出口開口が変更せしめられる。それゆえ、出口開口の形状に応じて燃料噴霧の形状を変更することができる。つまり、燃料噴射率を一定に維持しつつ、燃料噴霧の形状を効果的に変更することができる。
【0044】
請求項に記載の発明によれば、リフト量の変更に伴って燃料の噴射に使用される出口開口が変更されると、燃料噴霧の広がり角度を変更することができる。
【0045】
請求項に記載の発明によれば、リフト量の変更に伴って噴孔内の燃料の流れの向きが燃料だまり部の偏心方向にシフトされる。更に、リフト量の変更に伴って形状の異なる複数の出口開口を効果的に使い分けることができる。つまり、リフト量の変更に伴って燃料噴霧の形状を効果的に変更することができる。
【0046】
請求項に記載の発明によれば、シート部付近の燃料の流れを効果的に噴孔開閉弁の周方向不均一にすることができる。それゆえ、噴孔内の燃料の流れを噴孔開閉弁の周方向に不均一にすることができ、噴孔から噴射される燃料噴霧の形状を噴孔開閉弁の周方向に不均一にすることができる。
【図面の簡単な説明】
【図1】本発明の燃料噴射弁の第一の実施形態の全体構成を示す部分断面側面図である。
【図2】図1の噴孔付近の拡大図である。
【図3】図2を左側から見た図2と同様の拡大図である。
【図4】噴孔1の拡大図である。
【図5】リフト量とシート部付近の燃料の流れ及び噴孔内の燃料の流れとの関係を示した図である。
【図6】図3(a)と同様の噴孔付近の拡大図である。
【図7】図3(a)と同様の噴孔付近の拡大図である。
【符号の説明】
1…噴孔
2…ノズル
3…ニードル弁
4…ノズル内周面
5…シート部
6…ニードル弁外周面
7…ストッパ
8…ストッパ用ソレノイド
9…ストッパ用スプリング
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection valve.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a fuel injection valve including a nozzle having an injection hole and an injection hole opening / closing valve for opening and closing the injection hole, and capable of changing a shape of fuel spray injected from the injection hole. An example of this type of fuel injection valve is disclosed in, for example, JP-A-5-44598. In the fuel injection valve described in Japanese Patent Application Laid-Open No. 5-44598, the shape of the fuel spray can be changed by blowing high-pressure air to the fuel spray injected from the injection hole.
[0003]
[Problems to be solved by the invention]
However, the fuel injection valve described in Japanese Patent Application Laid-Open No. Hei 5-44598 requires a high-pressure air supply device to change the shape of the fuel spray injected from the injection hole. Therefore, the nozzle portion of the fuel injection valve is increased in size corresponding to the high-pressure air supply device, and the cost is increased.
[0004]
In view of the above problems, the present invention provides a fuel injection valve that can change the shape of fuel spray injected from an injection hole while avoiding an increase in size and cost of a nozzle portion of the fuel injection valve. With the goal.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, a nozzle having an injection hole, and an injection hole opening / closing valve for opening and closing the injection hole are provided, and the shape of the fuel spray injected from the injection hole can be changed. In a fuel injection valve, when the injection hole opening / closing valve is fully closed, a seat portion on which the injection hole opening / closing valve is seated is formed on the inner peripheral surface of the nozzle, and when the injection hole opening / closing valve is lifted, the flow of fuel near the seat portion is reduced. The nozzle inner peripheral surface or the injection hole opening / closing valve outer peripheral surface is formed to be uneven in the circumferential direction so as to be uneven in the circumferential direction of the injection hole opening / closing valve, and the lift amount of the injection hole opening / closing valve at the time of lift is changed. A fuel injection valve provided with a lift amount changing means, wherein the degree of non-uniformity in the circumferential direction of the fuel flow in the vicinity of the seat portion changes with a change in the lift amount.The fuel injection valve, wherein the injection hole has a single inlet opening on a seat portion side and a plurality of outlet openings having different shapes on the opposite side of the seat portion.Is provided.
[0006]
In the fuel injection valve according to the first aspect of the invention, when the injection hole opening / closing valve is lifted, the fuel flow near the seat portion becomes uneven in the circumferential direction of the injection hole opening / closing valve. The surface is formed to be non-uniform in the circumferential direction, and the degree of non-uniformity in the circumferential direction of the flow of the fuel in the vicinity of the seat portion is changed with a change in the lift amount. Therefore, unlike the conventional case in which the high-pressure air supply device is provided, it is possible to change the shape of the fuel spray injected from the injection hole while avoiding an increase in the size of the nozzle portion of the fuel injection valve and an increase in cost. In detail, the flow of fuel near the seat portion is made uneven in the circumferential direction of the injection hole opening / closing valve, so that the flow of fuel in the injection hole is uneven in the circumferential direction of the injection hole opening / closing valve. In addition, the shape of the fuel spray injected from the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve. Further, the degree of circumferential unevenness of the fuel flow in the vicinity of the seat portion is changed in accordance with the change in the lift amount, so that the circumferential direction of the fuel flow in the injection hole is reduced when the lift amount is small and when the lift amount is large. The degree of non-uniformity can be changed, and therefore, the degree of circumferential non-uniformity of the shape of the fuel spray injected from the injection hole can be changed. That is, the shape of the fuel spray injected from the injection hole can be changed.
In particular, in the fuel injection valve according to the first aspect, since the injection hole has the single inlet opening on the seat portion side, the minimum cross-sectional area of the fuel passage is defined by the single inlet opening. Therefore, the fuel injection rate can be kept constant regardless of the change in the lift amount. Further, since a plurality of outlet openings having different shapes are provided, if the degree of non-uniformity of the fuel flow in the injection holes in the circumferential direction is changed with a change in the lift amount, the outlet openings used for fuel injection are changed. Can be changed. Therefore, the shape of the fuel spray can be changed according to the shape of the outlet opening. That is, the shape of the fuel spray can be effectively changed while maintaining the fuel injection rate constant.
[0007]
According to the second aspect of the present invention, a nozzle having an injection hole, and an injection hole opening / closing valve for opening and closing the injection hole are provided, and the shape of the fuel spray injected from the injection hole can be changed. In the fuel injection valve, a seat portion on which the injection hole opening / closing valve is seated when the injection hole opening / closing valve is fully closed is formed on the inner peripheral surface of the nozzle, and a fuel pool portion is formed between the injection hole and the seat portion. An end of the injection hole opening / closing valve is projected more toward the injection hole than the seat portion, and the fuel reservoir is disposed eccentrically with respect to a center axis of the injection hole opening / closing valve, and the fuel hole opening / closing valve is lifted when the injection hole opening / closing valve is lifted. The length of the inner circumferential surface of the nozzle from the seat to the fuel reservoir is uneven in the circumferential direction of the injection hole on-off valve so that the flow of fuel near the seat is uneven in the circumferential direction of the injection hole on-off valve. Lift amount changing means for changing the lift amount of the injection hole opening / closing valve at the time of lift. A fuel injection valve circumferentially nonuniform degree of flow of fuel in the vicinity of the seat was made to vary with the change of the lift amountThe fuel injection valve, wherein the injection hole has a single inlet opening on a seat portion side and a plurality of outlet openings having different shapes on the opposite side of the seat portion.Is provided.
[0008]
In the fuel injection valve according to the second aspect, the fuel reservoir is formed so that the flow of fuel near the seat becomes uneven in the circumferential direction of the injection hole opening / closing valve when the injection hole opening / closing valve is lifted. The nozzle is arranged eccentrically with respect to the central axis, and the length of the inner peripheral surface of the nozzle from the seat portion to the fuel reservoir is made uneven in the circumferential direction of the injection hole opening / closing valve. In addition, the degree of non-uniformity of the fuel flow in the vicinity of the seat in the circumferential direction is changed with the change in the lift amount. Therefore, unlike the conventional case in which the high-pressure air supply device is provided, it is possible to change the shape of the fuel spray injected from the injection hole while avoiding an increase in the size of the nozzle portion of the fuel injection valve and an increase in cost. In detail, the fuel reservoir is disposed eccentrically with respect to the central axis of the injection hole on-off valve, and the length of the inner peripheral surface of the nozzle from the seat portion to the fuel reservoir is made uneven in the circumferential direction of the injection hole on-off valve. Therefore, the flow of the fuel near the seat portion is made uneven in the circumferential direction of the injection hole opening / closing valve. Therefore, the flow of fuel in the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve, and the shape of the fuel spray injected from the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve. be able to. Further, the degree of circumferential unevenness of the fuel flow in the vicinity of the seat portion is changed in accordance with the change in the lift amount, so that the circumferential direction of the fuel flow in the injection hole is reduced when the lift amount is small and when the lift amount is large. The degree of non-uniformity can be changed, and therefore, the degree of circumferential non-uniformity of the shape of the fuel spray injected from the injection hole can be changed. That is, the shape of the fuel spray injected from the injection hole can be changed.
In particular, in the fuel injection valve according to the second aspect, since the injection hole has a single inlet opening on the seat portion side, the minimum cross-sectional area of the fuel passage is defined by the single inlet opening. Therefore, the fuel injection rate can be kept constant regardless of the change in the lift amount. Further, since a plurality of outlet openings having different shapes are provided, if the degree of non-uniformity of the fuel flow in the injection holes in the circumferential direction is changed with a change in the lift amount, the outlet openings used for fuel injection are changed. Can be changed. Therefore, the shape of the fuel spray can be changed according to the shape of the outlet opening. That is, the shape of the fuel spray can be effectively changed while maintaining the fuel injection rate constant.
[0009]
According to the third aspect of the present invention, a nozzle having an injection hole, and an injection hole opening / closing valve for opening and closing the injection hole are provided, and the shape of the fuel spray injected from the injection hole can be changed. In the fuel injection valve, a seat portion on which the injection hole opening / closing valve is seated when the injection hole opening / closing valve is fully closed is formed on the inner peripheral surface of the nozzle, and a fuel pool portion is formed between the injection hole and the seat portion. The end of the injection hole opening / closing valve is projected more toward the injection hole than the seat portion, and the distance between the outer peripheral surface of the end portion of the injection hole opening / closing valve and the inner peripheral surface of the nozzle is set in the circumferential direction of the injection hole opening / closing valve. Forming an outer peripheral surface of an end portion of the injection hole opening / closing valve or the inner peripheral surface of the nozzle so as to be non-uniform, and providing a lift amount changing means for changing a lift amount of the injection hole opening / closing valve at the time of lifting; The degree of non-uniformity of the fuel flow in the vicinity of the seat portion in the circumferential direction is changed with a change in the lift amount. Fuel injection valveThe fuel injection valve, wherein the injection hole has a single inlet opening on a seat portion side and a plurality of outlet openings having different shapes on the opposite side of the seat portion.Is provided.
[0010]
In the fuel injection valve according to the third aspect, the distance between the outer peripheral surface of the end of the injection hole opening / closing valve and the inner peripheral surface of the nozzle is not uniform in the circumferential direction of the injection hole opening / closing valve. The outer peripheral surface of the portion or the inner peripheral surface of the nozzle is formed, and the degree of non-uniformity in the circumferential direction of the fuel flow in the vicinity of the seat portion is changed with the change in the lift amount. Therefore, unlike the conventional case in which the high-pressure air supply device is provided, it is possible to change the shape of the fuel spray injected from the injection hole while avoiding an increase in the size of the nozzle portion of the fuel injection valve and an increase in cost. Specifically, since the distance between the outer peripheral surface of the end of the injection hole opening / closing valve and the inner peripheral surface of the nozzle is made non-uniform in the circumferential direction of the injection hole opening / closing valve, the flow of fuel near the seat portion is reduced. Is made uneven in the circumferential direction. Therefore, the flow of fuel in the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve, and the shape of the fuel spray injected from the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve. be able to. Further, the degree of circumferential unevenness of the fuel flow in the vicinity of the seat portion is changed in accordance with the change in the lift amount, so that the circumferential direction of the fuel flow in the injection hole is reduced when the lift amount is small and when the lift amount is large. The degree of non-uniformity can be changed, and therefore, the degree of circumferential non-uniformity of the shape of the fuel spray injected from the injection hole can be changed. That is, the shape of the fuel spray injected from the injection hole can be changed.
In particular, in the fuel injection valve according to the third aspect, since the injection hole has a single inlet opening on the seat portion side, the minimum cross-sectional area of the fuel passage is defined by the single inlet opening. Therefore, the fuel injection rate can be kept constant regardless of the change in the lift amount. Further, since a plurality of outlet openings having different shapes are provided, if the degree of non-uniformity of the fuel flow in the injection holes in the circumferential direction is changed with a change in the lift amount, the outlet openings used for fuel injection are changed. Can be changed. Therefore, the shape of the fuel spray can be changed according to the shape of the outlet opening. That is, the shape of the fuel spray can be effectively changed while maintaining the fuel injection rate constant.
[0013]
Claim4According to the invention described in (1), the degree of spread of the fuel passage from the inlet opening to the outlet opening differs for each outlet openingAny one of claims 1 to 32. A fuel injection valve according to (1) is provided.
[0014]
Claim4In the fuel injection valve described in (1), the degree of expansion of the fuel passage from the inlet opening to the outlet opening is made different for each outlet opening. Therefore, when the outlet opening used for fuel injection is changed in accordance with the change in the lift amount, the spread angle of the fuel spray can be changed.
[0015]
According to the invention described in claim 5, the injection hole is a slit-shaped injection hole.,The plurality of outlet openings are arranged in an eccentric direction of the fuel reservoir.Claim 2The described fuel injection valve is provided.
[0016]
Claim5In the fuel injection valve described in (1), the fuel reservoir is disposed eccentrically with respect to the center axis of the injection hole opening / closing valve, and the lift amount of the injection hole opening / closing valve at the time of lift is changed. The direction of the fuel flow in the hole is shifted in the eccentric direction of the fuel pool. Further, since the plurality of outlet openings are arranged in the eccentric direction of the fuel pool, the plurality of outlet openings having different shapes can be effectively used according to the change in the lift amount. That is, the shape of the fuel spray can be effectively changed with the change in the lift amount.
[0017]
Claim6According to the invention described in (1), the fuel injection valve according to claim 1 or 3, wherein a cutout is formed at an end of the injection hole opening / closing valve.
[0018]
Claim6In the fuel injection valve described in (1), since the notch is formed at the end of the injection hole opening / closing valve, the flow of fuel near the seat portion can be effectively made uneven in the circumferential direction of the injection hole opening / closing valve. . Therefore, the flow of fuel in the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve, and the shape of the fuel spray injected from the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve. be able to.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0020]
1 is a partial cross-sectional side view showing the entire configuration of a first embodiment of the fuel injection valve of the present invention, FIG. 2 is an enlarged view of the vicinity of the injection hole in FIG. 1, and FIG. 2 is a view of FIG. It is an enlarged view similar to. More specifically, FIGS. 2A and 3A are views when the needle valve is lifted, and FIGS. 2B and 3B are views when the needle valve is fully closed. FIG. 1 to 3, reference numeral 1 denotes a slit-shaped injection hole, 2 denotes a nozzle having a slit-shaped injection hole, 3 denotes a needle valve for opening and closing the injection hole 1, 4 denotes a nozzle inner peripheral surface, and 5 denotes a needle valve 3. The seat portion 6 formed on the inner peripheral surface 4 of the nozzle for seating the needle valve 3 when fully closed is the outer peripheral surface of the needle valve.
[0021]
7 is a stopper for determining the lift amount when the needle valve 3 is lifted, and 8 is a stopper for biasing the stopper 7 to the side where the lift amount when the needle valve 3 is lifted is increased. It is a solenoid. Reference numeral 9 denotes a stopper spring for urging the stopper 7 to the side where the lift amount when the needle valve 3 is lifted is reduced, and 10 denotes a fuel pool formed between the injection hole 1 and the seat portion 5. Reference numerals 11 denote needle valve ends protruding toward the injection hole side (the lower side in FIGS. 1 to 3) from the seat portion 5. An armature 20 is connected to the needle valve 3 so as to be abutted against the stopper 7 when the needle valve 3 is being lifted. An armature 21 is for urging the armature 20 toward the stopper when the needle valve 3 is to be lifted. It is a solenoid. Reference numeral 22 denotes an armature spring for urging the armature 20 connected to the needle valve 3 to the valve closing side (the lower side in FIGS. 1 to 3), and 23 is defined between the nozzle 2 and the needle valve 3. It is a fuel passage. C1 is the central axis of the needle valve 3, and C2 is the central axis of the fuel reservoir 10.
[0022]
As shown in detail in FIG. 3B, the center axis C2 of the fuel reservoir 10 is arranged eccentrically with respect to the center axis C1 of the needle valve 3. Therefore, the fuel pool 10 from the left seat portion 5 in FIG. 3B is formed so as to form two (or a pair) opposing regions on the side where the resistance to the flow of the fuel is relatively large and the side where the resistance is relatively small. The length L1 of the inner peripheral surface 4 of the nozzle is longer than the length L2 of the inner peripheral surface 4 of the nozzle from the seat portion 5 on the right side of FIG. That is, when the needle valve 3 is opened as shown in FIG. 3 (a), the resistance to the fuel flow F1 on the left side of FIG. 3 (a) corresponds to the resistance to the fuel flow F2 on the right side of FIG. 3 (a). Than resistancebigThat is, the fuel flow F1 on the left side of FIG. 3A is larger than the fuel flow F2 on the right side of FIG.WeaklyBecome.
[0023]
The injection hole 1 has a single inlet opening 30 on the seat portion side (upper side in FIGS. 2 and 3) and a first outlet having a different shape on the opposite side (lower side in FIGS. 2 and 3) of the seat portion. It has an opening 31 and a second outlet opening 32. As shown in detail in FIG. 2, a first fuel passage extending from the inlet opening 30 to the first outlet opening 31 and a second fuel passage extending from the inlet opening 30 to the second outlet opening 32. Both have a fan-shaped cross section, but the spread angle θ1 of the first fuel passage is smaller than the spread angle θ2 of the second fuel passage. Also, as shown in detail in FIG. 3, a first fuel passage extending from the inlet opening 30 to the first outlet opening 31 and a second fuel passage extending from the inlet opening 30 to the second outlet opening 32. The passages are arranged in the same direction as the opposing directions of the two (or one pair) regions, and more specifically, the eccentric direction of the center axis C2 of the fuel reservoir 10 with respect to the center axis C1 of the needle valve 3 (see FIG. (Horizontal direction).
[0024]
FIG. 4 is an enlarged view of the injection hole 1. More specifically, FIG. 4A is a view of the injection hole 1 as viewed from the fuel pool side (the upper side in FIGS. 2 and 3), and FIG. FIG. 4 is a view as viewed from the lower side of FIGS. 2 and 3.
[0025]
FIG. 5 is a diagram showing the relationship between the lift amount and the flow of fuel near the seat portion and the flow of fuel in the injection hole. More specifically, FIG. 5A shows a state in which the needle valve 3 is lifted when the lift amount is small (lift amount = LS), that is, the stopper abutted on the injection hole side (the lower side in FIG. 1). FIG. 5B is a diagram showing the flow of fuel when the armature 20 is abutted against 7. FIG. 5B shows a state in which the lift amount when the needle valve 3 is lifted is large (lift amount = LL). That is, it is a diagram showing a fuel flow when the armature 20 is abutted against the stopper 7 abutted on the opposite side (upper side in FIG. 1) of the injection hole.
[0026]
When the lift amount is small (lift amount = LS) as shown in FIG. 5A, the center axis C2 of the fuel reservoir 10 is shifted to the center axis of the needle valve 3 as in the case described with reference to FIG. The length L1 of the nozzle inner peripheral surface 4 from the left seat portion 5 to the fuel pool portion 10 in FIG. 5A is eccentrically disposed with respect to C1 and the fuel pool from the right seat portion 5 in FIG. Because the resistance to the fuel flow F1 on the left side of FIG. 5A is smaller than the length L2 of the nozzle inner peripheral surface 4 up to the portion 10, the resistance to the fuel flow F2 on the right side of FIG. 5A, the fuel flow F1 on the left side of FIG. 5A becomes weaker than the fuel flow F2 on the right side of FIG. 5A. Therefore, in the injection hole 1, the fuel flow F3 mainly passes through the first fuel passage extending from the inlet opening 30 to the first outlet opening 31. As shown in FIG. 2A, since the spread angle θ1 of the first fuel passage is smaller than the spread angle θ2 of the second fuel passage, the spread angle of the fuel spray injected from the injection hole 1 is , Becomes relatively small in accordance with the spread angle θ1 of the first fuel passage. Since the injection with a small spread angle of the fuel spray is suitable for stratified combustion, when the stratified combustion is to be performed, the lift amount is reduced as shown in FIG.
[0027]
On the other hand, when the lift amount is large (lift amount = LL) as shown in FIG. 5B, the fuel flow on the left side of FIG. The resistance to the fuel flow F4 on the right side of FIG. 5B is substantially equal to the resistance to the fuel flow F5 on the right side of FIG. 5B, and the strength of the fuel flow F4 on the left side of FIG. It is almost equal to the strength of F5. Therefore, in the injection hole 1, the fuel flow F6 mainly passes through the second fuel passage extending from the inlet opening 30 to the second outlet opening 32. As shown in FIG. 2A, since the spread angle θ2 of the second fuel passage is larger than the spread angle θ1 of the first fuel passage, the spread angle of the fuel spray injected from the injection hole 1 is Becomes relatively large according to the spread angle θ2 of the second fuel passage. Since the injection with a large spread angle of the fuel spray is suitable for homogeneous combustion, when the homogeneous combustion is to be performed, the lift amount is increased as shown in FIG. 5B.
[0028]
According to the present embodiment, when the needle valve 3 is lifted by a small lift amount (LS) (FIG. 5A), the flow of the fuel near the seat portion 5 is changed to the fuel flow on the left side of FIG. The nozzle inner circumferential surface 4 is made uneven in the circumferential direction so that the flow F1 is different from the fuel flow F2 on the right side, that is, the fuel flow near the seat portion 5 is uneven in the circumferential direction of the needle valve 3. It is formed. Further, as shown in FIGS. 5A and 5B, the degree of circumferential non-uniformity of the fuel flow in the vicinity of the seat portion 5 is changed with the change in the lift amount. Therefore, unlike the conventional case in which the high-pressure air supply device is provided, it is possible to change the shape of the fuel spray injected from the injection hole while avoiding an increase in the size of the nozzle portion of the fuel injection valve and an increase in cost.
[0029]
More specifically, the fuel reservoir 10 is disposed eccentrically with respect to the central axis C1 of the needle valve 3, and the lengths L1 and L2 of the nozzle inner peripheral surface 4 from the seat portion 5 to the fuel reservoir 10 are defined by the circumference of the needle valve 3. Since the fuel flows F1 and F2 in the vicinity of the seat portion 5 are uneven in the direction, the circumferential direction of the needle valve 3 is uneven. As a result, the fuel flow in the injection hole 1 is made uneven in the circumferential direction of the needle valve 3. That is, in the injection hole 1, the flow of the fuel is biased toward the first fuel passage extending from the inlet opening 30 to the first outlet opening 31. As a result, the shape of the fuel spray injected from the injection hole 1 is made uneven in the circumferential direction of the needle valve 3 as compared with the case where the fuel flow near the seat portion 5 is not made uneven in the circumferential direction of the needle valve 3. Can be.
[0030]
Further, since the degree of unevenness in the circumferential direction of the fuel flow in the vicinity of the seat portion 5 is changed with the change in the lift amount, the lift amount is small (FIG. 5A) and large (FIG. 5B). ) Can change the degree of circumferential non-uniformity of the fuel flow in the injection hole 1. Therefore, the degree of circumferential unevenness of the shape of the fuel spray injected from the injection hole 1 can be changed. That is, the shape of the fuel spray injected from the injection hole 1 can be changed.
[0031]
Further, since the injection hole 1 has a single inlet opening 30 on the seat portion side (upper side in FIGS. 1 to 3), the minimum sectional area of the fuel passage at the time of lift is defined by the single inlet opening 30. Therefore, the fuel injection rate can be kept constant regardless of the change in the lift amount. Further, since two outlet openings 31 and 32 having different shapes are provided, if the degree of non-uniformity of the fuel flow in the injection hole 1 in the circumferential direction is changed due to the change in the lift amount, the outlet is used for fuel injection. Outlet openings 31, 32 are changed. Therefore, the shape of the fuel spray can be changed according to the shape of the outlet openings 31, 32. That is, the shape of the fuel spray can be effectively changed while maintaining the fuel injection rate constant.
[0032]
In addition, since the degree of spread θ1 and θ2 of the fuel passage from the inlet opening 30 to the outlet openings 31 and 32 is different at each of the outlet openings 31 and 32, the outlet used for fuel injection with a change in the lift amount. When the openings 31 and 32 are changed, the spread angle of the fuel spray can be changed. Further, since the fuel reservoir 10 is arranged eccentrically with respect to the central axis C1 of the needle valve 3 and the lift amount of the needle valve 3 at the time of lift is changed, the fuel amount in the injection hole 1 is changed with the change of the lift amount. The directions of the flows F3 and F6 are shifted in the eccentric direction of the fuel reservoir 10 (the left-right direction in FIG. 5). Further, since the two outlet openings 31 and 32 are arranged in the eccentric direction of the fuel reservoir 10, the two outlet openings 31 and 32 having different shapes can be effectively used according to the change in the lift amount. That is, the shape of the fuel spray can be effectively changed with the change in the lift amount.
[0033]
In the present embodiment, the injection hole 1 is a slit-shaped injection hole. However, even if the injection hole has a plane cross section or a semicircular cross section, the size of the nozzle portion of the fuel injection valve can be increased by the same method as in this embodiment. It is possible to change the shape of the fuel spray injected from the injection hole while avoiding the increase in cost and cost.
[0034]
Hereinafter, a second embodiment of the fuel injection valve of the present invention will be described. The overall configuration of this embodiment is almost the same as the overall configuration of the first embodiment shown in FIG. Therefore, the present embodiment can also provide substantially the same effects as the first embodiment. FIG. 6 is an enlarged view near the injection hole similar to FIG. 6, the same reference numerals as those shown in FIGS. 1 to 5 denote the same parts or parts as those shown in FIGS. 1 to 5, and 102 includes a slit-shaped injection hole. The reference numeral 104 denotes a nozzle inner peripheral surface, and 150 denotes a concave portion formed in the nozzle inner peripheral surface 104.
[0035]
As shown in FIG. 6, in the present embodiment, the inner peripheral surface of the nozzle is such that the intervals S1 and S2 between the outer peripheral surface 6 of the needle valve end 11 and the inner peripheral surface 104 of the nozzle are uneven in the circumferential direction of the needle valve 3. A recess 150 is formed in 104. According to the present embodiment, the recesses 150 are formed in the nozzle inner peripheral surface 104 such that the intervals S1 and S2 between the outer peripheral surface 6 of the needle valve end 11 and the nozzle inner peripheral surface 104 are not uniform in the circumferential direction of the needle valve 3. Is formed, and the fuel flows near the seat 5F101, F102 are changed in accordance with the change in the lift amount. Therefore, unlike the conventional case in which the high-pressure air supply device is provided, it is possible to change the shape of the fuel spray injected from the injection hole while avoiding an increase in the size of the nozzle portion of the fuel injection valve and an increase in cost.
[0036]
More specifically, the intervals S1 and S2 between the outer peripheral surface 6 of the needle valve end 11 and the inner peripheral surface 104 of the nozzle are made non-uniform on the right and left sides in FIG. , F102 are made uneven in the circumferential direction of the needle valve 3. Therefore, similarly to the first embodiment, the fuel flow F103 in the injection hole 1 can be made uneven in the circumferential direction of the needle valve 3, and the shape of the fuel spray injected from the injection hole 1 can be improved. Can be made uneven in the circumferential direction of the needle valve 3. Further, similarly to the case of the first embodiment, the degree of non-uniformity in the circumferential direction of the fuel flows F101 and F102 in the vicinity of the seat portion 5 is changed with the change in the lift amount. When it is large, it is possible to change the degree of circumferential non-uniformity of the fuel flow in the injection hole 1, and therefore to change the degree of circumferential non-uniformity of the shape of the fuel spray injected from the injection hole 1. Can be. That is, the shape of the fuel spray injected from the injection hole 1 can be changed.
[0037]
In the present embodiment, the injection hole 1 is a slit-shaped injection hole. However, even if the injection hole has a plane cross section or a semicircular cross section, the size of the nozzle portion of the fuel injection valve can be increased by the same method as in this embodiment. It is possible to change the shape of the fuel spray injected from the injection hole while avoiding the increase in cost and cost.
[0038]
Hereinafter, a third embodiment of the fuel injection valve of the present invention will be described. The overall configuration of this embodiment is almost the same as the overall configuration of the first embodiment shown in FIG. Therefore, the present embodiment can also provide substantially the same effects as the first embodiment. FIG. 7 is an enlarged view near the injection hole similar to FIG. 7, the same reference numerals as those shown in FIGS. 1 to 5 denote the same parts or parts as those shown in FIGS. 1 to 5, and 203 denotes the opening and closing of the injection hole 1. The reference numeral 206 denotes an outer peripheral surface of the needle valve, and 211 denotes an end of the needle valve protruding toward the injection hole side (the lower side in FIG. 7) from the seat portion 5.
[0039]
As shown in FIG. 7, in the present embodiment, the needle valve end portions such that the intervals S3 and S4 between the outer peripheral surface 206 of the needle valve end portion 211 and the nozzle inner peripheral surface 4 are not uniform in the circumferential direction of the needle valve 3. A notch 230 is formed in 211. According to the present embodiment, the needle valve end 211 is notched so that the intervals S3 and S4 between the outer peripheral surface 206 of the needle valve end 211 and the inner peripheral surface 4 of the nozzle become uneven in the circumferential direction of the needle valve 203. 230 is formed, and the fuel flow near the seat portion 5F201, F202 are changed in accordance with the change of the lift amount. Therefore, unlike the conventional case in which the high-pressure air supply device is provided, it is possible to change the shape of the fuel spray injected from the injection hole while avoiding an increase in the size of the nozzle portion of the fuel injection valve and an increase in cost.
[0040]
More specifically, the intervals S3 and S4 between the outer peripheral surface 206 of the needle valve end 211 and the inner peripheral surface 4 of the nozzle are made non-uniform on the right and left sides in FIG. , F202 are made uneven in the circumferential direction of the needle valve 203. Therefore, similarly to the case of the first embodiment, the fuel flow F203 in the injection hole 1 can be made uneven in the circumferential direction of the needle valve 203, and the shape of the fuel spray injected from the injection hole 1 can be improved. Can be made uneven in the circumferential direction of the needle valve 203. Further, similarly to the case of the first embodiment, the degree of non-uniformity in the circumferential direction of the fuel flows F201 and F202 in the vicinity of the seat portion 5 is changed with the change of the lift amount, so that when the lift amount is small. When it is large, it is possible to change the degree of circumferential unevenness of the fuel flow in the injection hole 1, and therefore, to change the degree of circumferential unevenness of the shape of the fuel spray injected from the injection hole 1. Can be. That is, the shape of the fuel spray injected from the injection hole 1 can be changed.
[0041]
In the present embodiment, the injection hole 1 is a slit-shaped injection hole. However, even if the injection hole has a plane cross section or a semicircular cross section, the size of the nozzle portion of the fuel injection valve can be increased by the same method as in this embodiment. It is possible to change the shape of the fuel spray injected from the injection hole while avoiding the increase in cost and cost.
[0042]
【The invention's effect】
According to the first to third aspects of the present invention, unlike the conventional case in which the high-pressure air supply device is provided, the fuel injected from the injection hole is avoided while increasing the size and cost of the nozzle portion of the fuel injection valve. The shape of the spray can be changed. Specifically, the fuel flow in the injection hole can be made uneven in the circumferential direction of the injection hole on-off valve, and the shape of the fuel spray injected from the injection hole can be uneven in the circumferential direction of the injection hole on-off valve. can do. Further, the degree of circumferential non-uniformity of the fuel flow in the injection hole can be changed between when the lift amount is small and when the lift amount is large, and therefore, the shape of the fuel spray injected from the injection hole in the circumferential direction is not uniform. The degree of uniformity can be changed. That is, the shape of the fuel spray injected from the injection hole can be changed.
[0043]
Claims 1 to 3According to the invention described in (1), the minimum cross-sectional area of the fuel passage is defined by a single inlet opening. Therefore, the fuel injection rate can be kept constant regardless of the change in the lift amount. Further, when the degree of non-uniformity of the fuel flow in the injection hole in the circumferential direction is changed in accordance with the change in the lift amount, the outlet opening used for fuel injection is changed. Therefore, the shape of the fuel spray can be changed according to the shape of the outlet opening. That is, the shape of the fuel spray can be effectively changed while maintaining the fuel injection rate constant.
[0044]
Claim4According to the invention described in (1), when the outlet opening used for fuel injection is changed along with the change in the lift amount, the spread angle of the fuel spray can be changed.
[0045]
Claim5According to the invention described in (1), the direction of the flow of the fuel in the injection hole is shifted in the eccentric direction of the fuel pool portion with the change in the lift amount. Further, a plurality of outlet openings having different shapes can be effectively used according to the change in the lift amount. That is, the shape of the fuel spray can be effectively changed with the change in the lift amount.
[0046]
Claim6According to the invention described in (1), the flow of the fuel near the seat portion can be effectively made uneven in the circumferential direction of the injection hole opening / closing valve. Therefore, the flow of fuel in the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve, and the shape of the fuel spray injected from the injection hole can be made uneven in the circumferential direction of the injection hole opening / closing valve. be able to.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional side view showing an entire configuration of a first embodiment of a fuel injection valve of the present invention.
FIG. 2 is an enlarged view of the vicinity of an injection hole in FIG.
FIG. 3 is an enlarged view similar to FIG. 2 when FIG. 2 is viewed from the left side.
FIG. 4 is an enlarged view of the injection hole 1.
FIG. 5 is a diagram showing a relationship between a lift amount and a flow of fuel near a seat portion and a flow of fuel in an injection hole.
FIG. 6 is an enlarged view near the injection hole similar to FIG. 3 (a).
FIG. 7 is an enlarged view near the injection hole similar to FIG. 3 (a).
[Explanation of symbols]
1 ... Injection hole
2. Nozzle
3. Needle valve
4 ... Nozzle inner peripheral surface
5 ... Seat part
6: Needle valve outer peripheral surface
7 ... Stopper
8. Solenoid for stopper
9 Spring for stopper

Claims (6)

噴孔を備えたノズルと、前記噴孔を開閉するための噴孔開閉弁とを具備し、前記噴孔から噴射される燃料噴霧の形状を変更可能な燃料噴射弁において、噴孔開閉弁の全閉時に前記噴孔開閉弁が着座するシート部をノズル内周面に形成し、前記噴孔開閉弁のリフト時に前記シート部付近の燃料の流れが噴孔開閉弁の周方向に不均一になるように前記ノズル内周面又は噴孔開閉弁外周面を周方向不均一に形成し、前記噴孔開閉弁のリフト時のリフト量を変更するためのリフト量変更手段を設け、前記シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化するようにした燃料噴射弁であって、前記噴孔がシート部側に単一の入口開口を有すると共に、シート部の反対側にそれぞれ形状の異なる複数の出口開口を有する燃料噴射弁A nozzle having an injection hole, and an injection hole opening / closing valve for opening and closing the injection hole, wherein a fuel injection valve capable of changing the shape of fuel spray injected from the injection hole; A seat portion on which the injection hole opening / closing valve is seated when fully closed is formed on the inner peripheral surface of the nozzle, and when the injection hole opening / closing valve is lifted, the flow of fuel near the seat portion is uneven in the circumferential direction of the injection hole opening / closing valve. The inner peripheral surface of the nozzle or the outer peripheral surface of the injection hole opening / closing valve is formed to be non-uniform in the circumferential direction, and lift amount changing means for changing the lift amount of the injection hole opening / closing valve at the time of lift is provided; A fuel injection valve in which the degree of circumferential non-uniformity of fuel flow in the vicinity changes with a change in the lift amount , wherein the injection hole has a single inlet opening on the seat portion side, and the seat portion has Having a plurality of outlet openings each having a different shape on the opposite side of the fuel Event. 噴孔を備えたノズルと、前記噴孔を開閉するための噴孔開閉弁とを具備し、前記噴孔から噴射される燃料噴霧の形状を変更可能な燃料噴射弁において、噴孔開閉弁の全閉時に前記噴孔開閉弁が着座するシート部をノズル内周面に形成し、前記噴孔と前記シート部との間に燃料だまり部を形成し、前記噴孔開閉弁の端部を前記シート部よりも噴孔側に突出させ、前記燃料だまり部を噴孔開閉弁の中心軸線に対し偏心して配置し、前記噴孔開閉弁のリフト時に前記シート部付近の燃料の流れが噴孔開閉弁の周方向に不均一になるように前記シート部から前記燃料だまり部までのノズル内周面の長さを噴孔開閉弁の周方向に不均一にし、前記噴孔開閉弁のリフト時のリフト量を変更するためのリフト量変更手段を設け、前記シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化するようにした燃料噴射弁であって、前記噴孔がシート部側に単一の入口開口を有すると共に、シート部の反対側にそれぞれ形状の異なる複数の出口開口を有する燃料噴射弁A nozzle having an injection hole, and an injection hole opening / closing valve for opening and closing the injection hole, wherein a fuel injection valve capable of changing the shape of fuel spray injected from the injection hole; A seat portion on which the injection hole on / off valve is seated when fully closed is formed on the inner peripheral surface of the nozzle, a fuel pool is formed between the injection hole and the seat portion, and an end of the injection hole on / off valve is The fuel pool is projected to the injection hole side from the seat portion, and the fuel reservoir is disposed eccentrically with respect to the central axis of the injection hole opening / closing valve. The length of the inner peripheral surface of the nozzle from the seat portion to the fuel reservoir is made uneven in the circumferential direction of the injection hole opening / closing valve so as to be uneven in the circumferential direction of the valve. A lift amount changing means for changing the lift amount is provided, and a fuel flow near the seat portion is provided. Circumferentially nonuniform degree a fuel injection valve so as to vary with the change of the lift amount of, together with the injection hole has a single inlet opening on the seat portion side, respectively on the opposite side of the seat portion A fuel injection valve having a plurality of outlet openings having different shapes . 噴孔を備えたノズルと、前記噴孔を開閉するための噴孔開閉弁とを具備し、前記噴孔から噴射される燃料噴霧の形状を変更可能な燃料噴射弁において、噴孔開閉弁の全閉時に前記噴孔開閉弁が着座するシート部をノズル内周面に形成し、前記噴孔と前記シート部との間に燃料だまり部を形成し、前記噴孔開閉弁の端部を前記シート部よりも噴孔側に突出させ、前記噴孔開閉弁の端部の外周面と前記ノズル内周面との間隔が噴孔開閉弁の周方向に不均一になるように前記噴孔開閉弁の端部の外周面又は前記ノズル内周面を形成し、前記噴孔開閉弁のリフト時のリフト量を変更するためのリフト量変更手段を設け、前記シート部付近の燃料の流れの周方向不均一度合いがリフト量の変更に伴って変化するようにした燃料噴射弁であって、前記噴孔がシート部側に単一の入口開口を有すると共に、シート部の反対側にそれぞれ形状の異なる複数の出口開口を有する燃料噴射弁A nozzle having an injection hole, and an injection hole opening / closing valve for opening and closing the injection hole, wherein a fuel injection valve capable of changing the shape of fuel spray injected from the injection hole; A seat portion on which the injection hole on / off valve is seated when fully closed is formed on the inner peripheral surface of the nozzle, a fuel pool is formed between the injection hole and the seat portion, and an end of the injection hole on / off valve is The nozzle is opened and closed such that the interval between the outer peripheral surface of the end of the nozzle opening / closing valve and the inner peripheral surface of the nozzle is not uniform in the circumferential direction of the nozzle opening / closing valve. An outer peripheral surface at an end of the valve or the inner peripheral surface of the nozzle is formed, and a lift amount changing means for changing a lift amount of the injection hole opening / closing valve at the time of lift is provided. a fuel injection valve direction nonuniform degree was made to vary with the change of the lift amount, the injection hole Which has a single inlet opening on the seat portion side, the fuel injection valve having a plurality of outlet openings respectively different shapes on the opposite side of the seat portion. 入口開口から出口開口への燃料通路の広がり度合いが各出口開口で異なる請求項1〜3のいずれか一項に記載の燃料噴射弁 The fuel injection valve according to any one of claims 1 to 3, wherein the degree of expansion of the fuel passage from the inlet opening to the outlet opening differs at each outlet opening . 前記噴孔がスリット状噴孔であり前記複数の出口開口が前記燃料だまり部の偏心方向に並べられている請求項2に記載の燃料噴射弁。The fuel injection valve according to claim 2, wherein the injection hole is a slit-shaped injection hole, and the plurality of outlet openings are arranged in an eccentric direction of the fuel reservoir. 前記噴孔開閉弁の端部に切り欠きが形成されている請求項1又は3に記載の燃料噴射弁 4. The fuel injection valve according to claim 1, wherein a notch is formed at an end of the injection hole opening / closing valve .
JP33183299A 1999-11-22 1999-11-22 Fuel injection valve Expired - Fee Related JP3539318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33183299A JP3539318B2 (en) 1999-11-22 1999-11-22 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33183299A JP3539318B2 (en) 1999-11-22 1999-11-22 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2001153003A JP2001153003A (en) 2001-06-05
JP3539318B2 true JP3539318B2 (en) 2004-07-07

Family

ID=18248154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33183299A Expired - Fee Related JP3539318B2 (en) 1999-11-22 1999-11-22 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP3539318B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071694B2 (en) * 2003-09-12 2008-04-02 株式会社日立製作所 Fuel injection device for internal combustion engine
JP4893709B2 (en) * 2008-08-08 2012-03-07 トヨタ自動車株式会社 Fuel injection valve for internal combustion engine
US9765723B2 (en) 2013-05-10 2017-09-19 Denso Corporation Fuel injection control device and fuel injection system
KR101828442B1 (en) * 2016-03-08 2018-02-12 주식회사 현대케피코 variable flow rate injector

Also Published As

Publication number Publication date
JP2001153003A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP3164023B2 (en) Fuel injection valve for internal combustion engine
EP0918157B1 (en) A fuel injector for an internal combustion engine
JP2004076723A (en) Fuel injection device
JP4221726B2 (en) Injection hole plate and fuel injection valve
JPH07243368A (en) Fluid injection nozzle
GB2386157A (en) Fuel injector nozzle plate with swirl chambers
JP3039510B2 (en) Fuel injection valve for internal combustion engine
JP3539318B2 (en) Fuel injection valve
WO2010026478A1 (en) Fuel injection valve of internal combustion engine
JP3896653B2 (en) Fuel injection valve for internal combustion engine
JPH07259698A (en) Fuel injection pump
JPH0842428A (en) Impact type fuel injection nozzle and manufacture thereof
US6047904A (en) Fuel injector for an internal combustion engine
US7017839B2 (en) Fuel injection valve
JP2001107825A (en) Solenoid fuel injection valve
JPH02241975A (en) Plate with hole for fuel injection valve
JPH05272432A (en) Fuel injecting valve
JP3756251B2 (en) Fuel injection valve
EP0982481B1 (en) In-cylinder injection type of engine
JP3838089B2 (en) Fuel injection valve for internal combustion engine
US5666920A (en) Fuel supply system for use with internal combustion engine
JP2782615B2 (en) Nozzle plate manufacturing method and nozzle plate
JP3139162B2 (en) Fuel injection nozzle
JP3817931B2 (en) Fluid injection valve
JPH08312500A (en) Fuel injection valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees