JP3536614B2 - Evaluation method for lubricants for rolling bearings - Google Patents

Evaluation method for lubricants for rolling bearings

Info

Publication number
JP3536614B2
JP3536614B2 JP25577897A JP25577897A JP3536614B2 JP 3536614 B2 JP3536614 B2 JP 3536614B2 JP 25577897 A JP25577897 A JP 25577897A JP 25577897 A JP25577897 A JP 25577897A JP 3536614 B2 JP3536614 B2 JP 3536614B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen concentration
bearing
lubricant
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25577897A
Other languages
Japanese (ja)
Other versions
JPH1194704A (en
Inventor
洋一 松本
孝 永戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP25577897A priority Critical patent/JP3536614B2/en
Publication of JPH1194704A publication Critical patent/JPH1194704A/en
Application granted granted Critical
Publication of JP3536614B2 publication Critical patent/JP3536614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転がり軸受に用い
る潤滑剤の転がり疲れ寿命への効果の優劣を評価する方
法に関する。
The present invention relates to a method for evaluating the effect of a lubricant used in a rolling bearing on the rolling fatigue life.

【0002】[0002]

【従来の技術】転がり疲れ寿命に対する潤滑剤の影響は
複雑であり、詳細には解明されていないのが現状であ
る。例えば、潤滑剤中の添加剤と転がり疲れ寿命との関
係は不明であり、結局、潤滑剤と転がり疲れ寿命との関
係は、実際に破損するまでの長時間寿命試験を行なわな
ければ得ることができない。
2. Description of the Related Art The effect of a lubricant on the rolling fatigue life is complicated and has not been elucidated in detail at present. For example, the relationship between the additive in the lubricant and the rolling fatigue life is unknown, and after all, the relationship between the lubricant and the rolling fatigue life can only be obtained by conducting a long-term life test until it actually breaks. Can not.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
問題点に着目してなされたものであり、転がり軸受を破
損するまでの長時間の寿命試験に供することなく、転が
り軸受用の潤滑剤の転がり寿命への影響を短時間で調
べ、それによって潤滑剤の評価を行なう方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and has been developed for lubricating rolling bearings without subjecting the rolling bearing to a long-term life test until the rolling bearing is damaged. It is an object of the present invention to provide a method for examining the influence of a lubricant on the rolling life in a short time and thereby evaluating a lubricant.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、実質的に水素ガスを含有しない雰囲気の
焼入れ炉内で、転がり軸受の構成部材を焼入れ処理する
工程、焼入れ処理後の転がり軸受の構成部材のうち、軌
道輪や転動体となる部材における水素濃度を測定して、
第1の水素濃度を得る工程、前記焼入れ処理後の転がり
軸受けの構成部材を組み合わせてなる転がり軸受を、被
評価物である潤滑剤を用いて回転試験に供する工程、お
よび、回転試験後の転がり軸受の前記部材における水素
濃度を測定して、第2の水素濃度を得る工程を具備し、
前記転がり軸受の前記部材における第2の水素濃度と第
1の水素濃度との差により水素濃度増分を求め、その水
素濃度増分によって、前記潤滑剤の転がり寿命への有害
度を判定する方法を提供する。前記焼き入れ処理工程
は、真空中、窒素ガス中、または空気中で行なわれるこ
とが好ましい。 また、前記水素濃度の測定は、昇温脱離
法により行なわれることが好ましい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a step of quenching components of a rolling bearing in a quenching furnace in an atmosphere substantially containing no hydrogen gas, and after quenching. Among the constituent members of the rolling bearing, by measuring the hydrogen concentration in the member that will be the race and the rolling element,
A step of obtaining a first hydrogen concentration, a step of subjecting a rolling bearing obtained by combining the components of the rolling bearing after the quenching treatment to a rotation test using a lubricant as an object to be evaluated, and a step of rolling after the rotation test. Measuring a hydrogen concentration in the member of the bearing to obtain a second hydrogen concentration,
A method is provided for determining an increase in hydrogen concentration based on a difference between a second hydrogen concentration and a first hydrogen concentration in the member of the rolling bearing, and determining a degree of harmfulness to the rolling life of the lubricant based on the increase in hydrogen concentration. I do. The quenching process
Should be performed in vacuum, nitrogen gas, or air.
Is preferred. In addition, the measurement of the hydrogen concentration is performed by thermal desorption.
It is preferably performed by a method.

【0005】以下、本発明を詳細に説明する。本発明の
転がり軸受用潤滑剤の評価方法において、転がり軸受の
構成部材を焼入れ処理する、実質的に水素ガスを含有し
ない雰囲気とは、例えば、真空中、N2 ガス中、および
空気中などが挙げられる。また、焼入れ処理の条件は、
840℃で30分間保持した後、直ちに60℃の油中に
浸漬する等、適宜決定することができる。なお、焼入れ
処理後、160〜200℃で1〜2時間保持する低温焼
き戻しを選択的に実施する。
Hereinafter, the present invention will be described in detail. In the method for evaluating a lubricant for a rolling bearing according to the present invention, the atmosphere substantially free of hydrogen gas for quenching the components of the rolling bearing is, for example, in a vacuum, in an N 2 gas, and in the air. No. The conditions of the quenching treatment are as follows:
After holding at 840 ° C. for 30 minutes, it can be determined appropriately, such as immediately immersing in oil at 60 ° C. After the quenching, low-temperature tempering at 160 to 200 ° C. for 1 to 2 hours is selectively performed.

【0006】焼入れ後の転がり軸受の構成部材は、水素
濃度分析に供される。それらの水素濃度分析を行なって
第1の水素濃度を得る。水素分析には、前記部材から採
取した試験片を一定の昇温速度で徐々に加熱し、放出さ
れる水素を各温度ごとに分析する方法(昇温脱離法、Th
ermal Desorption Spectrometry(TDS))を用いることが
できる。
[0006] The components of the rolling bearing after quenching are subjected to hydrogen concentration analysis. The first hydrogen concentration is obtained by performing the hydrogen concentration analysis. In the hydrogen analysis, a test piece collected from the member was gradually heated at a constant heating rate, and the released hydrogen was analyzed at each temperature (thermal desorption, Th method).
thermal desorption spectrometry (TDS)).

【0007】水素濃度のキャリブレーションに当たって
は、まず、水素ガス漏出速度が既知の標準ボンベからの
水素ガスを分析部に導入して、水素ガスイオン(H2
+ )強度を測定する。得られたイオン強度の1単位が、
何g/secの水素ガス漏出速度に対応するか(換算係
数K)を計算し、各温度ごとに水素ガスイオン(H
2 +)強度Iを測定する。
In the calibration of the hydrogen concentration, first, hydrogen gas from a standard cylinder whose hydrogen gas leak rate is known is introduced into the analysis unit, and hydrogen gas ions (H 2
+ ) Measure strength. One unit of the obtained ionic strength is
Calculate how many g / sec of hydrogen gas leak rate corresponds (conversion coefficient K), and calculate hydrogen gas ion (H
2 + ) Measure intensity I.

【0008】各温度における水素放出速度および鋼中水
素濃度は、前述の水素ガスイオン(H2 + )強度Iおよ
び換算係数Kを用いて、それぞれ下記数式(1)および
(2)で与えられる。
The hydrogen release rate and the hydrogen concentration in steel at each temperature are given by the following equations (1) and (2), respectively, using the aforementioned hydrogen gas ion (H 2 + ) intensity I and conversion coefficient K.

【0009】 K×I×106 /W(ppm/sec) (1) t×ΣK×I×106 /W(ppm) (2) ここで、Wは試料重量(g)であり、tは水素ガスイオ
ン(H2 + )強度Iの測定間隔(sec)である。な
お、測定される水素ガスイオン強度Iは、若干のノイズ
強度Bを含むので、測定中のIの最小値をBとみなし、
(I−B)を改めてIと置き直して、前述の式(1)、
(2)の計算を行なう。
K × I × 10 6 / W (ppm / sec) (1) t × ΣK × I × 10 6 / W (ppm) (2) where W is a sample weight (g), and t is This is a measurement interval (sec) of the hydrogen gas ion (H 2 + ) intensity I. Since the measured hydrogen gas ion intensity I includes a slight noise intensity B, the minimum value of I during the measurement is regarded as B,
Replacing (IB) with I again, the above-mentioned equation (1),
The calculation of (2) is performed.

【0010】こうして水素濃度を測定した後の転がり軸
受は、評価したい潤滑剤を用いて回転試験に供する。回
転試験の条件は、回転速度n=3900rpm、基本動
定格荷重Cに対する荷重Pの比(P/C)=0.7等、
適宜決定することができるが、例えば、13650Nの
加重を試験軸受6206(深溝玉軸受)に負荷しつつ、
3900rpmの回転速度で内輪を回転させる。
The rolling bearing after measuring the hydrogen concentration in this way is subjected to a rotation test using a lubricant to be evaluated. The conditions of the rotation test are as follows: rotation speed n = 3900 rpm, ratio of load P to basic dynamic load rating C (P / C) = 0.7, etc.
Although it can be determined as appropriate, for example, while applying a load of 13650 N to the test bearing 6206 (deep groove ball bearing),
The inner ring is rotated at a rotation speed of 3900 rpm.

【0011】試験時間は、定格疲れ寿命(L10cal )の
0.1倍から10倍の時間等、適宜決定することができ
るが、240時間程度以下であることが好ましい。回転
試験後の転がり軸受の前記部材の水素濃度を前述と同様
の手法で測定して、第2の水素濃度を得る。なお、静止
輪については、最大応力負荷位置近傍の水素濃度を測定
する必要がある。
The test time can be determined as appropriate, such as 0.1 to 10 times the rated fatigue life (L10 cal), but is preferably about 240 hours or less. A second hydrogen concentration is obtained by measuring the hydrogen concentration of the member of the rolling bearing after the rotation test in the same manner as described above. For the stationary wheel, it is necessary to measure the hydrogen concentration near the maximum stress load position.

【0012】上述のようにして測定された第2の水素濃
度と第1の水素濃度との差により、前記部材における水
素濃度の増分を求め、得られた水素濃度増分により潤滑
剤の寿命効果を評価する。なお、試験温度や試験時間等
にもよるが、80℃以下の試験温度で定格疲れ寿命(L
10cal )まで回転試験した際に、軸受の前記部材におけ
る水素濃度の増分が0.02ppm以下であれば、その
潤滑剤中の水素原子は安定であり、軸受材料を水素脆化
させないということができる。
From the difference between the second hydrogen concentration and the first hydrogen concentration measured as described above, the increase in the hydrogen concentration in the member is determined, and the life increase effect of the lubricant is determined by the obtained hydrogen concentration increase. evaluate. Although it depends on the test temperature and test time, the rated fatigue life (L
If the increment of the hydrogen concentration in the member of the bearing is 0.02 ppm or less when the rotation test is performed up to 10 cal), the hydrogen atoms in the lubricant are stable, and it can be said that the bearing material does not cause hydrogen embrittlement. .

【0013】本発明者らは、以下のような知見に基づい
て本発明を成すに至ったものである。転がり軸受は、使
用中に潤滑剤から水素原子を吸収すると、水素脆化して
破損する。ここでの水素源は、潤滑剤中に含まれる多量
の水素原子、または潤滑剤水分中の水素原子である。潤
滑剤の水素原子の安定度、すなわち、軸受の鋼材料中へ
の水素原子の引き渡しずらさは、潤滑剤の組成や温度に
依存するようであるが、不明な点が多く、また測定方法
も得られていないので定量が困難である。なお、水素脆
化による軸受の破損形態は、主に剥離である。
The present inventors have accomplished the present invention based on the following findings. When a rolling bearing absorbs hydrogen atoms from a lubricant during use, the rolling bearing is embrittled with hydrogen and damaged. The hydrogen source here is a large amount of hydrogen atoms contained in the lubricant or hydrogen atoms in the lubricant water. The stability of hydrogen atoms in the lubricant, that is, the difficulty in transferring hydrogen atoms into the steel material of the bearing, seems to depend on the composition and temperature of the lubricant, but there are many unknowns and measurement methods are also available. Quantification is difficult because it is not performed. The form of damage to the bearing due to hydrogen embrittlement is mainly peeling.

【0014】一方、転がり軸受の構成部品の焼入れ処理
は、軸受表面の酸化を防止する目的でRXガス等の吸熱
型炉気中で行なわれるので、この焼入れ処理中に、炉気
中に含まれる水素ガスとの反応によって軸受中に水素原
子が吸収される。ここで吸収された水素原子は、転がり
軸受の水素脆化には寄与しないものの、昇温脱離法も含
め現在の水素分析法では前述したような潤滑剤に起因す
る水素の濃度と焼入れ時に吸収された水素の濃度とを、
分離、測定することはできない。
On the other hand, since the quenching process of the components of the rolling bearing is performed in an endothermic furnace such as RX gas for the purpose of preventing the bearing surface from being oxidized, the components are included in the furnace during the quenching process. Hydrogen atoms are absorbed in the bearing by reaction with hydrogen gas. Although the hydrogen atoms absorbed here do not contribute to the hydrogen embrittlement of rolling bearings, current hydrogen analysis methods, including thermal desorption methods, absorb the hydrogen concentration due to the lubricant and the quenching during quenching as described above. And the concentration of hydrogen
It cannot be separated and measured.

【0015】したがって、本発明者らは、転がり軸受の
使用中の潤滑剤に起因した水素吸収量を定量するには、
実質的に水素原子を含有しない鋼材より構成される転が
り軸受を使用することが必要であることを見出した。本
発明においては、実質的に水素ガスを含有しない雰囲気
の焼入れ炉、例えば真空の焼入れ炉で、転がり軸受の構
成部材に焼入れ処理を施しているので、この工程での軸
受への水素吸収を極力低減することができた。すなわ
ち、焼入れ工程での水素吸収量は、ほとんど無視できる
程度であるので、水素濃度のノイズを0とみなし得る状
態の軸受が得られる。
Therefore, the present inventors have determined the amount of hydrogen absorption caused by the lubricant during use of the rolling bearing,
It has been found that it is necessary to use a rolling bearing composed of a steel material substantially containing no hydrogen atoms. In the present invention, the components of the rolling bearing are subjected to quenching in a quenching furnace in an atmosphere substantially containing no hydrogen gas, for example, a vacuum quenching furnace, so that hydrogen absorption to the bearing in this step is minimized. Could be reduced. That is, since the amount of hydrogen absorbed in the quenching step is almost negligible, a bearing in which the noise of the hydrogen concentration can be regarded as zero can be obtained.

【0016】このような軸受を、一定時間、評価したい
潤滑剤を用いて回転試験に供した後の軸受に存在する水
素原子は、実質的に潤滑剤に起因したものであると判断
することができる。したがって、回転試験後の軸受の所
定位置における水素濃度を測定すれば、その潤滑剤中の
水素原子の安定度、すなわち、潤滑剤の軸受材料(鋼)
を水素脆化させない特性の強さを表わす、潤滑剤の転が
り疲れ寿命効果を定量することができる。
After such a bearing is subjected to a rotation test for a certain period of time using a lubricant to be evaluated, hydrogen atoms present in the bearing may be determined to be substantially caused by the lubricant. it can. Therefore, if the hydrogen concentration at a predetermined position of the bearing after the rotation test is measured, the stability of the hydrogen atoms in the lubricant, that is, the bearing material of the lubricant (steel)
Can be quantified for the rolling fatigue life effect of the lubricant, which indicates the strength of the property that does not cause hydrogen embrittlement.

【0017】このように本発明においては、焼入れ処理
の工程で軸受に吸収される水素濃度を著しく低減してい
るので、回転試験中に潤滑剤から吸収される水素の濃度
を高い精度で測定することができた。したがって、軸受
が破損するまでの長時間の寿命試験を行なうことなく、
短時間で潤滑剤の寿命を評価することが可能となった。
As described above, in the present invention, the concentration of hydrogen absorbed by the lubricant during the rotation test is measured with high precision because the concentration of hydrogen absorbed by the bearing during the quenching process is significantly reduced. I was able to. Therefore, without conducting a long life test until the bearing breaks,
It has become possible to evaluate the life of the lubricant in a short time.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例および比較
例を示して、本発明をさらに詳細に説明するが、本発明
はこれらの例に限定されるものではない。まず、軸受鋼
2種(SUJ2)で作製された外輪、内輪、および鋼球
を用意して、内外輪は真空中で約840℃で0.5時間
保持後、焼入れ処理を施し、一方、鋼球は窒素雰囲気中
で約820℃で0.3時間保持後、焼入れ処理を施し
た。さらに、いずれも焼入れ処理後に大気雰囲気中で低
温焼き戻し(160℃、2時間)を実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples. First, an outer ring, an inner ring, and a steel ball made of two types of bearing steel (SUJ2) are prepared. The sphere was kept at about 820 ° C. for 0.3 hours in a nitrogen atmosphere and then subjected to a quenching treatment. Further, in each case, low-temperature tempering (160 ° C., 2 hours) was performed in an air atmosphere after the quenching treatment.

【0019】焼入れ処理後の外輪の任意の位置における
水素濃度を上述したような手法により分析して、得られ
た水素濃度放出曲線を図1のグラフに示す。なお、放出
される水素の分析には、四重極質量分析計(日本真空技
術(株)製MSQ−150A)を用い、試験片の昇温速
度は3℃/min、水素ガスイオン(H2 + )強度Iの
測定間隔は20秒とした。
The hydrogen concentration at an arbitrary position on the outer ring after the quenching treatment is analyzed by the above-described method, and the obtained hydrogen concentration release curve is shown in the graph of FIG. Incidentally, the analysis of hydrogen released is using a quadrupole mass spectrometer (ULVAC Co. MSQ-150A), heating rate of the test piece 3 ° C. / min, hydrogen gas ion (H 2 + ) The measurement interval of intensity I was 20 seconds.

【0020】次いで、上述のようにして焼入れ処理を施
した外輪、内輪および転動体で構成された17mm、外径
φ47mm、幅14mmの接触ゴムシール付き深溝玉軸受
(プラスチック保持器付き)に、被評価物としての潤滑
剤を2.3g封入し、NSK Technical Journal,No.656,
pp.1〜14, 1993に記載の台上に設置されたエンジンのオ
ルタネーターのプーリー側軸受として100時間の回転
試験を行なった。本回転試験においては、内輪を回転側
軌道輪とし、外輪を非回転側軌道輪とした。
Next, a deep groove ball bearing (with a plastic retainer) having a contact rubber seal and having a diameter of 17 mm, an outer diameter of 47 mm, and a width of 14 mm, comprising the outer ring, the inner ring, and the rolling element, which has been quenched as described above, is provided. 2.3 g of a lubricant as a material, NSK Technical Journal, No.656,
pp. 1 to 14, 1993, a 100-hour rotation test was performed as a pulley-side bearing of an alternator of an engine installed on a table described in 1993. In this rotation test, the inner ring was used as the rotating raceway ring, and the outer ring was used as the non-rotating raceway ring.

【0021】また、回転試験において、試験軸受に負荷
される加重は1890N(試験軸受の基本動定格荷重は
13500N)とし、内輪の回転速度は、2000rp
mから14000rpmの間で繰返し変動させた。20
00rpmから14000rpmへの加速に要する時
間、および14000rpmから2000rpmへの減
速に要する時間は、いずれも30秒とした。本試験軸受
の定格疲れ寿命(L10cal)は、 L10cal=(13500/1890)3 ×106 /(8000×60) =759時間 である。ここで、潤滑剤としては、下記表1に示すよう
なグリースαとβとの2種類を用いた。
In the rotation test, the load applied to the test bearing was 1890 N (the basic dynamic load rating of the test bearing was 13500 N), and the rotation speed of the inner ring was 2000 rpm.
It varied repeatedly between m and 14000 rpm. 20
The time required for acceleration from 00 rpm to 14000 rpm and the time required for deceleration from 14000 rpm to 2000 rpm were all 30 seconds. The rated fatigue life (L10cal) of this test bearing is L10cal = (13500/1890) 3 × 10 6 / (8000 × 60) = 759 hours. Here, as the lubricant, two types of greases α and β as shown in Table 1 below were used.

【0022】[0022]

【表1】 [Table 1]

【0023】なお、試験軸受は、100時間の回転試験
では破損しなかったが、破損するまでの長時間の寿命試
験を実施すれば、外輪の最大応力負荷位置近くの軌道面
に破損(剥離)が生じる。したがって、本実施例では、
外輪の水素濃度変化のみについて説明するが、内輪や転
動体には実質的に水素濃度増加はないことを確認した。
Although the test bearing did not break in the 100-hour rotation test, if a long-term life test before the break was performed, the bearing surface was damaged (peeled) near the maximum stress load position of the outer ring. Occurs. Therefore, in this embodiment,
Only the change in hydrogen concentration in the outer ring will be described, but it has been confirmed that the inner ring and the rolling elements do not substantially increase in hydrogen concentration.

【0024】回転試験後には、外輪の最大応力負荷位置
近傍を切り取り、上述と同様の条件で水素濃度分析を行
なった。図2には、グリースαを用いて回転試験を実施
した後における外輪負荷圏の水素濃度分析時の水素濃度
放出曲線を示し、図3には、グリースβを用いて回転試
験を実施した後における外輪負荷圏の水素濃度分析時の
水素濃度放出曲線を示す。
After the rotation test, a portion near the maximum stress load position of the outer ring was cut out, and a hydrogen concentration analysis was performed under the same conditions as described above. FIG. 2 shows a hydrogen concentration release curve at the time of analyzing the hydrogen concentration in the outer ring load zone after performing the rotation test using grease α. FIG. 3 shows the hydrogen concentration release curve after performing the rotation test using grease β. 3 shows a hydrogen concentration release curve at the time of analyzing the hydrogen concentration in the outer ring load zone.

【0025】図2および図3に示した回転試験後の外輪
の水素濃度放出曲線について、図1に示した回転試験前
の外輪の水素濃度放出曲線とを比較して説明する。図1
に示すように、焼入れ処理後、回転試験前の軸受の外輪
の水素濃度分析時の水素放出曲線にはピークが存在せ
ず、真空中で焼入れ処理を施したことによって軸受に水
素がほとんど吸収されていないことがわかる。これに対
し、グリースαを使用して100時間の回転試験を施し
た後には、図2に示すように、外輪負荷圏の水素濃度分
析時の水素放出曲線に明確なピークが存在する。これ
は、回転試験中にグリースαより外輪負荷圏に水素原子
が吸収されたことを示している。
The hydrogen concentration release curves of the outer ring after the rotation test shown in FIGS. 2 and 3 will be described in comparison with the hydrogen concentration release curves of the outer ring before the rotation test shown in FIG. FIG.
As shown in the figure, after the quenching process, there was no peak in the hydrogen release curve when analyzing the hydrogen concentration of the outer ring of the bearing before the rotation test, and the bearing was hardly absorbed by the quenching process in vacuum. You can see that it is not. On the other hand, after a 100-hour rotation test using grease α, as shown in FIG. 2, there is a clear peak in the hydrogen release curve when analyzing the hydrogen concentration in the outer ring load zone. This indicates that hydrogen atoms were absorbed from the grease α into the outer ring load zone during the rotation test.

【0026】一方、図3に示すように、グリースβを使
用し、100時間の回転試験を実施した後の軸受の外輪
負荷圏の水素濃度分析時の水素放出曲線には、ピークは
存在しない。これは、回転試験中に、グリースβから外
輪負荷圏には水素原子は吸収されなかったことを示して
いる。
On the other hand, as shown in FIG. 3, there is no peak in the hydrogen release curve at the time of analyzing the hydrogen concentration in the outer ring load zone of the bearing after performing a rotation test for 100 hours using grease β. This indicates that no hydrogen atoms were absorbed from the grease β into the outer ring load zone during the rotation test.

【0027】また、図1〜3に示した水素放出曲線につ
いて150℃から350℃までを積分して、水素濃度を
算出したところ、それぞれ0.01ppm、0.06p
pm、および0.01ppmと得られた。この結果から
も、グリースαを使用した場合には、外輪負荷圏に水素
が吸収されたことがわかる。
The hydrogen concentration was calculated by integrating the hydrogen release curves shown in FIGS. 1 to 3 from 150 ° C. to 350 ° C. to obtain 0.01 ppm and 0.06 p, respectively.
pm, and 0.01 ppm. This result also indicates that when grease α was used, hydrogen was absorbed in the outer ring load zone.

【0028】次に、グリースαまたはβを封入した前述
の軸受について、前述と同様の回転試験条件で破損する
まで、寿命試験を行なった。ただし、定格疲れ寿命の時
間までに破損しない場合は、試験を打ち切った。試験数
は、各軸受について5個とした。寿命試験結果は、以下
の通りである。
Next, a life test was performed on the above-described bearing in which grease α or β was sealed until the bearing was broken under the same rotation test conditions as described above. However, if the sample was not damaged by the time of the rated fatigue life, the test was terminated. The number of tests was five for each bearing. The life test results are as follows.

【0029】グリースαの軸受:389,254,20
8,184,135時間で全て外輪剥離 グリースβの軸受:全て759時間で中断(剥離なし) このように、グリースβは、転がり疲れ寿命延長におい
てグリースαより有効であることが確認されたが、試験
には多くの時間を要した。前述したように、所定の雰囲
気中で焼入れ処理を行なった軸受について、回転試験前
後の水素分析を行なえば、破損するまでの寿命試験を行
なわなくとも、グリースβがαよりも転がり疲れ寿命延
長に対し有効であることがわかる。
Bearing of grease α: 389, 254, 20
8,184,135 hours of bearings of grease β with outer ring exfoliation: All interrupted by 759 hours (no exfoliation) Thus, grease β was confirmed to be more effective than grease α in extending rolling fatigue life. The test took a lot of time. As described above, if hydrogen analysis is performed on a bearing that has been quenched in a predetermined atmosphere before and after a rotation test, grease β can provide a longer rolling fatigue life than α without performing a life test until breakage. It turns out that it is effective.

【0030】また、比較のためにRXガス雰囲気炉で焼
入れ処理を施した外輪について、前述と同様にして水素
濃度を分析し、得られた結果を図4のグラフに示す。さ
らに、こうして焼入れ処理された外輪を用いる以外は、
前述と同様の内輪および鋼球を用いて軸受を構成し、グ
リースαを用いて前述と同様の回転試験を行なった。回
転試験後の外輪の最大応力負荷圏近傍における水素濃度
を前述と同様にして分析し、水素放出曲線を図5のグラ
フに示す。
For comparison, the hydrogen concentration of the outer ring which had been quenched in an RX gas atmosphere furnace was analyzed in the same manner as described above, and the results obtained are shown in the graph of FIG. Furthermore, except using the outer ring thus quenched,
A bearing was formed using the same inner ring and steel ball as described above, and a rotation test similar to that described above was performed using grease α. The hydrogen concentration near the maximum stress load zone of the outer ring after the rotation test was analyzed in the same manner as described above, and the hydrogen release curve is shown in the graph of FIG.

【0031】図4および5のグラフに示すように、試験
後の軸受だけでなく、前の軸受の外輪の水素放出曲線に
もピークが存在しており、RXガス雰囲気炉での焼入れ
処理において、外輪に水素が吸収されたことが明確に示
されている。また、図4および5に示した水素放出曲線
の150℃から350℃までを積分して水素濃度を算出
したところ、それぞれ0.56ppm、0.52ppm
と同程度に高い値であった。この結果から、少なくとも
グリースαを使用した場合には、外輪負荷圏に水素が吸
収されたと判定することは困難であることがわかる。
As shown in the graphs of FIGS. 4 and 5, a peak is present not only in the bearing after the test but also in the hydrogen release curve of the outer ring of the previous bearing, and in the quenching treatment in the RX gas atmosphere furnace, It is clearly shown that hydrogen was absorbed in the outer ring. Further, when the hydrogen concentration was calculated by integrating the hydrogen release curves shown in FIGS. 4 and 5 from 150 ° C. to 350 ° C., they were 0.56 ppm and 0.52 ppm, respectively.
The value was as high as. This result indicates that it is difficult to determine that hydrogen has been absorbed into the outer ring load zone when at least grease α is used.

【0032】因みに、回転試験後に外輪負荷圏の水素濃
度が若干ながらも減少するのは、焼入れ処理時に吸収さ
れた水素原子が、回転試験中に軸受から放出され、この
量が潤滑剤より吸収される水素量より多いことに起因す
る。
Incidentally, the reason why the hydrogen concentration in the outer ring load zone slightly decreases after the rotation test is that the hydrogen atoms absorbed during the quenching treatment are released from the bearing during the rotation test, and this amount is absorbed by the lubricant. Due to the higher hydrogen content.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
転がり軸受を破損するまでの長時間の寿命試験に供する
ことなく、転がり軸受用の潤滑剤の寿命を短時間で調
べ、それによって潤滑剤の評価を行なう方法が提供され
る。
As described above, according to the present invention,
There is provided a method for examining the life of a lubricant for a rolling bearing in a short time without conducting a long-term life test until the rolling bearing is damaged, thereby evaluating the lubricant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】真空中で焼入れ処理を施した外輪の、回転試験
前における水素濃度分析時の水素放出曲線。
FIG. 1 is a hydrogen release curve during hydrogen concentration analysis of an outer ring that has been quenched in vacuum before a rotation test.

【図2】真空中で焼入れ処理を施し、グリースαを使用
して100時間の回転試験を実施した後の外輪負荷圏に
おける水素濃度分析時の水素放出曲線。
FIG. 2 is a hydrogen release curve during hydrogen concentration analysis in the outer ring load zone after a quenching treatment in vacuum and a 100-hour rotation test using grease α.

【図3】真空中で焼入れ処理を施し、グリースβを使用
して100時間の回転試験を実施した後の外輪負荷圏に
おける水素濃度分析時の水素放出曲線。
FIG. 3 is a hydrogen release curve at the time of analyzing hydrogen concentration in the outer ring load zone after a quenching treatment in vacuum and a 100-hour rotation test using grease β.

【図4】RXガス中で焼入れ処理を施した外輪の回転試
験前における水素濃度分析時の水素放出曲線。
FIG. 4 is a hydrogen release curve at the time of hydrogen concentration analysis before a rotation test of an outer ring that has been quenched in RX gas.

【図5】RXガス中で焼入れ処理を施し、グリースαを
使用して100時間回転試験を実施した後の外輪負荷圏
における水素濃度分析時の水素放出曲線。
FIG. 5 is a hydrogen release curve at the time of analyzing hydrogen concentration in the outer ring load zone after performing a quenching treatment in RX gas and performing a 100-hour rotation test using grease α.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−34139(JP,A) 特開 平6−18458(JP,A) 特開 平8−68731(JP,A) 特開 平8−177864(JP,A) 特開 平9−329147(JP,A) 実開 昭61−94744(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01M 13/04 F16N 29/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-34139 (JP, A) JP-A-6-18458 (JP, A) JP-A 8-68731 (JP, A) JP-A 8- 177864 (JP, A) JP-A-9-329147 (JP, A) Japanese Utility Model Application Sho 61-94744 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01M 13/04 F16N 29 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 実質的に水素ガスを含有しない雰囲気の
焼入れ炉内で、転がり軸受の構成部材を焼入れ処理する
工程、 焼入れ処理後の転がり軸受の構成部材のうち、軌道輪お
よび転動体となる部材における水素濃度を測定して、第
1の水素濃度を得る工程、 前記焼入れ処理後の転がり軸受けの構成部材を組み合わ
せてなる転がり軸受を、被評価物である潤滑剤を用いて
回転試験に供する工程、および、 回転試験後の転がり軸受の前記部材における水素濃度を
測定して、第2の水素濃度を得る工程を具備し、 前記転がり軸受の前記部材における第2の水素濃度と第
1の水素濃度との差により水素濃度増分を求め、その水
素濃度増分によって、前記潤滑剤の転がり寿命への有害
度を判定する方法。
1. A step of quenching components of a rolling bearing in a quenching furnace in an atmosphere containing substantially no hydrogen gas, and among the components of the rolling bearing after the quenching, the bearing rings and rolling elements are formed. Measuring the hydrogen concentration in the member to obtain a first hydrogen concentration, and subjecting the rolling bearing formed by combining the components of the rolling bearing after the quenching treatment to a rotation test using a lubricant as an evaluation object. And a step of measuring a hydrogen concentration in the member of the rolling bearing after the rotation test to obtain a second hydrogen concentration, wherein a second hydrogen concentration and a first hydrogen in the member of the rolling bearing are obtained. A method of determining an increase in hydrogen concentration from a difference from the concentration and determining a degree of harm to the rolling life of the lubricant based on the increase in hydrogen concentration.
【請求項2】 前記焼き入れ処理工程は、真空中、窒素
ガス中、または空気中で行なわれることを特徴とする請
求項1に記載の潤滑剤の転がり寿命への有害度を判定す
る方法。
2. The quenching step is performed in a vacuum, under nitrogen.
A contract characterized by being carried out in gas or air
Determining the degree of harm to the rolling life of the lubricant according to claim 1
Way.
【請求項3】 前記水素濃度の測定は、昇温脱離法によ
り行なわれることを特徴とする請求項1または2に記載
の潤滑剤の転がり寿命への有害度を判定する方法。
3. The method for measuring the hydrogen concentration according to a thermal desorption method.
3. The method according to claim 1, wherein
Method of determining the degree of harmfulness of the lubricant to the rolling life.
JP25577897A 1997-09-19 1997-09-19 Evaluation method for lubricants for rolling bearings Expired - Fee Related JP3536614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25577897A JP3536614B2 (en) 1997-09-19 1997-09-19 Evaluation method for lubricants for rolling bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25577897A JP3536614B2 (en) 1997-09-19 1997-09-19 Evaluation method for lubricants for rolling bearings

Publications (2)

Publication Number Publication Date
JPH1194704A JPH1194704A (en) 1999-04-09
JP3536614B2 true JP3536614B2 (en) 2004-06-14

Family

ID=17283507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25577897A Expired - Fee Related JP3536614B2 (en) 1997-09-19 1997-09-19 Evaluation method for lubricants for rolling bearings

Country Status (1)

Country Link
JP (1) JP3536614B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304281A (en) 2000-04-20 2001-10-31 Nsk Ltd Rolling bearing unit
JP4704102B2 (en) * 2005-05-12 2011-06-15 Ntn株式会社 Bearing test apparatus and bearing test method
CN102818666B (en) * 2012-07-27 2014-12-17 北京航天控制仪器研究所 Grounding friction moment measuring method used for service life evaluation of hydrodynamic gas-lubricated bearing
JP7300140B2 (en) * 2018-07-19 2023-06-29 國友熱工株式会社 Manufacturing method for hydrogen embrittlement-preventive steel workpiece
WO2020110593A1 (en) * 2018-11-30 2020-06-04 日本精工株式会社 Ambient-hydrogen-level assessment method and white-structure-damage-likelihood prediction method
JP6683301B1 (en) * 2018-11-30 2020-04-15 日本精工株式会社 Hydrogen environment degree judgment method and white tissue damage possibility prediction method

Also Published As

Publication number Publication date
JPH1194704A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
Evans et al. Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF)
EP0407606A1 (en) Greased bearing
Sullivan et al. Mild wear of a low alloy steel at temperatures up to 500 C
US8783961B2 (en) Bearing for alternator and bearing for pulley
JP3536614B2 (en) Evaluation method for lubricants for rolling bearings
WO2011122632A1 (en) Bearing part, bearing and bearing part inspection method
Kürten et al. Tribochemical degradation of vacuum‐stable lubricants: A comparative study between multialkylated cyclopentane and perfluoropolyether in a vacuum ball‐on‐disc and full‐bearing tests
Zaretsky et al. Component hardness differences and their effect on bearing fatigue
Uhlig et al. A fundamental investigation of fretting corrosion
Mikami et al. Influence of electrical current on bearing flaking life
JP2000009597A (en) Method of evaluating cleanness of bearing steel
WO2020110593A1 (en) Ambient-hydrogen-level assessment method and white-structure-damage-likelihood prediction method
JP6683301B1 (en) Hydrogen environment degree judgment method and white tissue damage possibility prediction method
JP6294618B2 (en) Hub bearing
JP2005140648A (en) Life testing method for ball bearing
GB2275973A (en) Method for manufacturing balls for bearings and products thereof
JP2002242942A (en) Rolling bearing
Jansson et al. Wear resistant sulfur films on hard ball bearing steel studied by Auger electron spectroscopy and sputter profiling, including factor analysis
Beerbower et al. Fighting debris: Increasing life with HTF bearings for transmissions
Chikara Evaluation of Scratched Contact Fatigue Life with Artificial Dent of Carbonitrided SUJ2 Steel Whose Surface Nitrogen Content is Controlled Note
Eickhoff et al. The performance of ball bearings in nitrogen and carbon dioxide at elevated temperatures
Shahzad et al. Failure analysis of a helicopter's main rotor bearing
JP7238620B2 (en) Fatigue progress evaluation method
Carré et al. Lead naphthenate tribochemistry under vacuum and gaseous nitrogen test conditions
Tamada et al. A new type of flaking failure in bearings for electrical instruments of automotive engines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees