JP3539268B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP3539268B2
JP3539268B2 JP07945499A JP7945499A JP3539268B2 JP 3539268 B2 JP3539268 B2 JP 3539268B2 JP 07945499 A JP07945499 A JP 07945499A JP 7945499 A JP7945499 A JP 7945499A JP 3539268 B2 JP3539268 B2 JP 3539268B2
Authority
JP
Japan
Prior art keywords
sox
exhaust gas
absorbent
nox
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07945499A
Other languages
English (en)
Other versions
JP2000274230A (ja
Inventor
俊祐 利岡
信也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP07945499A priority Critical patent/JP3539268B2/ja
Publication of JP2000274230A publication Critical patent/JP2000274230A/ja
Application granted granted Critical
Publication of JP3539268B2 publication Critical patent/JP3539268B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、希薄燃焼可能な内燃機関より排出される排気ガスから窒素酸化物(NOx)を浄化することができる排気浄化装置に関するものである。
【0002】
【従来の技術】
希薄燃焼可能な内燃機関より排出される排気ガスからNOxを浄化する排気浄化装置として、吸蔵還元型NOx触媒に代表されるNOx吸収剤がある。NOx吸収剤は、流入排気ガスの空燃比がリーン(即ち、酸素過剰雰囲気下)のときにNOxを吸収し、流入排気ガスの酸素濃度が低下したときに吸収したNOxを放出するものであり、このNOx吸収剤の一種である吸蔵還元型NOx触媒は、流入排気ガスの空燃比がリーン(即ち、酸素過剰雰囲気下)のときにNOxを吸収し、流入排気ガスの酸素濃度が低下したときに吸収したNOxを放出しN2に還元する触媒である。
【0003】
この吸蔵還元型NOx触媒(以下、単に触媒あるいはNOx触媒ということもある)を希薄燃焼可能な内燃機関の排気通路に配置すると、リーン空燃比の排気ガスが流れたときには排気ガス中のNOxが触媒に吸収され、ストイキ(理論空燃比)あるいはリッチ空燃比の排気ガスが流れたときに触媒に吸収されていたNOxがNO2として放出され、さらに排気ガス中のHCやCOなどの還元成分によってN2に還元され、即ちNOxが浄化される。
【0004】
ところで、一般に、内燃機関の燃料には硫黄分が含まれており、内燃機関で燃料を燃焼すると、燃料中の硫黄分が燃焼してSO2やSO3などの硫黄酸化物(SOx)が発生する。前記吸蔵還元型NOx触媒は、NOxの吸収作用を行うのと同じメカニズムで排気ガス中のSOxの吸収を行うので、内燃機関の排気通路にこのNOx触媒を配置すると、このNOx触媒にはNOxのみならずSOxも吸収される。
【0005】
ところが、前記NOx触媒に吸収されたSOxは時間経過とともに安定な硫酸塩を形成するため、前記NOx触媒からNOxの放出・還元を行うのと同じ条件下では、分解、放出されにくく触媒内に蓄積され易い傾向がある。NOx触媒内のSOx蓄積量が増大すると、触媒のNOx吸収容量が減少して排気ガス中のNOxの除去を十分に行うことができなくなりNOx浄化効率が低下する。これが所謂SOx被毒である。
【0006】
そこで、吸蔵還元型NOx触媒のNOx浄化能を長期に亘って高く維持するために、NOx触媒よりも上流に、排気ガス中のSOxを専ら吸収するSOx吸収剤を配置し、NOx触媒にSOxが流れ込まないようにしてSOx被毒の防止を図った排気浄化装置が開発されている。
【0007】
前記SOx吸収剤は、流入ガスの空燃比がリーンのときにSOxを吸収し、流入ガスの酸素濃度が低いときに吸収したSOxをSO2として放出するものであるが、このSOx吸収剤のSOx吸収容量にも限りがあるため、SOx吸収剤がSOxで飽和する前にSOx吸収剤から積極的にSOxを放出させる処理、即ち再生処理を実行する必要がある。
【0008】
SOx吸収剤の再生処理技術については、例えば特許番号第2605580号の特許公報に開示されている。この公報によれば、SOx吸収剤に吸収されたSOxを放出させるには、流入排気ガスの空燃比をストイキまたはリッチにして酸素濃度を低下させる必要があり、また、SOx吸収剤の温度が高い方がSOxが放出され易いとされている。
【0009】
さらに、この公報に開示された再生処理技術では、SOx吸収剤からSOxを放出させたときに、放出されたSOxが下流に配置されているNOx触媒に吸収されるのを防止するために、SOx吸収剤とNOx触媒とを接続する排気管から分岐してNOx触媒を迂回するバイパス通路を設けるとともに、排気ガスをNOx触媒とバイパス通路のいずれに流すか選択的に切り替える排気経路切替弁を設け、SOx吸収剤の再生処理実行中は排気経路切替弁の制御により排気ガスをバイパス通路に流れるようにしてNOx触媒には流れないようにし、再生処理を実行していない時には排気経路切替弁の制御により排気ガスをNOx触媒に流れるようにしてバイパス通路には流れないようにしている。このようにすると、再生処理実行中においては、SOx吸収剤から放出されたSOxがNOx触媒に流れ込まなくなるので、NOx触媒がSOx被毒するのを阻止することができる。
【0010】
【発明が解決しようとする課題】
ところで、前記従来の技術では、SOx吸収剤の再生処理を行うときには、排気ガスの空燃比をストイキまたはリッチにして酸素濃度を低下させると同時に前記排気経路切替弁を制御して排気ガスをバイパス通路に流れるようにし、再生処理の間この状態を保持し、再生処理が終了すると、排気ガスの空燃比をリーンにすると同時に排気経路切替弁を制御して排気ガスをNOx触媒に流れるように、排気ガスの経路を切り替えていた。
【0011】
しかしながら、上述のようなタイミングで排気経路切替弁を切替制御すると、再生処理が終了し排気ガスの空燃比をリーンにしたにもかかわらず、再生処理終了直後にSOx吸収剤からSOxが放出され、放出されたSOxがNOx触媒に吸収されて、NOx触媒がSOx被毒するという問題があった。
【0012】
この原因は次のように推察される。再生処理中はSOx吸収剤にストイキまたはリッチ空燃比の排気ガスが流れるが、その時にSOx吸収剤はSOxを放出するだけでなく、排気ガス中のHCを吸着する。したがって、再生処理終了時点ではSOx吸収剤に多量のHCが吸着された状態になっている。一方、再生処理終了時点といえども、SOx吸収剤に吸収されていたSOxが総て放出されるわけではなく、SOx吸収剤には吸収されたSOxが残っている。
【0013】
このような状態の再生処理終了時にSOx吸収剤へリーン空燃比の排気ガスを流すと、排気ガスに含まれている多量の酸素がSOx吸収剤に吸着されているHCを酸化するために大量に消費され、その結果、SOx吸収剤の内部では排気ガスの空燃比がストイキ雰囲気になり、しかも再生処理終了直後はまだSOx吸収剤が高温であることもあって、SOx吸収剤に残っているSOxが脱離し、SOx吸収剤から放出される。このSOx吸収剤からのSOxの脱離は、SOx吸収剤に吸着されているHCの吸着量が減少してHCを酸化するための酸素消費量が減少し、SOx吸収剤の内部の空燃比がリーンになるまで続く。
【0014】
そして、再生処理終了時には、排気ガスの空燃比をリーンにすると同時に排気ガスをNOx触媒に流れるように排気経路切替弁を制御しているので、SOx吸収剤から放出されたSOxが排気ガスとともにNOx触媒に流れ、NOx触媒を被毒するものと思われる。
【0015】
本発明はこのような従来の技術の問題点に鑑みてなされたものであり、本発明が解決しようとする課題は、SOx吸収剤に流入する排気ガスの空燃比がストイキまたはリッチからリーンに切り替わった直後にSOx吸収剤から放出されるSOxをNOx吸収剤に流入させないようにすることにより、NOx吸収剤のSOx被毒をより確実に防止することにある。
【0016】
【課題を解決するための手段】
本発明は前記課題を解決するために、以下の手段を採用した。
(1) 本出願の第1の発明に係る内燃機関の排気浄化装置は、(イ)希薄燃焼可能な内燃機関の排気通路に配置され、流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤と、(ロ)前記SOx吸収剤よりも下流の前記排気通路に配置され、流入する排気ガスの空燃比がリーンのときにNOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したNOxを放出するNOx吸収剤と、(ハ)前記SOx吸収剤の下流で分岐し前記NOx吸収剤を迂回して排気ガスを流すバイパス通路と、(ニ)前記SOx吸収剤から流出した排気ガスを前記NOx吸収剤と前記バイパス通路のいずれに導くか選択的に切り替える排気経路切替手段と、(ホ)排気ガスの空燃比をストイキまたはリッチにして前記SOx吸収剤に吸収されたSOxを放出するSOx放出処理時にはSOx吸収剤から流出する排気ガスが前記バイパス通路に導かれるように前記排気経路切替手段を制御し、前記SOx放出処理の終了により排気ガスの空燃比をリーンに切り替えてから所定時間経過後にSOx吸収剤から流出する排気ガスが前記NOx吸収剤に導かれるように前記排気経路切替手段を制御する排気経路切替制御手段と、を備えたことを特徴とする。
【0017】
前記第1の発明に係る内燃機関の排気浄化装置においては、SOx放出処理時にはストイキまたはリッチ空燃比の排気ガスがSOx吸収剤に流れ、これによってSOx吸収剤に吸収されていたSOxが脱離し放出される。放出されたSOxはバイパス通路に流れるので、NOx吸収剤には流れ込まない。したがって、SOx放出処理中はNOx吸収剤がSOx被毒することはない。なお、SOx吸収剤から放出されたSOxは排気ガス中の未燃HC、COによって還元せしめられ、SO2となって排出される。
【0018】
そして、SOx放出処理の終了により排気ガスの空燃比はリーンに切り替わるが、リーン空燃比に切り替わっても所定時間経過するまでは排気ガスはバイパス通路に導かれ、NOx吸収剤には流れ込まない。したがって、SOx放出処理終了後、排気ガスのリーン空燃比切り替え直後にSOx吸収剤から放出されるSOxもバイパス通路を流れ、NOx吸収剤には流れ込まない。したがって、この間においてもNOx吸収剤がSOx被毒することはない。
【0019】
そして、リーン空燃比への切り替え直後にSOx吸収剤から放出されていたSOxも、リーン空燃比への切り替えから前記所定時間が経過するまでには、SOx吸収剤から放出されなくなる。したがって、前記所定時間経過後に排気ガスがNOx吸収剤に流れるようになった時には、SOx吸収剤からSOxが放出されていないので、NOx吸収剤がSOx被毒することはない。
【0020】
(2) 本出願の第2の発明に係る内燃機関の排気浄化装置は、(イ)希薄燃焼可能な内燃機関の排気通路に配置され、流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤と、(ロ)前記SOx吸収剤よりも下流の前記排気通路に配置され、流入する排気ガスの空燃比がリーンのときにNOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したNOxを放出するNOx吸収剤と、(ハ)前記SOx吸収剤の下流で分岐し前記NOx吸収剤を迂回して排気ガスを流すバイパス通路と、(ニ)前記SOx吸収剤から流出した排気ガスを前記NOx吸収剤と前記バイパス通路のいずれに導くか選択的に切り替える排気経路切替手段と、(ホ)前記SOx吸収剤と前記NOx吸収剤の間に設けられた酸素濃度検出手段と、(ヘ)排気ガスの空燃比をストイキまたはリッチにして前記SOx吸収剤に吸収されたSOxを放出するSOx放出処理時にSOx吸収剤から流出する排気ガスが前記バイパス通路に導かれるように前記排気経路切替手段を制御し、前記SOx放出処理終了後に前記酸素濃度検出手段で検出された酸素濃度に基づきSOx吸収剤の下流における排気ガスの空燃比がリーンであると判定されるとSOx吸収剤から流出する排気ガスが前記NOx吸収剤に導かれるように前記排気経路切替手段を制御する排気経路切替制御手段と、を備えたことを特徴とする。
【0021】
前記第2の発明に係る内燃機関の排気浄化装置においては、SOx放出処理時にはストイキまたはリッチ空燃比の排気ガスがSOx吸収剤に流れ、これによってSOx吸収剤に吸収されていたSOxが脱離し放出される。放出されたSOxはバイパス通路に流れるので、NOx吸収剤には流れ込まない。したがって、SOx放出処理中はNOx吸収剤がSOx被毒することはない。なお、SOx吸収剤から放出されたSOxは排気ガス中の未燃HC、COによって還元せしめられ、SO2となって排出される。
【0022】
そして、SOx放出処理の終了により排気ガスの空燃比はリーンに切り替わるが、リーン空燃比に切り替わっても、前記酸素濃度検出手段で検出された酸素濃度に基づいてSOx吸収剤下流の排気ガスの空燃比がリーンであると判定されるまでは、排気ガスはバイパス通路に導かれ、NOx吸収剤には流れ込まない。したがって、SOx放出処理終了後、リーン空燃比への切り替え直後にSOx吸収剤から放出されるSOxもバイパス通路を流れ、NOx吸収剤には流れ込まない。したがって、この間においてもNOx吸収剤がSOx被毒することはない。
【0023】
一方、SOx吸収剤下流の排気ガスの空燃比がリーンになっていれば、その時にはSOx吸収剤からSOxが放出されていないはずである。したがって、SOx吸収剤下流の排気ガスの空燃比がリーンであると判定されて排気ガスがNOx吸収剤に流れるようになった時には、SOx吸収剤からSOxが放出されていないので、NOx吸収剤がSOx被毒することはない。
【0024】
前記第1の発明あるいは第2の発明に係る内燃機関の排気浄化装置において、希薄燃焼可能な内燃機関としては、筒内直接噴射式のリーンバーンガソリンエンジンやディーゼルエンジンを例示することができる。リーンバーンガソリンエンジンの場合には、排気ガスの空燃比制御は燃焼室に供給される混合気の空燃比制御により実現可能である。ディーゼルエンジンの場合の排気ガスの空燃比制御は、吸気行程または膨張行程または排気行程で燃料を噴射する所謂副噴射を行うか、あるいは、SOx吸収剤よりも上流の排気通路内に還元剤を供給することにより実現可能である。
ここで、排気ガスの空燃比とは、機関吸気通路及び上流側NOx吸収剤よりも上流での排気通路内に供給された空気及び燃料(炭化水素)の比をいう。
【0025】
前記第1の発明あるいは第2の発明に係る内燃機関の排気浄化装置において、NOx吸収剤としては吸蔵還元型NOx触媒を例示することができる。吸蔵還元型NOx触媒は、流入する排気ガスの空燃比がリーンのときにNOxを吸収し、流入する排気ガス中の酸素濃度が低下すると吸収したNOxを放出し、N2に還元する触媒である。この吸蔵還元型NOx触媒は、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されてなるものを例示することができる。
【0026】
前記第1の発明あるいは第2の発明に係る内燃機関の排気浄化装置において、SOx吸収剤としては、三元触媒や吸蔵還元型NOx触媒や選択還元型NOx触媒等を例示することができる。ここで、選択還元型NOx触媒とは、酸素過剰の雰囲気で炭化水素の存在下でNOxを還元または分解する触媒をいい、ゼオライトにCu等の遷移金属をイオン交換して担持した触媒、ゼオライトまたはアルミナに貴金属を担持した触媒、等が含まれる。
【0027】
前記第1の発明あるいは第2の発明に係る内燃機関の排気浄化装置において、前記排気経路切替手段は、バイパス通路の分岐部に設けた単一の切替弁で構成することもできるし、あるいは、分岐部よりも下流のNOx吸収剤に近い位置にある排気通路に第1の開閉弁を設けバイパス通路に第2の開閉弁を設けて一方の開閉弁が開くと他方の開閉弁が閉じるように制御して構成することもできる。
【0028】
前記第1の発明あるいは第2の発明に係る内燃機関の排気浄化装置において、「SOx放出処理」とは、SOx吸収剤に吸収されているSOxを積極的に放出させるために排気ガスの空燃比をストイキまたはリッチに制御する場合は勿論であるが、内燃機関の運転状態からの要求により気筒内での燃焼のために燃焼用ガスの空燃比をストイキまたはリッチに制御する結果、排気ガスの空燃比がストイキまたはリッチになってSOx吸収剤からSOxが放出される場合も含むものである。ここで、「内燃機関の運転状態からの要求」とは、例えば、内燃機関の高負荷運転時、全負荷運転時、始動時の暖機運転時、さらに車両駆動用の内燃機関の場合の加速時、高速の定速運転時などが考えられる。
【0029】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気浄化装置の実施の形態を図1から図8の図面に基いて説明する。
【0030】
〔第1の実施の形態〕
図1は本発明を希薄燃焼可能な車両用ガソリンエンジンに適用した場合の概略構成を示す図である。この図において、符号1は機関本体、符号2はピストン、符号3は燃焼室、符号4は点火栓、符号5は吸気弁、符号6は吸気ポート、符号7は排気弁、符号8は排気ポートを夫々示す。
【0031】
吸気ポート6は対応する枝管9を介してサージタンク10に連結され、各枝管9には夫々吸気ポート6内に向けて燃料を噴射する燃料噴射弁11が取り付けられている。サージタンク10は吸気ダクト12およびエアフロメータ13を介してエアクリーナ14に連結され、吸気ダクト12内にはスロットル弁15が配置されている。
【0032】
一方、排気ポート8は排気マニホルド16を介してSOx吸収剤17を内蔵したケーシング18に連結され、ケーシング18の出口部は排気管19を介して吸蔵還元型NOx触媒(NOx吸収剤)20を内蔵したケーシング21に連結され、ケーシング21は排気管22を介して図示しないマフラーに接続されている。尚、以下の説明では、吸蔵還元型NOx触媒20をNOx触媒20と称す。SOx吸収剤17およびNOx触媒20については後で詳述する。
【0033】
ケーシング21の入口部21aと排気管22は、NOx触媒20を迂回するバイパス管(バイパス通路)26によって連結されており、バイパス管26の分岐部であるケーシング21の入口部21aには、アクチュエータ27によって弁体が作動される排気切替弁(排気経路切替手段)28が設けられている。この排気切替弁28(以下、切替弁28と略す)はアクチュエータ27によって、図1の実線で示されるようにバイパス管26の入口部を閉鎖し且つNOx触媒20への入口部を全開にするバイパス閉位置と、図1の破線で示されるようにNOx触媒20への入口部を閉鎖し且つバイパス管26の入口部を全開にするバイパス開位置のいずれか一方の位置を選択して作動せしめられる。
【0034】
エンジンコントロール用の電子制御ユニット(ECU)30はデジタルコンピュータからなり、双方向バス31によって相互に接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(セントラルプロセッサユニット)34、入力ポート35、出力ポート36を具備する。エアフロメータ13は吸入空気量に比例した出力電圧を発生し、この出力電圧がAD変換器37を介して入力ポート35に入力される。
【0035】
一方、SOx吸収剤17の下流の排気管19には、SOx吸収剤17を出た排気ガスの温度に比例した出力電圧を発生する温度センサ23が取り付けられており、温度センサ23の出力電圧がAD変換器38を介して入力ポート35に入力される。また、入力ポート35には機関回転数を表す出力パルスを発生する回転数センサ41が接続されている。出力ポート36は対応する駆動回路39を介して夫々点火栓4および燃料噴射弁11、アクチュエータ27に接続されている。
【0036】
このガソリンエンジンでは、例えば次式に基づいて燃料噴射時間TAUが算出される。
TAU=TP・K
ここで、TPは基本燃料噴射時間を示しており、Kは補正係数を示している。基本燃料噴射時間TPは機関シリンダ内に供給される混合気の空燃比を理論空燃比とするのに必要な燃料噴射時間を示している。この基本燃料噴射時間TPは予め実験により求められ、機関負荷Q/N(吸入空気量Q/機関回転数N)および機関回転数Nの関数として図2に示すようなマップの形で予めROM32内に記憶されている。補正係数Kは機関シリンダ内に供給される混合気の空燃比を制御するための係数であって、K=1.0であれば機関シリンダ内に供給される混合気は理論空燃比となる。これに対してK<1.0になれば機関シリンダ内に供給される混合気の空燃比は理論空燃比よりも大きくなり、即ちリーンとなり、K>1.0になれば機関シリンダ内に供給される混合気の空燃比は理論空燃比よりも小さくなり、即ちリッチとなる。
【0037】
そして、この実施の形態のガソリンエンジンでは、機関低中負荷運転領域では補正係数Kの値が1.0よりも小さい値とされてリーン空燃比制御が行われ、機関高負荷運転領域、エンジン始動時の暖機運転時、加速時、及び120km/h以上の定速運転時には補正係数Kの値が1.0とされてストイキ制御が行われ、機関全負荷運転領域では補正係数Kの値は1.0よりも大きな値とされてリッチ空燃比制御が行われるように設定してある。
【0038】
内燃機関では通常、低中負荷運転される頻度が最も高く、したがって運転期間中の大部分において補正係数Kの値が1.0よりも小さくされて、リーン混合気が燃焼せしめられることになる。
【0039】
図3は燃焼室3から排出される排気ガス中の代表的な成分の濃度を概略的に示している。この図からわかるように、燃焼室3から排出される排気ガス中の未燃HC,COの濃度は燃焼室3内に供給される混合気の空燃比がリッチになるほど増大し、燃焼室3から排出される排気ガス中の酸素O2の濃度は燃焼室3内に供給される混合気の空燃比がリーンになるほど増大する。
【0040】
ケーシング21内に収容されているNOx触媒20は、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されてなる。
【0041】
このNOx触媒20を機関の排気通路に配置すると、NOx触媒20は、流入排気ガスの空燃比(以下、排気空燃比という)がリーンのときにはNOxを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。ここで、排気空燃比とは、機関吸気通路およびNOx触媒20より上流の排気通路内に供給された空気および燃料(炭化水素)の比をいう。
【0042】
なお、NOx触媒20より上流の排気通路内に燃料(炭化水素)あるいは空気が供給されない場合には、排気空燃比は燃焼室3内に供給される混合気の空燃比に一致し、したがってこの場合には、NOx触媒20は燃焼室3内に供給される混合気の空燃比がリーンのときにはNOxを吸収し、燃焼室3内に供給される混合気中の酸素濃度が低下すると吸収したNOxを放出することになる。
【0043】
NOx触媒20によるNOxの吸放出作用の詳細なメカニズムについては明かでない部分もある。しかしながら、この吸放出作用は図4に示すようなメカニズムで行われているものと考えられる。次に、このメカニズムについて担体上に白金PtおよびバリウムBaを担持させた場合を例にとって説明するが、他の貴金属,アルカリ金属,アルカリ土類,希土類を用いても同様なメカニズムとなる。
【0044】
即ち、流入排気ガスの空燃比がかなりリーンになると流入排気ガス中の酸素濃度が大巾に増大し、図4(A)に示されるように酸素O2 がO2 -又はO2-の形で白金Ptの表面に付着する。一方、流入排気ガスに含まれるNOは、白金Ptの表面上でO2 -又はO2-と反応し、NO2 となる(2NO+O2 →2NO2 )。
【0045】
次いで、生成されたNO2の一部は、白金Pt上で酸化されつつNOx触媒20内に吸収されて酸化バリウムBaOと結合しながら、図4(A)に示されるように硝酸イオンNO3 -の形でNOx触媒20内に拡散する。このようにしてNOxがNOx触媒20内に吸収される。
【0046】
流入排気ガス中の酸素濃度が高い限り白金Ptの表面でNO2が生成され、NOx触媒20のNOx 吸収能力が飽和しない限り、NO2がNOx触媒20内に吸収されて硝酸イオンNO3 -が生成される。
【0047】
これに対して、流入排気ガス中の酸素濃度が低下してNO2の生成量が低下すると反応が逆方向(NO3 -→NO2)に進み、NOx触媒20内の硝酸イオンNO3 -がNO2またはNOの形でNOx触媒20から放出される。即ち、流入排気ガス中の酸素濃度が低下すると、NOx触媒20からNOxが放出されることになる。図3に示されるように、流入排気ガスのリーンの度合いが低くなれば流入排気ガス中の酸素濃度が低下し、したがって流入排気ガスのリーンの度合いを低くすればNOx触媒20からNOxが放出されることとなる。
【0048】
一方、このとき、燃焼室3内に供給される混合気がストイキまたはリッチになると、図3に示されるように機関からは多量の未燃HC,COが排出され、これら未燃HC,COは、白金Pt上の酸素O2 -又はO2-と反応して酸化せしめられる。
【0049】
また、排気空燃比がストイキまたはリッチになると流入排気ガス中の酸素濃度が極度に低下するためにNOx触媒20からNO2またはNOが放出され、このNO2またはNOは、図4(B)に示されるように未燃HC、COと反応して還元せしめられてN2となる。
【0050】
即ち、流入排気ガス中のHC,COは、まず白金Pt上の酸素O2 -又はO2-とただちに反応して酸化せしめられ、次いで白金Pt上の酸素O2 -又はO2-が消費されてもまだHC,COが残っていれば、このHC,COによってNOx触媒20から放出されたNOxおよびエンジンから排出されたNOxがN2に還元せしめられる。
【0051】
このようにして白金Ptの表面上にNO2またはNOが存在しなくなると、NOx触媒20から次から次へとNO2またはNOが放出され、さらにN2に還元せしめられる。したがって、排気空燃比をストイキまたはリッチにすると短時間の内にNOx触媒20からNOxが放出されることになる。
【0052】
このように、排気空燃比がリーンになるとNOxがNOx触媒20に吸収され、排気空燃比をストイキあるいはリッチにするとNOxがNOx触媒20から短時間のうちに放出され、N2に還元される。したがって、大気中へのNOxの排出を阻止することができる。
【0053】
ところで、全負荷運転時には燃焼室3内に供給される混合気をリッチとし、また高負荷運転時、エンジン始動時の暖機運転時、加速時、及び120km/h以上の定速運転時には混合気を理論空燃比(ストイキ)とし、低中負荷運転時には混合気をリーンとした場合には、低中負荷運転時に排気ガス中のNOxがNOx触媒20に吸収され、全負荷運転時及び高負荷運転時にNOx触媒20からNOxが放出され還元されることになる。しかしながら、全負荷運転あるいは高負荷運転の頻度が少なく、低中負荷運転の頻度が多くその運転時間が長ければ、NOxの放出・還元が間に合わなくなり、NOx触媒20のNOx吸収能力(NOx吸収容量)が飽和してNOxを吸収できなくなってしまう。
【0054】
そこで、このような場合には、リーン混合気の燃焼が行われているとき、即ち中低負荷運転を行っているときには、比較的に短い周期でスパイク的(短時間)にストイキまたはリッチ混合気の燃焼が行われるように混合気の空燃比を制御し、短周期的にNOxの放出・還元を行う手法を採用することがある。
このようにNOxの吸放出のために、排気空燃比(この実施の形態では混合気の空燃比)が比較的に短い周期で「リーン」と「スパイク的なストイキまたはリッチ(以下、これをリッチスパイクという)」を交互に繰り返されるように制御することを、リーン・リッチスパイク制御と称しており、この実施の形態においてもリーン・リッチスパイク制御を採用している。尚、この出願においては、リーン・リッチスパイク制御はリーン空燃比制御に含まれるものとする。
【0055】
一方、燃料には硫黄(S)が含まれており、燃料中の硫黄が燃焼するとSO2やSO3などの硫黄酸化物(SOx)が発生し、NOx触媒20は排気ガス中のこれらSOxも吸収する。NOx触媒20のSOx吸収メカニズムはNOx吸収メカニズムと同じであると考えられる。即ち、NOxの吸収メカニズムを説明したときと同様に担体上に白金PtおよびバリウムBaを坦持させた場合を例にとって説明すると、前述したように、排気空燃比がリーンのときには、酸素O2がO2 -又はO2-の形でNOx触媒20の白金Ptの表面に付着しており、流入排気ガス中のSOx(例えばSO2)は白金Ptの表面上で酸化されてSO3となる。
【0056】
その後、生成されたSO3は、白金Ptの表面で更に酸化されながらNOx触媒20内に吸収されて酸化バリウムBaOと結合し、硫酸イオンSO4 2-の形でNOx触媒20内に拡散し硫酸塩BaSO4を生成する。この硫酸塩BaSO4は安定していて分解しずらく、前述したリーン・リッチスパイク制御により流入排気ガスの空燃比を短時間だけストイキまたはリッチにしても分解されずにNOx触媒20内に残ってしまう。したがって、時間経過に伴いNOx触媒20内のBaSO4の生成量が増大するとNOx触媒20の吸収に関与できるBaOの量が減少してNOxの吸収能力が低下してしまう。これが即ちSOx被毒である。
【0057】
そこで、この実施の形態ではNOx吸収剤20にSOxが流入しないように、流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤17を、NOx吸収剤20よりも上流に配置しているのである。このSOx吸収剤17は、SOx吸収剤17に流入する排気ガスの空燃比がリーンのときにはSOxと共にNOxも吸収するが、流入する排気ガスの空燃比をストイキまたはリッチにし酸素濃度が低くなると吸収したSOxばかりでなくNOxも放出する。
【0058】
前述したように、NOx触媒20ではSOxが吸収されると安定した硫酸塩BaSO4が生成され、その結果、NOx触媒20に流入する排気ガスの空燃比をストイキまたはリッチにしてもSOxがNOx触媒20から放出されなくなる。したがって、SOx吸収剤17に流入する排気ガスの空燃比をストイキまたはリッチにしたときにSOx吸収剤17からSOxが放出されるようにするためには、吸収したSOxが硫酸イオンSO4 2-の形でSOx吸収剤17内に存在するようにするか、あるいは、硫酸塩BaSO4が生成されたとしても硫酸塩BaSO4が安定しない状態でSOx吸収剤17に存在するようにすることが必要となる。これを可能とするSOx吸収剤17としては、アルミナからなる担体上に銅Cu、鉄Fe、マンガンMn、ニッケルNiのような遷移金属、ナトリウムNa、チタンTiおよびリチウムLiから選ばれた少なくとも一つを坦持したSOx吸収剤17を用いることができる。
【0059】
このSOx吸収剤17では、SOx吸収剤17に流入する排気ガスの空燃比がリーンのときに排気ガス中のSO2がSOx吸収剤17の表面で酸化されつつ硫酸イオンSO4 2-の形でSOx吸収剤17内に吸収され、次いでSOx吸収剤17内に拡散される。この場合、SOx吸収剤17の担体上に白金Pt、パラジウムPd、ロジウムRhのうちのいずれかを坦持させておくとSO2がSO3 2-の形で白金Pt、パラジウムPd、ロジウムRh上に吸着し易くなり、かくしてSO2は硫酸イオンSO4 2-の形でSOx吸収剤17内に吸収され易くなる。したがって、SO2の吸収を促進するためにはSOx吸収剤17の担体上に白金Pt、パラジウムPd、ロジウムRhのいずれかを坦持させることが好ましい。
【0060】
このSOx吸収剤17をNOx触媒20の上流に配置すると、SOx吸収剤17に流入する排気ガスの空燃比がリーンになると排気ガス中のSOxがSOx吸収剤17に吸収され、したがって、下流のNOx触媒20にはSOxが流れ込まなくなり、NOx触媒20では排気ガス中のNOxのみが吸収されることになる。
【0061】
一方、前述したようにSOx吸収剤17に吸収されたSOxは硫酸イオンSO4 2-の形でSOx吸収剤17に拡散しているか、あるいは不安定な状態で硫酸塩BaSO4となっている。したがって、SOx吸収剤17に流入する排気ガスの空燃比がストイキまたはリッチになって酸素濃度が低下するとSOx吸収剤17に吸収されているSOxがSOx吸収剤17から容易に放出されることになる。
【0062】
ところで、本出願人の研究により、SOx吸収剤17の吸放出作用に関して次のことがわかった。SOx吸収剤17に吸収されているSOx量が少ないときには、SOx吸収剤17のSOx吸着力が強いため、SOx吸収剤17にストイキまたはリッチ空燃比の排気ガスを短時間(例えば5秒以下)流したのではSOx吸収剤17からSOxは放出されない。これについては、本出願人は、SOx吸収剤17に吸収されているSOx量が少ないときに、NOx触媒20からNOxを放出させるために行うリーン・リッチスパイク制御のときのストイキまたはリッチ空燃比の継続時間ではSOx吸収剤17からSOxが放出されないことを確認している。ただし、SOx吸収剤17に吸収されているSOx量が少ないときであっても、SOx吸収剤17にストイキまたはリッチ空燃比の排気ガスを長時間流した場合には、SOx吸収剤17からSOxが放出される。
【0063】
しかしながら、SOx吸収剤17に吸収されているSOx量が増えたときには、SOx吸収剤17のSOx吸着力が弱くなるため、SOx吸収剤17にストイキまたはリッチ空燃比の排気ガスを短時間流した場合にもSOx吸収剤17からSOxが漏れ出て、下流のNOx触媒20を被毒する虞れがある。
【0064】
そこで、この実施の形態では、エンジンの運転状態の履歴からSOx吸収剤17に吸収されたSOx量を推定し、その推定SOx吸収量が所定量に達した時をSOx吸収剤17からSOxを放出させるべき時期と判断して、SOx吸収剤17からSOxを積極的に放出させる処理(以下、この処理を再生処理という)を実行する。SOx吸収剤17の再生処理を実行するに際し、ECU30は、機関回転数Nと機関負荷Q/Nからその時の機関運転状態を判断し、また、温度センサ29で検出したその時の排気ガス温度をSOx吸収剤17の温度として代用し、機関運転状態とSOx吸収剤17の温度に基づき燃費悪化が少なく最も効率的にSOxを放出できるストイキまたはリッチ条件を選定し、選定した空燃比でエンジンを運転して排出される排気ガスを長時間SOx吸収剤17に流すことにより実行する。
【0065】
また、SOx吸収剤17の温度を所定温度(例えば、550゜C)以上の高温にすると、SOx吸収剤17からSOxが放出され易いことが、換言すればSOxの放出を促進できることがわかっている。そこで、この実施の形態では、ECU30は、SOx吸収剤17の再生処理実行中、適宜の手段によって排気ガス温度の温度制御を行い、SOx吸収剤17の温度を前記所定温度(以下、これをSOx放出温度という)以上に制御する。
【0066】
SOx吸収剤17を再生すると、SOx吸収剤17から流出した排気ガス(以下、再生処理時にSOx吸収剤17から排出される排気ガスを再生排気と称し、非再生処理時にSOx吸収剤17から排出される排気ガスと区別する場合もある)にはSOx吸収剤17から放出された多量のSOxが含まれることとなるため、この再生排気がNOx触媒20に流入すると再生排気中のSOxがNOx触媒20に吸収され、NOx触媒20がSOx被毒してしまい、SOx吸収剤17を設けた意味がなくなってしまう。そこで、この実施の形態では、SOx吸収剤17の再生処理時にSOx吸収剤17から放出されたSOxがNOx触媒20に吸収されるのを阻止するために、SOx吸収剤17の再生処理時にはSOx吸収剤17から流出した再生排気をバイパス管26内に導くようにしている。
【0067】
また、この実施の形態では、エンジンの高負荷運転時、エンジン始動時の暖機運転時、加速時、及び120km/h以上の定速運転時には空燃比がストイキ制御され、全負荷運転時には空燃比がリッチ制御とされるようになっている。したがって、これら運転状態のときには排気ガスの空燃比がストイキまたはリッチになって、ストイキまたはリッチ空燃比の排気ガスがSOx吸収剤17に流入することとなる。
【0068】
前述したように、ストイキまたはリッチ空燃比の排気ガスがSOx吸収剤17に流入しても瞬時であればSOx吸収剤17からSOxが放出されることはないので何ら問題は生じないが、ある程度継続して流入した場合にはSOx吸収剤17からSOxが放出される虞れがあり、この排気ガスが下流のNOx触媒20に流入するとNOx触媒20がSOx被毒する虞れがある。特に、排気ガス温度が前記SOx放出温度以上になるとSOx吸収剤17からのSOxの放出が促進されるため、NOx触媒20のSOx被毒の虞れが大きくなる。
【0069】
例えば、エンジン始動時の暖機運転は機関本体1が暖機されるまで継続されるので長時間に亘る場合があり、加速時もある程度の時間継続して行われる場合もあり、120km/h以上の定速運転も高速道路における走行で長時間継続される場合があり、これらの場合に、前記SOx吸収剤17からSOxが放出される虞れがある。
【0070】
そこで、この実施の形態では、高負荷運転時、エンジン始動時の暖機運転時、加速時、及び120km/h以上の定速運転時、全負荷運転時など、エンジンの運転状態からの要求により空燃比をストイキまたはリッチ制御(以下、これをエンジン運転状態によるストイキまたはリッチ空燃比制御と称す)した結果、排気ガスの空燃比がストイキまたはリッチになったときには、SOx吸収剤17から流出した排気ガスをバイパス管26内に導き、NOx触媒20に流入するのを阻止している。
【0071】
つまり、この実施の形態では、SOx吸収剤17の再生処理を実行しているか否かにかかわらず、空燃比をストイキ制御またはリッチ制御しているときには、SOx吸収剤17から流出した排気ガスをバイパス管26内に導き、NOx触媒20に流入するのを阻止している。
【0072】
以下、SOx吸収剤17の再生処理の実行によりSOx吸収剤17からSOxが放出される場合と、前述の如くエンジン運転状態からの要求でストイキまたはリッチ空燃比制御する結果SOx吸収剤17からSOxが放出される場合を総称して、SOx吸収剤17のSOx放出処理と称す。
【0073】
次に、排気ガスの経路の切り替えについて詳述する。排気ガス中のNOxをNOx触媒20で吸放出し還元浄化するために空燃比のリーン・リッチスパイク制御を実行しているときには、切替弁28が図1において実線で示すようにバイパス閉位置に保持される。したがって、このときにはSOx吸収剤17から流出した排気ガスはNOx触媒20に流入し、バイパス管26には流れない。そして、排気ガス中のSOxはSOx吸収剤17に吸収され、NOx触媒20にはSOxが流れ込まなくなり、NOx触媒20のSOx被毒が防止される。そして、排気ガス中のNOxがNOx触媒20で吸放出され、還元浄化される。
【0074】
次いで、上記状態からSOx放出処理に移行する時には、空燃比の制御がリーン・リッチスパイク制御からストイキまたはリッチ制御に切り替えられると同時に、切替弁28がバイパス閉位置から図1において破線で示すバイパス開位置に切り替えられ、その状態に保持される。
【0075】
SOx放出処理時に空燃比がストイキまたはリッチに制御されると、排気ガスの空燃比がストイキまたはリッチになる。この排気ガスがSOx吸収剤17に流入するとSOx吸収剤17からSOxが放出される。この時、切替弁28がバイパス開位置になっているので、SOx吸収剤17から流出したSOxを多量に含む排気ガスはNOx触媒20内には流入せず、バイパス管26を流れる。したがって、NOx触媒20がSOx吸収剤17から放出されたSOxによって被毒するのを阻止することができる。尚、排気ガス中のSOxは排気ガス中の未燃HC、COによって還元せしめられ、SO2となって放出される。
【0076】
次に、SOx放出処理の終了によりストイキまたはリッチ空燃比制御からリーン・リッチスパイク制御に切り替わる時には、空燃比制御の切り替えから所定のディレイ時間が経過した後に切替弁28をバイパス開位置からバイパス閉位置に切り替える。このように空燃比制御の切り替えから切替弁28による排気ガスの経路の切り替えまでにディレイ時間を設ける理由は次の通りである。
【0077】
SOx放出処理中はSOx吸収剤17にストイキまたはリッチ空燃比の排気ガスが流れるが、その時にSOx吸収剤17はSOxを放出するだけでなく、排気ガス中のHCを吸着する。したがって、SOx放出処理終了時点ではSOx吸収剤17に多量のHCが吸着された状態になっている。一方、SOx放出処理終了時点といえども、SOx吸収剤17に吸収されていたSOxが総て放出されるわけではなく、SOx吸収剤17にはSOxが残存している。これについては、SOx吸収剤17の再生処理直後も例外ではない。
【0078】
このような状態のSOx放出処理終了時にSOx吸収剤17へリーン空燃比の排気ガスが流れると、排気ガスに含まれている酸素がSOx吸収剤17に吸着されているHCを酸化するために大量に消費され、その結果、リーン空燃比の排気ガスをSOx吸収剤17に流入させてもSOx吸収剤17の内部においてはストイキ雰囲気になり、しかもSOx放出処理終了直後はまだSOx吸収剤17が高温でありSOxを脱離させ易い雰囲気にあることもあって、SOx吸収剤17に残存しているSOxが脱離し、SOx吸収剤17から放出される。このSOx吸収剤17からのSOxの脱離は、SOx吸収剤17に吸着されているHCの吸着量が減少してHCを酸化するための酸素消費量が減少し、SOx吸収剤17の内部の空燃比がリーンになるまで続く。
【0079】
したがって、ストイキまたはリッチ空燃比制御からリーン・リッチスパイク制御に切り替わると同時に切替弁28をバイパス開位置からバイパス閉位置に切り替えて排気ガスをNOx触媒20に流れるようにすると、SOx放出処理終了直後にSOx吸収剤17から放出されるSOxがNOx触媒20に流入し、NOx触媒20をSOx被毒させてしまう虞れがある。
【0080】
そこで、この実施の形態では、SOx放出処理が終了しリーン空燃比の排気ガスがSOx吸収剤17に流れるようになっても、SOx吸収剤17からSOxが放出されなくなるまでの所定時間が経過するまでは、切替弁28をバイパス開位置に保持して排気ガスをバイパス管26に流し、NOx触媒20に流入させないようにした。
【0081】
これによって、例えSOx放出処理終了後にSOx吸収剤17からSOxが脱離したとしても、脱離したSOxがNOx触媒20に流入することがなくなり、NOx触媒20がSOx被毒するのを防止することができる。
【0082】
尚、空燃比制御の切り替えから切替弁28による排気ガスの経路切り替えまでのディレイ時間をどのくらいの長さに設定するかは、ストイキまたはリッチ空燃比制御からリーン・リッチスパイク制御に切り替える時点におけるエンジンの運転状態に基づきROM32に格納されているディレイ時間マップを参照して選定する。
【0083】
ここで、ディレイ時間マップは、予めこのエンジンに対して実験を行い、排気ガス温度、車速、エンジン回転数などエンジンの運転状態と、空燃比制御切り替え直後からSOx吸収剤17のSOx脱離が終了するまでの時間との関係を求め、この実験結果に基づいてエンジンの運転状態に応じた最適なディレイ時間を設定し、マップ化して作成する。ちなみに、ディレイ時間と排気ガス温度等との関係は、排気ガス温度が高くなるほどディレイ時間は短くて済み、車速が大きくなるほどディレイ時間は短くて済み、エンジン回転数が大きくなるほどディレイ時間は短くて済む傾向にある。
【0084】
そして、前記ディレイ時間が経過した後、切替弁28をバイパス開位置からバイパス閉位置に切り替えて、SOx吸収剤17から流出した排気ガスをNOx触媒20に流し、バイパス管26に流れないようにする。ディレイ時間経過後はリーン空燃比の排気ガスがSOx触媒17に流入してもSOx吸収剤17からのSOx脱離がなく、排気ガス中のSOxはSOx吸収剤17に吸収されるので、NOx触媒20にはSOxが流れ込まなくなり、NOx触媒20のSOx被毒が防止される。そして、排気ガス中のNOxがNOx触媒20で吸放出され、還元浄化される。
【0085】
図5は、この実施の形態における空燃比制御の一実施例を示したものである。この実施例では、リーン・リッチスパイク制御においては、例えば60km/hでの定速走行でリーン運転継続時間を40秒、ストイキ運転継続時間を2秒程度としてこれを交互に繰り返す。一方、SOx吸収剤17の再生処理時は空燃比をストイキ制御とし、その継続時間はリーン・リッチスパイク制御の時のストイキ運転継続時間よりも十分に長い時間、例えば約1時間とした。
【0086】
次に、図6を参照して、この実施の形態における排気経路切替処理実行ルーチンを説明する。このルーチンを構成する各ステップからなるフローチャートはECU30のROM32に記憶してあり、フローチャートの各ステップにおける処理は総てECU30のCPU34によって実行される。
【0087】
<ステップ101>
まず、ECU30は、ステップ101において、現在の空燃比制御がストイキ制御またはリッチ制御か否かを判定する。SOx吸収剤17の再生処理時、エンジンの高負荷運転時、エンジン始動時の暖機運転時、加速時、及び120km/h以上の定速運転時には空燃比がストイキ制御、全負荷運転時には空燃比がリッチ制御されるので、これらの場合には、ECU30はステップ101において肯定判定してステップ102に進む。一方、エンジンの低中負荷運転時には空燃比がリーン・リッチスパイク制御されるので、この場合にはECU30はステップ101において否定判定してステップ101を繰り返す。
【0088】
<ステップ102>
ECU30は、ステップ101で肯定判定してステップ102に進むと、SOx吸収剤17の温度がSOx放出温度以上か否かを判定する。尚、この実施の形態では、温度センサ23で検出されるSOx吸収剤17出口の排気ガス温度をSOx吸収剤17の温度として代用する。
【0089】
<ステップ103>
ステップ102で肯定判定した場合にはSOx吸収剤17からSOxが放出され易いので、ECU30は、ステップ103に進んで、切替弁28を図1において破線で示すバイパス開位置に保持し、SOx吸収剤17から流出する排気ガスをバイパス管26内に導き、NOx触媒20に流入しないようにする。これにより、SOx吸収剤17から流出した排気ガスはバイパス管26を通って大気に放出される。したがって、SOx吸収剤17からSOxが放出されたとしても、そのSOxがNOx触媒20に吸収されることはなく、NOx触媒20がSOx被毒するのを阻止することができる。
【0090】
尚、SOx吸収剤17から放出されたSOxは排気ガス中の未燃HC、COによって還元せしめられ、SO2となって放出される。また、空燃比をストイキまたはリッチ制御しているときには機関本体1から未燃HC,COおよびNOxが排出されるが、SOx吸収剤17は三元触媒機能を有しているので、未燃HC,CO,NOxはSOx吸収剤17によって浄化せしめられ、大気中に放出される虞れはない。
【0091】
一方、ステップ102で否定判定した場合にはSOx吸収剤17からSOxが放出されにくいので、ECU30はステップ101に戻る。
【0092】
<ステップ104>
次に、ECU30は、ステップ103からステップ104に進んで、現在の空燃比制御がリーン制御か否か(正確に言えば、リーン・リッチスパイク制御か否か)を判定する。ステップ104で否定判定した場合は、現在もストイキまたはリッチ空燃比制御を継続中であることを意味しているので、その場合にはECU30はステップ104を繰り返す。
【0093】
<ステップ105>
ステップ104で肯定判定した場合には、ECU30は、ステップ105に進み、ディレイ時間マップを参照してその時のエンジン運転状態に対応するディレイ時間を選定する。
【0094】
<ステップ106>
次に、ECU30は、ステップ106に進み、ステップ104で肯定判定してからの経過時間をカウントする。
【0095】
<ステップ107>
次に、ECU30は、ステップ107に進み、ステップ106でカウントされた経過時間がステップ105で選定されたディレイ時間に達したか否かを判定する。ステップ107で否定判定した場合には、ECU30はステップ106に戻って経過時間のカウントを続行する。経過時間のカウントを続行している間は切替弁28がバイパス開位置に保持されるので、SOx吸収剤17から流出する排気ガスはバイパス管26に流れ、NOx触媒20には流れない。したがって、ストイキまたはリッチ空燃比制御からリーン・リッチスパイク制御に切り替えた直後にSOx吸収剤17からSOxが脱離しても、脱離したSOxがNOx触媒20に流入することがなく、NOx触媒20のSOx被毒が防止される。
【0096】
<ステップ108>
ステップ107で肯定判定した場合には、ECU30は、ステップ108に進み、切替弁28を図1において実線で示すバイパス閉位置に保持し、SOx吸収剤17から流出する排気ガスをNOx触媒20内に導き、バイパス管26に流入しないようにする。ディレイ時間経過後はリーン空燃比の排気ガスがSOx触媒17に流入してもSOx吸収剤17からSOxが脱離することはなく、排気ガス中のSOxはSOx吸収剤17に吸収されるので、NOx触媒20にはSOxが流れ込まなくなり、NOx触媒20のSOx被毒が防止される。そして、排気ガス中のNOxがNOx触媒20で吸放出され、還元浄化される。
【0097】
このように、この実施の形態によれば、SOx吸収剤17からSOxが放出される虞れがあるときには、SOx吸収剤17から流出する排気ガスがバイパス管26に流れ、NOx触媒20には流入しなくなるので、NOx触媒20がSOx被毒するのを確実に阻止することができる。その結果、NOx触媒20のNOx浄化率を常に高い状態に維持することができる。
【0098】
尚、この実施の形態においてECU30による一連の信号処理(ステップ101〜108)は、切替弁(排気経路切替手段)を制御する排気経路切替制御手段ということができる。
【0099】
また、この制御ルーチンでは、空燃比がストイキまたはリッチ制御で且つSOx吸収剤17の温度がSOx放出温度以上の場合に排気ガスをバイパス管26に導入するようにしているが、SOx吸収剤17の温度にかかわらず空燃比がストイキまたはリッチ制御になった場合に排気ガスをバイパス管26に導入するようにすることも可能であり、その場合にはステップ102を削除し、ステップ101で肯定判定した場合にステップ103へ進むようにする。
【0100】
〔第2の実施の形態〕
次に、本発明に係る内燃機関の排気浄化装置の第2の実施の形態を図7及び図8を参照して説明する。
この第2の実施の形態が第1の実施の形態と相違する点は次の通りである。第2の実施の形態では、図7に示すように、SOx触媒17の下流に配置された排気管19に、SOx触媒17を出た排気ガスの酸素濃度に比例した出力電圧を発生するO2センサ(酸素濃度検出手段)24が取り付けられており、O2センサ24の出力電圧がAD変換器40を介してECU30の入力ポート35に入力される。
【0101】
前述した第1の実施の形態は、SOx放出処理終了後に切替弁28をバイパス開位置からバイパス閉位置に切り替えるタイミングを、ストイキまたはリッチ空燃比制御からリーン・リッチスパイク制御に切り替えてからの経過時間が予め設定したディレイ時間に達した時としており、このディレイ時間経過後であれば、リーン空燃比の排気ガスをSOx吸収剤17に流入してもSOx吸収剤17からSOxが脱離しないという考えの上に成り立っている。
【0102】
これに対し、この第2の実施の形態は、SOx放出処理終了により空燃比がストイキまたはリッチ制御からリーン・リッチスパイク制御に切り替わった後において、SOx吸収剤17から流出する排気ガスの空燃比がストイキまたはリッチである場合には、SOx吸収剤17からSOxが脱離している虞れがあると推定でき、SOx吸収剤17から流出する排気ガスの空燃比がリーンである場合には、SOx吸収剤17の内部における空燃比もリーンになっていてSOx吸収剤17からSOxが脱離しないと推定できることから、SOx吸収剤17から流出する排気ガスの空燃比に基づいてSOx放出処理後の排気ガスの経路の切り替えタイミングを決定するようにした。そして、SOx吸収剤17から流出する排気ガスの空燃比を検出するために、排気管19にO2センサ24を設けたのである。
【0103】
次に、図8を参照して、第2の実施の形態における排気経路切替処理実行ルーチンを説明する。このルーチンを構成する各ステップからなるフローチャートはECU30のROM32に記憶してあり、フローチャートの各ステップにおける処理は総てECU30のCPU34によって実行される。
【0104】
<ステップ201〜204>
図8に示すフローチャートにおけるステップ201からステップ204は、図6に示す第1の実施の形態におけるフローチャートのステップ101からステップ104と全く同じであるので説明を省略する。
【0105】
ECU30は、ステップ204で肯定判定した場合には、ステップ205に進み、O2センサ24により、SOx吸収剤17から流出する排気ガスの空燃比がリーンか否かを判定する。
【0106】
ステップ205で否定判定した場合には、ECU30は、ステップ205を繰り返す。ステップ205を繰り返している間は切替弁28がバイパス開位置に保持されるので、SOx吸収剤17から流出した排気ガスはバイパス管26に流れ、NOx触媒20には流れない。これは、SOx吸収剤17の下流の排気ガスの空燃比がリーンでないということは、リーン空燃比の排気ガスがSOx吸収剤17に流入していてもSOx吸収剤17の内部では空燃比がストイキになり、SOx吸収剤17からSOxが脱離している虞れがあるからであり、このようなSOxを含んでいる可能性のある排気ガスをNOx触媒20に流さないようにするためである。これによりNOx触媒20のSOx被毒が防止される。
【0107】
ステップ205で肯定判定した場合には、SOx吸収剤17からSOxが脱離していないと推定できるので、ECU30は、ステップ206に進み、切替弁28を図1において実線で示すバイパス閉位置に保持し、SOx吸収剤17から流出する排気ガスをNOx触媒20内に導き、バイパス管26に流入しないようにする。これによりリーン空燃比の排気ガスがSOx触媒17からNOx触媒20に流れるようになる。そして、排気ガス中のSOxはSOx吸収剤17に吸収され、NOx触媒20にはSOxが流れ込まなくなり、NOx触媒20のSOx被毒が防止される。そして、排気ガス中のNOxがNOx触媒20で吸放出され、還元浄化される。
【0108】
この第2の実施の形態によれば、SOx吸収剤17からSOxが放出される虞れがあるときには、SOx吸収剤17から流出する排気ガスがバイパス管26に流れ、NOx触媒20には流入しなくなるので、NOx触媒20がSOx被毒するのを確実に阻止することができる。その結果、NOx触媒20のNOx浄化率を常に高い状態に維持することができる。
【0109】
尚、この実施の形態においてECU30による一連の信号処理(ステップ201〜06)は、切替弁(排気経路切替手段)を制御する排気経路切替制御手段ということができる。
【0110】
〔他の実施の形態〕
前述した実施の形態では本発明をガソリンエンジンに適用した例で説明したが、本発明をディーゼルエンジンに適用することができることは勿論である。ディーゼルエンジンの場合は、燃焼室での燃焼がストイキよりもはるかにリーン域で行われるので、通常の機関運転状態ではSOx吸収剤17およびNOx触媒20に流入する排気ガスの空燃比は非常にリーンであり、SOxおよびNOxの吸収は行われるものの、SOxおよびNOxの放出が行われることは殆どない。
【0111】
また、ガソリンエンジンの場合には、前述したように燃焼室3に供給する混合気をストイキあるいはリッチにすることによりSOx吸収剤17およびNOx触媒20に流入する排気ガスの空燃比をストイキあるいはリッチにし、SOx吸収剤17やNOx触媒20に吸収されているSOxやNOxを放出させることができるが、ディーゼルエンジンの場合には、燃焼室に供給する混合気をストイキあるいはリッチにすると燃焼の際に煤が発生するなどの問題があり採用することはできない。
【0112】
したがって、本発明をディーゼルエンジンに適用する場合、流入する排気ガスの空燃比をストイキあるいはリッチにするためには、機関出力を得るために燃料を燃焼するのとは別に、還元剤(例えば燃料である軽油)を排気ガス中に供給する必要がある。排気ガスへの還元剤の供給は、吸気行程や膨張行程や排気行程において気筒内に燃料を副噴射することによっても可能であるし、あるいは、SOx触媒17の上流の排気通路内に還元剤を供給することによっても可能である。
【0113】
尚、ディーゼルエンジンであっても排気再循環装置(所謂、EGR装置)を備えている場合には、排気再循環ガスを多量に燃焼室に導入することによって、排気ガスの空燃比をストイキまたはリッチにすることが可能である。
【0114】
【発明の効果】
本発明に係る内燃機関の排気浄化装置によれば、SOx吸収剤からSOxが放出される虞れがあるときには、SOx吸収剤から流出する排気ガスをNOx吸収剤に流入させないようにすることができるので、NOx吸収剤のSOx被毒を確実に防止することができる。その結果、NOx吸収剤のNOx浄化率を長期に亘って高く維持することができるという優れた効果が奏される。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の排気浄化装置の第1の実施の形態の概略構成図である。
【図2】基本燃料噴射時間のマップの一例を示す図である。
【図3】機関から排出される排気ガス中の未燃HC,COおよび酸素の濃度を概略的に示す線図である。
【図4】吸蔵還元型NOx触媒のNOx吸放出作用を説明するための図である。
【図5】前記第1の実施の形態における空燃比制御の一例を示す図である。
【図6】前記第1の実施の形態の排気経路切替処理実行ルーチンの一例を示す図である。
【図7】本発明に係る内燃機関の排気浄化装置の第2の実施の形態の概略構成図である。
【図8】前記第2の実施の形態の排気経路切替処理実行ルーチンの一例を示す図である。
【符号の説明】
1 機関本体(内燃機関)
3 燃焼室
4 点火栓
11 燃料噴射弁
16,19,22 排気管(排気通路)
17 SOx吸収剤
20 NOx触媒(NOx吸収剤)
23 温度センサ
24 02センサ(酸素濃度検出手段)
26 バイパス管(バイパス通路)
28 切替弁(排気経路切替手段)
30 ECU(排気経路切替制御手段)

Claims (2)

  1. (イ)希薄燃焼可能な内燃機関の排気通路に配置され、流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤と、
    (ロ)前記SOx吸収剤よりも下流の前記排気通路に配置され、流入する排気ガスの空燃比がリーンのときにNOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したNOxを放出するNOx吸収剤と、
    (ハ)前記SOx吸収剤の下流で分岐し前記NOx吸収剤を迂回して排気ガスを流すバイパス通路と、
    (ニ)前記SOx吸収剤から流出した排気ガスを前記NOx吸収剤と前記バイパス通路のいずれに導くか選択的に切り替える排気経路切替手段と、
    (ホ)排気ガスの空燃比をストイキまたはリッチにして前記SOx吸収剤に吸収されたSOxを放出するSOx放出処理時にはSOx吸収剤から流出する排気ガスが前記バイパス通路に導かれるように前記排気経路切替手段を制御し、前記SOx放出処理の終了により排気ガスの空燃比をリーンに切り替えてから所定時間経過後にSOx吸収剤から流出する排気ガスが前記NOx吸収剤に導かれるように前記排気経路切替手段を制御する排気経路切替制御手段と、
    を備えたことを特徴とする内燃機関の排気浄化装置。
  2. (イ)希薄燃焼可能な内燃機関の排気通路に配置され、流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤と、
    (ロ)前記SOx吸収剤よりも下流の前記排気通路に配置され、流入する排気ガスの空燃比がリーンのときにNOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したNOxを放出するNOx吸収剤と、
    (ハ)前記SOx吸収剤の下流で分岐し前記NOx吸収剤を迂回して排気ガスを流すバイパス通路と、
    (ニ)前記SOx吸収剤から流出した排気ガスを前記NOx吸収剤と前記バイパス通路のいずれに導くか選択的に切り替える排気経路切替手段と、
    (ホ)前記SOx吸収剤と前記NOx吸収剤の間に設けられた酸素濃度検出手段と、
    (ヘ)排気ガスの空燃比をストイキまたはリッチにして前記SOx吸収剤に吸収されたSOxを放出するSOx放出処理時にSOx吸収剤から流出する排気ガスが前記バイパス通路に導かれるように前記排気経路切替手段を制御し、前記SOx放出処理終了後に前記酸素濃度検出手段で検出された酸素濃度に基づきSOx吸収剤の下流における排気ガスの空燃比がリーンであると判定されるとSOx吸収剤から流出する排気ガスが前記NOx吸収剤に導かれるように前記排気経路切替手段を制御する排気経路切替制御手段と、
    を備えたことを特徴とする内燃機関の排気浄化装置。
JP07945499A 1999-03-24 1999-03-24 内燃機関の排気浄化装置 Expired - Lifetime JP3539268B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07945499A JP3539268B2 (ja) 1999-03-24 1999-03-24 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07945499A JP3539268B2 (ja) 1999-03-24 1999-03-24 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2000274230A JP2000274230A (ja) 2000-10-03
JP3539268B2 true JP3539268B2 (ja) 2004-07-07

Family

ID=13690337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07945499A Expired - Lifetime JP3539268B2 (ja) 1999-03-24 1999-03-24 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP3539268B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404061B2 (ja) * 2006-03-23 2010-01-27 トヨタ自動車株式会社 圧縮着火式内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2000274230A (ja) 2000-10-03

Similar Documents

Publication Publication Date Title
JP3573044B2 (ja) 内燃機関の排気浄化装置
JP3546294B2 (ja) 内燃機関の排気浄化装置
US6367246B1 (en) Exhaust gas purification device for internal combustion engine
WO2000043648A1 (fr) Dispositif de reduction des gaz d'echappement d'un moteur a combustion interne
JP2000303878A (ja) 内燃機関の排気浄化装置
JP3925357B2 (ja) 排気ガス浄化システムの制御方法
JP3353650B2 (ja) 内燃機関の触媒被毒再生装置
JP4556364B2 (ja) 内燃機関の排気浄化装置
JP3514152B2 (ja) 内燃機関の排気浄化装置
JP3624747B2 (ja) 内燃機関の排気浄化装置
JP3374780B2 (ja) 内燃機関の排気浄化装置
JP3570237B2 (ja) 内燃機関の排気浄化装置
JP3539268B2 (ja) 内燃機関の排気浄化装置
JP3570262B2 (ja) 内燃機関の排気浄化装置
JP3496557B2 (ja) 内燃機関の排気浄化装置
JP3376954B2 (ja) 内燃機関の排気浄化装置及びそのSOx被毒判定方法
JP4106913B2 (ja) 内燃機関の排気浄化装置
JP4019867B2 (ja) 内燃機関の排気浄化装置
JP3570326B2 (ja) 内燃機関の排気浄化装置
JP2830668B2 (ja) 内燃機関の排気浄化装置
JP3570318B2 (ja) 内燃機関の排気浄化装置
JP3565096B2 (ja) 内燃機関の排気浄化装置
JP3487269B2 (ja) 内燃機関の排気浄化装置
JP3397175B2 (ja) 内燃機関の排気浄化装置
JP4019891B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

EXPY Cancellation because of completion of term