JP3535405B2 - Dioxin resynthesis prevention rapid cooling device - Google Patents

Dioxin resynthesis prevention rapid cooling device

Info

Publication number
JP3535405B2
JP3535405B2 JP03435199A JP3435199A JP3535405B2 JP 3535405 B2 JP3535405 B2 JP 3535405B2 JP 03435199 A JP03435199 A JP 03435199A JP 3435199 A JP3435199 A JP 3435199A JP 3535405 B2 JP3535405 B2 JP 3535405B2
Authority
JP
Japan
Prior art keywords
gas
quenching
swirling
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03435199A
Other languages
Japanese (ja)
Other versions
JP2000234724A (en
Inventor
哲人 田村
Original Assignee
哲人 田村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲人 田村 filed Critical 哲人 田村
Priority to JP03435199A priority Critical patent/JP3535405B2/en
Publication of JP2000234724A publication Critical patent/JP2000234724A/en
Application granted granted Critical
Publication of JP3535405B2 publication Critical patent/JP3535405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、各種焼却炉、溶
融炉などから排出される有害物質のダイオキシン類の二
次合成を完全に阻止防止可能とするダイオキシン類合成
防止急冷装置およびその方法に関するものである。 【0002】 【従来の技術】焼却炉、溶融炉等の燃焼装置は、廃棄物
処理は勿論のこと、金属精錬施設、紙パルプの漂白工
程、セメント、ガラス、セラミックの各工場、化学原料
ないし化学製品の製造工場等広範な産業分野で使用され
ている。 【0003】したがって、これらの施設、工場から人体
に有害なダイオキシン類が生成され、大気や地球環境を
破壊しつつあるのが現状であり、地球規模での改善が広
く叫ばれている。 【0004】そして、大気汚染物質であり人体に有害な
ダイオキシン類を除去するための種々の方法装置が開発
されている。 【0005】 【発明が解決しようとする課題】ところで、この種のダ
イオキシン類除去装置や方法は、高温燃焼によるダイオ
キシン類の高温分解や、高温状態より大気中へ放出され
る排ガスの冷却時に生ずる虞れのある合成ダイオキシン
類の発生を防止する手段などが知られているが、いづれ
も構造が複雑で有効かつ、低価格でできないという問題
があった。 【0006】すなわち、この発明は、800℃以上の排
ガスを旋回状態にして、高圧冷却気体の旋回渦巻流内に
吐出させてダイオキシン類の合成温度以下に急冷させて
ダイオキシン類の合成を防いだダイオキシン類合成防止
急冷装置およびその方法を提供することを目的とする。 【0007】 【課題を解決するための手段】この発明は叙上の点に着
目して成されたもので、以下の構成を備えることにより
上記課題を解決できるものである。 【0008】()各種炉から生成される高温排ガスを
ダイオキシン類の分解温度以上に加熱する再加熱分解筒
と、この再加熱分解筒の出口側と通ずる高温排ガスが旋
回して流入できる旋回導入部と、この旋回導入部に設け
られる気体急冷筒、この気体急冷筒の外周に間隔を置い
て配設される高圧冷却気体の噴射ノズルと、冷却処理後
の低温排ガスの導出部とを備えると共に、前記再加熱筒
は、この筒内に配設した旋回羽根によって区劃される一
方の旋回路により頂部空室を経て他方の旋回路を形成
し、前記一方の旋回路より他方の旋回路に高温排ガスを
流通させて加熱分解させ、かつ前記噴射ノズルは、内側
断面円形の急冷筒の外周に沿って所望の傾斜角度を保持
して、等間隔に、かつ一段以上必要段数設けて、この噴
射ノズルより噴射散布される高圧冷却気体の冷却気流
を、前記気体急冷筒内で旋回させて前記旋回導入部より
吐出される高温排ガスと共に旋回渦巻急冷領域を形成し
てダイオキシン類の合成温度以下に急冷できる旋回冷却
手段を形成し、高圧冷却気体を二分割し、一方の噴出流
ラインからは一つ置きの複数のノズルに、他方の噴
出流ラインからは前記噴射ノズルの間に一つ置きに配設
される他の複数の噴射ノズルに、それぞれ交互に向う
給手段とを設けてなることを特徴とするダイオキシン類
再合成防止急冷装置。 【0009】 【0010】 【0011】 【0012】 【0013】なお、この発明で指称するダイオキシン類
とは、75種の異性体・同族体が存在するポリ塩化ジベ
ンゾパラダイオキシン(Poly−chlorinat
eddibenzo−p−dioxins:PCDD
s)と135種の異性体、同族体が存在するポリ塩化ジ
ベンゾフラン(Poly−chlorinateddi
benzofurans:PCDFs)を包含するがさ
らに、ポリ塩化ビフェニル(PCB)にも209種類の
異性体、同族体が存在し、共偏平構造を持つ12種類の
コプラナーPCB(Co−PCB)の異性体、同族体は
毒性が強く、その生体作用はPCDDsのそれと類似し
ており、Co−PCBはPCBの製品中に存在するとと
もに、PCDDs・PCDFsと同様に、廃棄物の焼却
装置で生成し、環境を広く汚染しているので、このCo
−PCBも含めてダイオキシン類と総称する。 【0014】以下にその構造式を示す。 【0015】 【化1】 【0016】 【発明の実施の形態】以下に、この発明の実施の形態を
図面と共に説明する。 【0017】1は急冷装置で、円筒状の室構造を備え、
高温排ガスの流入する導入部2が開口接続されて、各種
炉から排出されるダイオキシン類を分解状態にできる8
00℃以上の加熱状態を維持して高温排ガスを所望の圧
をもって受け入れできるようになっている。3は導入部
2と連通する高温排ガス分割供給用のディストリブュー
タ、4は必要数の気体急冷筒で、隔板5を介して室内下
方に向けて突設してある。図1では二ケ所に設けてある
が、図2に示すような場合、すなわち小型の燃焼装置で
はディストリブュータ3は省いても良く、反対に大型の
燃焼装置では二ケ所以上数多く設けても良い。 【0018】7は各気体急冷筒4に配設した高圧冷却気
体の噴射ノズルを示し、図5に示すように前記気体急冷
筒4の内周面を断面円形に形成し、同一水平面上で、等
間隔に気体急冷筒4の中心Oに対し傾斜角度αを保持し
て二以上の必要数配設する。これにより気体急冷筒4内
に吐出される高温排ガスを、高圧冷却気体の前記噴射ノ
ズル7より噴射される冷却気化流を一定方向に旋回させ
て旋回冷却手段Tの旋回渦巻急冷領域Pを形成できる。 【0019】ところで、気体急冷筒4の開口端には、旋
回導入部2aが形成され図2および図4に示すように傾
斜羽根15を放射状に配設した旋回翼16で形成され、
前記噴射ノズル7により吐出される冷却霧化流による旋
回渦巻急冷領域Pに向かって、吐出される高温排ガスに
同一の旋回流を付与させて、より効率の高い急冷効果を
得るようにしてある。 【0020】また、図2および3に示すように高圧ポン
プ8aを備えたエアタンク8より供給される高圧冷却空
気を二分割し、一方の噴出流ライン9からは一つ置きの
高圧冷却空気の噴射ノズル7の1,3,5,7に供給
し、他方の噴出流ライン10からは、前記ノズル7の間
の2,4,6,8に供給して冷却気化流を円滑に無理な
く抵抗を少なくして効率の良い急冷効果を得るようにし
ている。 【0021】なお、11,12は高圧冷却空気の流量を
調節し、これにより冷却作用を調節できるバルブ、1
3,14は各ライン9,10に設けた圧力計を夫々示
す。 【0022】また、噴射ノズル7の傾斜角度αは、一般
的には隣り合うノズル7はすべて同一であるのが好まし
いが、必要に応じて、高温排ガス中の化学成分の種類に
よっては、隣り合うラインのノズル7は異なっても差し
支えないが、異なるライン9,10より供給される1,
3,5,7と2,4,6,8はグループ毎で同一の傾斜
角度αであることが好ましい。 【0023】なお、図3の図示では、分割ラインが9,
10の2ラインしか示されていないが、この分割ライン
は図示しないが、3ラインでも4ラインでもその数は自
由に選択でき、同様に実施できる。また高圧冷却空気に
は、必要に応じて吸熱剤などを配合することもできる。 【0024】また、図6に示すように、気体急冷筒4の
内周に突出される一段の前記ノズル7の下方に所望の距
離を置いて同様に他の同種の噴射ノズル7a……を二
段、三段と重複して設置できる。この場合のノズル7a
……の傾斜角度は、前記第一段のノズル7の傾斜角度α
と同一であって差し支えないが、同じ傾斜方向で僅かに
異ならせても良く、さらに、図6の仮想様に示すように
気体急冷筒4の内周円筒形状は下方に行くに従って僅か
に拡張したラッパ状βとして旋回渦巻急冷領域Pを効率
的に拡大してより有効な冷却効果を得ることもできる。
さらに噴射ノズル7,7aは同一水平面上において水平
方向に冷却気体を噴射できるように示されているが、稍
々下方に向けて下向きに働く吸引効果のより高い旋回渦
巻急冷領域Pを形成することもできる。 【0025】17は、急冷装置1内へ供給される高温排
ガスが、不用意に冷却することなく常に800℃以上の
高温状態を維持できるように、気体急冷筒4の開口端に
至る区間に配設した断熱構造部を示している。 【0026】18は急冷装置1で急冷処理されて低温処
理化された排ガスの排出管6に接続される次段のバグフ
ィルタなどの補助装置であって、急冷装置1での急冷処
理されて基準値0.1ng−TEQ/m3 N以下に含有
量が減少したダイオキシン類に対してこの補助装置18
がバックアップして微量に残留したダイオキシン類を除
去して完全を期すことができる。このバグフィルタの補
助装置18は多数の分岐した多孔構造の濾過筒体19を
備え、消石灰プレコート層などを表面濾材として前記濾
過筒体19の内周面の濾布上に形成させ、排出管6より
急冷処理された比較的低温の排ガス中の煤煙に含まれる
ダイオキシン類の微量な有毒ガスを捕捉できる。そし
て、この補助装置18には、エアーコンプレッサー20
よりの高圧空気エアタンク21よりの高圧空気を導く導
管22と接続され、高圧空気によって各濾過筒体19に
集積した捕捉有害ガスを濾材と共に吹き落とすことがで
きる。さらにこの後に排気管23を次段の補助装置2
4、例えば活性炭吸着装置に接続し、ここで更にダイオ
キシン類を活性炭に吸着させ、排出管25より排風機2
6の働きで殆ど基準値の1/10〜1/100オーダー
の殆ど完全にダイオキシン類を除去した環境汚染の問題
のない安全な状態の排ガスとして煙突より大気中に排気
できものである。 【0027】なお、急冷装置1での急冷処理は、ダイオ
キシン類の再合成温度と一般に知られる温度320℃以
下の温度に急冷できれば、理論的には差し支えないが、
次段のバグフィルタなどの補助装置での有効除去処理
を、配慮すると230℃〜300℃位の低温排ガスへの
冷却処理が好ましい。 【0028】27は、本発明者が開発した必要に応じて
設けられる再加熱分解筒であって、急冷装置1の開口部
においてダイオキシン類の完全分解温度である800℃
以上の高温排ガスを得るために接続するものである(特
開平10−288324号公報,特願平9−20664
2号)。 【0029】すなわち、焼却炉または溶融炉などで燃焼
処理された800℃以下の低温に降下した排ガスを燃焼
バーナ40により800℃以上に再加熱し、ダイオキシ
ン類を完全な分解ガス状態にし、この高温状態を2秒間
以上維持できるように筒27内に配設した旋回羽根28
によって高温排ガスをその導入口29より旋回羽根28
によって区劃される一方の旋回路30を上方へ向かって
導き、頂部空室31で旋回羽根28によって区劃される
他方の旋回路32を通って導管33より前記急冷装置1
の導入部2に供給できるものであって、温度降下を防ぐ
ために再加熱分解筒27および導管33には全体が断熱
構造部34を形成させている。 【0030】なお、図において符号35は、混合室であ
って、低温排ガス中の煤煙などを吸着できるように、薬
剤ポンプ35a、薬剤タンク35bを備えて、常時必要
に応じて投入できるようになっている。36は必要な箇
所の温度を検知するため多くの箇所に設けた温度セン
サ、37は急冷装置1の圧力計である。38は、オイル
タンク、39は排ガス導入管を夫々示す。 【0031】叙上の構成に基づいて作用を説明する。 【0032】各種炉から排気される排ガスがダイオキシ
ン類の分解温度以上、例えば800℃以上でダイオキシ
ン類が分解状態の高温排ガスを所望の加圧力を与えて急
冷装置1の導入部2に導き直接またはディストリブュー
タ3を介して気体急冷筒4より下方に吐出させる。この
気体急冷筒4の開口部には旋回翼16の旋回導入部2a
が設けてあるので排ガスは強制的に気体急冷筒4の入口
で急旋回作用を受ける。 【0033】他方、高圧冷却気体例えば高圧冷却空気
は、前記気体急冷筒4の内周面に突出させた多数の噴射
ノズル7より傾斜角度αを以って一定方向に噴射散布さ
れ冷却気化流となって旋回し、旋回冷却手段Tである旋
回渦巻急冷領域Pを形成しており、この旋回渦巻急冷領
域P内に前記高温排ガスが例えば15m〜20m/S以
上の速度で吐出されるので、高温排ガスは多量の冷却気
化流によって膨張し、冷却気化流に気化熱を奪われ、高
温排ガスが混合ガス状態となって瞬時に熱交換されて急
冷される。ことに噴射ノズル7は多数間隔を置いて同一
方向に傾斜させて配置してあり、旋回渦巻急冷領域Pを
冷却気体分子状態で形成できるので、高温排ガスは均一
にしかも瞬時に旋回渦巻急冷領域P内に拡散、分散して
急冷され、ダイオキシン類の再合成温度と謂われる32
0℃〜350℃を瞬時に越えて温度降下でき、したがっ
て、分解状態のダイオキシン類の再合成が行われること
はない。 【0034】急冷作用による温度降下は230℃〜28
0℃が好ましく、この温度降下した排ガスは、冷却空気
の噴射により冷却された固形物質を除き、急冷装置1の
排出管6,23を経て、次段の補助装置18,24へと
導出される。なお、下方に落下した固形物質はドレーン
より排出取出される。 【0035】なお、図3に示すように、気体急冷筒4に
設けられる多数の高圧冷却気体の噴射ノズル7は、高圧
急冷気体が2系統の噴出流ライン9,10により多数の
ノズル7の1,3,5,7および2,4,6,8の互い
に隣り合うノズル7に対して、異なる系統による高圧冷
却気体によって冷却散布を行うことができるので、一方
の系統のバランスが崩れても他方の系統がこれを補完
し、全体としてきわめて安定した活性化した旋回渦巻急
冷領域Pが形成でき吐出される高温排ガスの冷却による
温度降下を有効に促すことができる。 【0036】なお、高圧冷却気体の噴射ノズル7よりの
噴出量はバルブ11,12の絞り量を調節することによ
り調節でき、これにより冷却温度を好みの温度に設定で
きる。 【0037】この気体急冷筒4で急冷された排ガス中に
は、再合成されたダイオキシン類も殆どなく、法定上の
数値以下に消失できるが、さらに完全を期すための排出
管6,23を経て外部に導出され、次段のバグフィルタ
などの補助装置18や活性炭吸着装置等の補助装置24
を通り、煤煙などの微粒子上に付着したごく微量で許容
量のダイオキシン類を除去し、完全に無害化した状態で
大気中に放出させることができる。 【0038】 【発明の効果】この発明によれば、焼却施設や溶融炉な
どの各種炉から発生する有害な排ガスを再加熱分解筒に
より再加熱手段を介してダイオキシン類の分解温度以上
の例えば800℃以上の高温排ガスとして、ダイオキシ
ン類を完全に分解状態に保持した状態で気体急冷筒に旋
回状態で吐出させ、この気体急冷筒内の高圧冷却気体に
よる噴射ノズルよりの噴射された冷却気化流で形成され
る旋回冷却手段の旋回渦巻急冷領域内で急速に拡散膨張
させることにより冷却物と被冷却物の接触面積を大きく
でき、ダイオキシン類生成化学反応時間を遥かに超えた
短時間で所望の温度の急冷効果が得られ、従って高温排
ガスはダイオキシン類の再合成温度以下に瞬間に温度降
下させることができる。 【0039】したがって、高温排ガス中に含まれるダイ
オキシン類の分解化学物質は勿論のこと前駆物質がダイ
オキシン類に変化することなく、低温無害排ガスとする
ことができる。 【0040】この急冷処理によりダイオキシン類は法定
基準値以下の0.1ng−TEQ/m3 N以下に減少し
ていることが実験上判明している。 【0041】この発明によれば、急冷手段である高圧冷
却気体の噴射ノズルによる旋回渦巻急冷領域がきわめて
コンパクトな構成でしかも簡単な構成で有効に形成で
き、そして、高圧冷却気体が二分割されて多数の噴射ノ
ズルへ一つ置きに供給されるため、噴射冷却散布がバラ
ンス良く行われ、その結果、旋回渦巻急冷領域での急速
冷却作用を呈することができるものであって、しかも急
冷装置自体は、既存の各種炉の一部に簡単に組込んで利
用できるので、新設、既設を問わずしかも規模の大小を
問わず実施できると共に全体を安価に提供できる利点が
ある。 【0042】その上、急冷手段に気体を用いているので
液体に比し、全体の構成を著しく簡単に形成できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dioxin capable of completely preventing secondary synthesis of harmful dioxins discharged from various incinerators and melting furnaces. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quenching apparatus and a method for preventing quasi-synthesis. 2. Description of the Related Art Combustion devices such as incinerators and melting furnaces are used not only for waste treatment, but also for metal refining facilities, paper pulp bleaching processes, cement, glass, ceramic factories, chemical raw materials or chemicals. It is used in a wide range of industrial fields such as product manufacturing plants. [0003] Therefore, at present, dioxins harmful to the human body are generated from these facilities and factories and are destroying the atmosphere and the global environment, and improvements on a global scale are widely called for. [0004] Various methods and devices have been developed for removing dioxins which are air pollutants and harmful to the human body. However, this type of dioxin removal apparatus and method may cause decomposition of dioxins at a high temperature due to high-temperature combustion and cooling of exhaust gas discharged from a high-temperature state into the atmosphere. Means for preventing the generation of such synthetic dioxins are known, but all have had the problem that their structures are complex, effective, and inexpensive. That is, the present invention provides a dioxin in which exhaust gas of 800 ° C. or higher is swirled, discharged into a swirling flow of high-pressure cooling gas and rapidly cooled to a temperature lower than the synthesis temperature of dioxins to prevent the synthesis of dioxins. An object of the present invention is to provide an apparatus for preventing quenching and a method thereof. SUMMARY OF THE INVENTION The present invention has been made by paying attention to the points described above, and can solve the above problems by providing the following constitution. ( 1 ) A reheat cracking cylinder for heating high-temperature exhaust gas generated from various furnaces to a temperature not lower than the decomposition temperature of dioxins, and a swirl introduction through which high-temperature exhaust gas passing through an outlet side of the reheat cracking cylinder can swirl and flow. Unit, a gas quenching cylinder provided in the swirling introduction unit, a high-pressure cooling gas injection nozzle disposed at intervals on the outer periphery of the gas quenching cylinder, and a low-temperature exhaust gas outlet after the cooling process. The reheating cylinder forms one of the revolving circuits via the top empty space by one of the revolving circuits defined by the revolving blades disposed in the cylinder, and forms the other revolving circuit from the one revolving circuit. The high-temperature exhaust gas is allowed to flow to be thermally decomposed, and the injection nozzle is provided with a required inclination angle along the outer periphery of the quenching cylinder having a circular inner cross section, provided at equal intervals and at least one required number of stages. Inject from nozzle Swirling cooling that swirls a cooling air flow of a high-pressure cooling gas to be spread in the gas quenching cylinder and forms a swirling spiral quenching region together with high-temperature exhaust gas discharged from the swirling introduction part to rapidly cool the mixed temperature of dioxins or less. forming means, the high pressure cooling gas is bisected, a plurality of jetting nozzles of every other from one of the jet flow line, arranged alternately between the injection nozzle from the other jet flow line
A dioxin resynthesis prevention quenching device, characterized in that the other plurality of injection nozzles provided with supply means alternately facing each other . The dioxins referred to in the present invention are polychlorinated dibenzoparadioxins (Poly-chlorinat) containing 75 isomers and homologs.
edibenzo-p-dioxins: PCDD
s) and 135 isomers and homologues are present in polychlorinated dibenzofuran (Poly-chlorinateddi)
benzofurans: PCDFs), and polychlorinated biphenyls (PCBs) also have 209 isomers and homologs, and 12 coplanar PCBs (Co-PCB) isomers and homologs having a co-flat structure. The body is highly toxic and its biological effects are similar to those of PCDDs. Co-PCB is present in PCB products and, like PCDDs and PCDFs, is produced in waste incinerators and broadens the environment. This Co is contaminated.
-Dioxins are collectively referred to, including PCB. The structural formula is shown below. Embedded image Embodiments of the present invention will be described below with reference to the drawings. 1 is a quenching device having a cylindrical chamber structure,
The introduction part 2 into which the high-temperature exhaust gas flows is opened and connected so that dioxins discharged from various furnaces can be decomposed 8
A high-temperature exhaust gas can be received at a desired pressure while maintaining a heating state of 00 ° C. or higher. Reference numeral 3 denotes a distributor for split supply of the high-temperature exhaust gas which communicates with the introduction section 2, and reference numeral 4 denotes a required number of gas quenching cylinders, which protrude downward through the partition plate 5. In FIG. 1, two places are provided. However, in the case as shown in FIG. 2, that is, in a small combustion apparatus, the distributor 3 may be omitted, and in a large combustion apparatus, two or more places may be provided. . Reference numeral 7 denotes a high-pressure cooling gas injection nozzle arranged in each gas quenching cylinder 4, and as shown in FIG. 5, the inner peripheral surface of the gas quenching cylinder 4 is formed in a circular cross section, and on the same horizontal plane, Two or more required numbers are arranged at equal intervals while maintaining the inclination angle α with respect to the center O of the gas quenching cylinder 4. Thereby, the high-temperature exhaust gas discharged into the gas quenching cylinder 4 can swirl the cooling vaporized flow of the high-pressure cooling gas injected from the injection nozzle 7 in a certain direction to form the swirling spiral quenching region P of the swirling cooling means T. . At the open end of the gas quenching cylinder 4, a swirling introduction portion 2a is formed, and as shown in FIGS. 2 and 4, formed by swirling vanes 16 in which inclined blades 15 are radially arranged.
The same swirling flow is applied to the discharged high-temperature exhaust gas toward the swirling swirl quenching region P due to the cooling atomization flow discharged from the injection nozzle 7 to obtain a more efficient quenching effect. As shown in FIGS. 2 and 3, the high-pressure cooling air supplied from the air tank 8 having the high-pressure pump 8a is divided into two parts, and one of the jet lines 9 is used to inject every other high-pressure cooling air. The nozzle 7 is supplied to 1, 3, 5, 7 and the other jet flow line 10 is supplied to 2, 4, 6, 8 between the nozzles 7 so that the cooling vaporized flow can be smoothly and without resistance. An efficient quenching effect is obtained with a small amount. Numerals 11 and 12 are valves for adjusting the flow rate of the high-pressure cooling air, whereby the cooling action can be adjusted.
Reference numerals 3 and 14 denote pressure gauges provided on the lines 9 and 10, respectively. In general, the inclination angle α of the injection nozzle 7 is preferably the same for all the adjacent nozzles 7. However, if necessary, depending on the type of the chemical component in the high-temperature exhaust gas, the adjacent nozzles 7 may be adjacent to each other. The nozzles 7 of the lines can be different,
It is preferable that 3, 5, 7 and 2, 4, 6, 8 have the same inclination angle α for each group. It should be noted that in the illustration of FIG.
Although only two lines of ten are shown, the division lines are not shown, but the number of the three lines or four lines can be freely selected and similarly implemented. In addition, a heat absorbing agent or the like can be added to the high-pressure cooling air as needed. As shown in FIG. 6, two injection nozzles 7a of the same type are similarly placed at a desired distance below one nozzle 7 protruding from the inner periphery of the gas quenching cylinder 4. It can be set up in three or three steps. Nozzle 7a in this case
Is the inclination angle α of the first stage nozzle 7.
Although it may be the same as the above, it may be slightly different in the same inclination direction. Further, as shown in the imaginary manner in FIG. 6, the inner peripheral cylindrical shape of the gas quenching cylinder 4 is slightly expanded as going downward. It is also possible to obtain a more effective cooling effect by efficiently enlarging the swirling spiral quenching region P as the trumpet shape β.
Further, the injection nozzles 7 and 7a are shown so as to be able to inject the cooling gas in the horizontal direction on the same horizontal plane, but form a swirling spiral quenching region P having a higher suction effect and acting slightly downward. You can also. Reference numeral 17 denotes a section extending to the open end of the gas quenching cylinder 4 so that the high-temperature exhaust gas supplied into the quenching device 1 can always maintain a high temperature state of 800 ° C. or more without careless cooling. 2 shows the provided heat insulating structure. Reference numeral 18 denotes an auxiliary device such as a bag filter at the next stage which is connected to the exhaust pipe 6 for exhaust gas which has been quenched by the quenching device 1 and has been cooled to a low temperature. This auxiliary device 18 is used for dioxins whose content has been reduced to a value of 0.1 ng-TEQ / m 3 N or less.
However, a small amount of dioxins remaining after backup can be removed to ensure completeness. The auxiliary device 18 of the bag filter includes a multiplicity of branched filter cylinders 19 having a porous structure. A slaked lime precoat layer or the like is formed on the filter cloth on the inner peripheral surface of the filter cylinder 19 as a surface filter medium. A trace amount of dioxin-containing toxic gas contained in the soot in relatively low temperature exhaust gas which has been subjected to more rapid cooling can be captured. The auxiliary device 18 includes an air compressor 20
The high-pressure air is connected to a conduit 22 for guiding high-pressure air from a high-pressure air air tank 21, so that the trapped harmful gas accumulated in each filter cylinder 19 can be blown off together with the filter medium by the high-pressure air. After that, the exhaust pipe 23 is connected to the auxiliary device 2 of the next stage.
4. Connected to, for example, an activated carbon adsorber, where dioxins are further adsorbed on activated carbon,
By the function of 6, the exhaust gas can be exhausted from the chimney to the atmosphere as a safe exhaust gas having almost no dioxin removal with almost no dioxins in the order of 1/10 to 1/100 of the reference value. The quenching treatment in the quenching device 1 is theoretically acceptable as long as it can be quenched to a temperature of 320 ° C. or less, which is generally known as the resynthesis temperature of dioxins.
Considering the effective removal process using an auxiliary device such as a bag filter at the next stage, cooling to low-temperature exhaust gas at about 230 ° C. to 300 ° C. is preferable. Reference numeral 27 denotes a reheating decomposition column which is developed as required by the present inventor and which is 800 ° C. which is the complete decomposition temperature of dioxins at the opening of the quenching device 1.
The connection is made to obtain the high-temperature exhaust gas described above (Japanese Patent Application Laid-Open No. 10-288324, Japanese Patent Application No. 9-20664).
No. 2). That is, the exhaust gas, which has been burned in an incinerator or a melting furnace and dropped to a low temperature of 800 ° C. or less, is reheated to 800 ° C. or more by the combustion burner 40 to convert the dioxins into a completely decomposed gas state. Swirling vanes 28 arranged in the cylinder 27 so that the state can be maintained for 2 seconds or more.
High-temperature exhaust gas from the inlet 29 through the swirl vanes 28
The quench device 1 is guided upwards through one swirl circuit 30 defined by the swirl vanes 28 in the top chamber 31 and through a conduit 33 through the other swirl circuit 32.
In order to prevent the temperature from dropping, the entirety of the reheat decomposition tube 27 and the conduit 33 is formed with a heat insulating structure 34. In the drawing, reference numeral 35 denotes a mixing chamber, which is provided with a chemical pump 35a and a chemical tank 35b so that soot and the like in low-temperature exhaust gas can be adsorbed, and can always be charged as needed. ing. Reference numeral 36 denotes temperature sensors provided at many locations to detect the temperature of the required locations, and 37 denotes a pressure gauge of the rapid cooling device 1. Reference numeral 38 denotes an oil tank, and 39 denotes an exhaust gas introduction pipe. The operation will be described based on the above configuration. When the exhaust gas discharged from various furnaces is at a temperature higher than the decomposition temperature of dioxins, for example, at 800 ° C. or higher, the high-temperature exhaust gas in which the dioxins are decomposed is given a desired pressure and introduced into the inlet 2 of the quenching device 1 directly or The gas is discharged below the gas quenching cylinder 4 via the distributor 3. In the opening of the gas quenching cylinder 4, a swirling introduction part 2 a of the swirler 16 is provided.
The exhaust gas is forcibly swirled at the inlet of the gas quenching cylinder 4. On the other hand, high-pressure cooling gas, for example, high-pressure cooling air is sprayed and sprayed in a fixed direction at an inclination angle α from a number of injection nozzles 7 protruding from the inner peripheral surface of the gas quenching cylinder 4 to form a cooling vaporized flow. The high-temperature exhaust gas is discharged into the swirl rapid cooling region P at a speed of, for example, 15 m to 20 m / S or more. The exhaust gas is expanded by a large amount of the cooling vaporized flow, the heat of vaporization is taken by the cooling vaporized flow, and the high-temperature exhaust gas is instantaneously heat-exchanged into a mixed gas state and rapidly cooled. In particular, since the injection nozzles 7 are arranged at a large interval and inclined in the same direction, and the swirling spiral quenching region P can be formed in a cooling gas molecular state, the high-temperature exhaust gas can be uniformly and instantaneously swirled. It is diffused, dispersed and quenched, and is referred to as the so-called resynthesis temperature of dioxins.
The temperature can instantaneously drop from 0 ° C. to 350 ° C., so that recomposition of the decomposed dioxins is not performed. The temperature drop due to the quenching action is 230 ° C. to 28
The temperature of the exhaust gas is preferably 0 ° C., and the exhaust gas whose temperature has dropped is removed to the next-stage auxiliary devices 18 and 24 through the discharge pipes 6 and 23 of the quenching device 1 except for the solid matter cooled by the injection of the cooling air. . The solid substance that has fallen downward is discharged from the drain. As shown in FIG. 3, a plurality of high-pressure quenching gas injection nozzles 7 provided in the gas quenching cylinder 4 are arranged such that the high-pressure quenching gas is discharged from two nozzles 7 by two jet lines 9 and 10. , 3,5,7 and 2,4,6,8 can be cooled and sprayed by high-pressure cooling gas from different systems, so that even if the balance of one system is lost, The above system complements this, and as a whole, an extremely stable activated swirl quench quenching region P can be formed, and the temperature drop due to the cooling of the discharged high-temperature exhaust gas can be effectively promoted. The amount of high-pressure cooling gas injected from the injection nozzle 7 can be adjusted by adjusting the throttle amount of the valves 11 and 12, whereby the cooling temperature can be set to a desired temperature. In the exhaust gas quenched by the gas quenching cylinder 4, there is almost no resynthesized dioxins, which can be reduced to below the legal value. However, the exhaust gas passes through exhaust pipes 6 and 23 for further completeness. An auxiliary device 18 such as a bag filter at the next stage and an auxiliary device 24 such as an activated carbon adsorbing device are led out.
, A small amount of permissible dioxins adhering to fine particles such as smoke can be removed and released into the atmosphere in a completely harmless state. According to the present invention, harmful exhaust gas generated from various furnaces such as an incineration facility and a melting furnace is supplied to the reheating decomposition column.
As a high-temperature exhaust gas, for example, 800 ° C. or higher, which is higher than the decomposition temperature of dioxins through the reheating means, the dioxins are discharged in a swirling state to the gas quench cylinder while the decomposition state is completely maintained. The contact area between the cooling object and the object to be cooled can be increased by rapidly diffusing and expanding in the swirling spiral quenching region of the swirling cooling means formed by the cooling vaporized flow injected from the injection nozzle by the high pressure cooling gas of the dioxin. The quenching effect of the desired temperature can be obtained in a short time far exceeding the chemical reaction time for forming chemicals, so that the temperature of the high-temperature exhaust gas can be instantaneously lowered to a temperature lower than the resynthesis temperature of dioxins. Therefore, it is possible to obtain a low-temperature harmless exhaust gas without changing not only the chemical substance for decomposing dioxins contained in the high-temperature exhaust gas but also the precursor into dioxins. It has been experimentally found that the dioxins are reduced to 0.1 ng-TEQ / m 3 N or less, which is lower than the legal standard value, by the quenching treatment. According to the present invention, the swirling spiral quenching region formed by the high-pressure cooling gas injection nozzle as the quenching means can be effectively formed with a very compact structure and a simple structure, and the high-pressure cooling gas is divided into two parts. Many injection nozzles
Spray cooling is applied to every other
And as a result, rapid
It is capable of exhibiting a cooling effect, and the quenching device itself can be easily incorporated into a part of existing various furnaces and used, so that it can be carried out regardless of the size of a new installation or an existing one, and of any size. In addition, there is an advantage that the whole can be provided at low cost. In addition, since gas is used for the quenching means, the entire structure can be formed much easier than liquid.

【図面の簡単な説明】 【図1】 全体の構成図 【図2】 気体急冷筒と冷却気体との関係を示す縦断説
明図 【図3】 気体急冷筒の横断説明図 【図4】 旋回冷却筒の開口部に設けた高温排ガスを旋
回させるための旋回翼の斜面図 【図5】 気体急冷筒に設けた多数の噴射ノズルの組込
取付状態を示す横断説明図 【図6】 図5の構成の縦断説明図 【符号の説明】 1 急冷装置 2 導入部 2a 旋回導入部 4 気体急冷筒 6 導出部に相当する排出管 7,7a 高圧冷却気体の噴射ノズル 11,12 バルブ 13,14,37 圧力計 16 旋回翼 17,34 断熱構造部 18,24 補助装置 27 再加熱分解筒 P 旋回渦巻急冷領域 T 旋回冷却手段 α 傾斜角度
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram. FIG. 2 is a longitudinal sectional view showing the relationship between a gas quenching cylinder and a cooling gas. FIG. 3 is a cross-sectional explanatory view of a gas quenching cylinder. FIG. FIG. 5 is a perspective view of a swirl vane provided at an opening of the cylinder for swirling high-temperature exhaust gas. FIG. 5 is a cross-sectional explanatory view showing a state in which a large number of injection nozzles provided in a gas quenching cylinder are installed and assembled. Longitudinal explanatory view of the configuration [Description of symbols] 1 quenching device 2 introduction part 2a swirl introduction part 4 gas quenching cylinder 6 discharge pipes 7, 7a corresponding to discharge parts Injection nozzles 11, 12 for high-pressure cooling gas Valves 13, 14, 37 Pressure gauge 16 Swirl wings 17, 34 Insulated structure 18, 24 Auxiliary device 27 Reheat decomposition tube P Swirl spiral quenching region T Swirl cooling means α Tilt angle

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F23J 15/06 B01D 53/70 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) F23J 15/06 B01D 53/70

Claims (1)

(57)【特許請求の範囲】 【請求項1】 各種炉から生成される高温排ガスをダイ
オキシン類の分解温度以上に加熱する再加熱分解筒と、
この再加熱分解筒の出口側と通ずる高温排ガスが旋回し
て流入できる旋回導入部と、この旋回導入部に設けられ
る気体急冷筒、この気体急冷筒の外周に間隔を置いて配
設される高圧冷却気体の噴射ノズルと、冷却処理後の低
温排ガスの導出部とを備えると共に、前記再加熱筒は、
この筒内に配設した旋回羽根によって区劃される一方の
旋回路により頂部空室を経て他方の旋回路を形成し、前
記一方の旋回路より他方の旋回路に高温排ガスを流通さ
せて加熱分解させ、かつ前記噴射ノズルは、内側断面円
形の急冷筒の外周に沿って所望の傾斜角度を保持して、
等間隔に、かつ一段以上必要段数設けて、この噴射ノズ
ルより噴射散布される高圧冷却気体の冷却気流を、前記
気体急冷筒内で旋回させて前記旋回導入部より吐出され
る高温排ガスと共に旋回渦巻急冷領域を形成してダイオ
キシン類の合成温度以下に急冷できる旋回冷却手段を形
成し、高圧冷却気体を二分割し、一方の噴出流ラインか
らは一つ置きの複数のノズルに、他方の噴出流ライ
ンからは前記噴射ノズルの間に一つ置きに配設される他
の複数の噴射ノズルに、それぞれ交互に向う供給手段と
を設けてなることを特徴とするダイオキシン類再合成防
止急冷装置。
(57) [Claims] [Claim 1] A reheat cracker for heating high temperature exhaust gas generated from various furnaces to a temperature equal to or higher than the decomposition temperature of dioxins,
A swirling introduction part into which the high-temperature exhaust gas passing through the outlet side of the reheat decomposition cylinder can swirl and flow, a gas quenching cylinder provided in the swirling introduction part, and a high pressure arranged at an interval around the outer periphery of the gas quenching cylinder A cooling gas injection nozzle and a low-temperature exhaust gas outlet after the cooling process are provided, and the reheating cylinder is
One of the swirling circuits defined by the swirling vanes arranged in the cylinder forms the other swirling circuit through the top empty chamber, and the high-temperature exhaust gas flows from the one swirling circuit to the other swirling circuit for heating. Disassembled, and the injection nozzle holds a desired inclination angle along the outer periphery of the quenching cylinder having a circular inner cross section,
Provided at equal intervals and at least one required number of stages, the cooling air flow of the high-pressure cooling gas sprayed and sprayed from the spray nozzle is swirled in the gas quenching cylinder and swirled with the high-temperature exhaust gas discharged from the swirling introduction part. to form a quenching zone to form a swirl cooling means can be quenched to below the synthesis temperature of dioxins, the high pressure cooling gas is bisected, a plurality of jetting nozzles of every other from one of the jet flow line, the other From the jet flow line , every other nozzle is placed between the jet nozzles.
A dioxin resynthesis prevention quenching device, characterized in that a plurality of injection nozzles are provided with supply means alternately facing each other .
JP03435199A 1999-02-12 1999-02-12 Dioxin resynthesis prevention rapid cooling device Expired - Fee Related JP3535405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03435199A JP3535405B2 (en) 1999-02-12 1999-02-12 Dioxin resynthesis prevention rapid cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03435199A JP3535405B2 (en) 1999-02-12 1999-02-12 Dioxin resynthesis prevention rapid cooling device

Publications (2)

Publication Number Publication Date
JP2000234724A JP2000234724A (en) 2000-08-29
JP3535405B2 true JP3535405B2 (en) 2004-06-07

Family

ID=12411743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03435199A Expired - Fee Related JP3535405B2 (en) 1999-02-12 1999-02-12 Dioxin resynthesis prevention rapid cooling device

Country Status (1)

Country Link
JP (1) JP3535405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413612B1 (en) * 2000-08-30 2003-12-31 동양메이저 주식회사 By-pass probe system with multi-directional cooling ducts
KR101357753B1 (en) 2013-06-26 2014-02-04 국방과학연구소 Gas-mixer with inserting-type injector

Also Published As

Publication number Publication date
JP2000234724A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
EP0655943B1 (en) Venturi scrubber, system and method
US4746290A (en) Method and apparatus for treating waste containing organic contaminants
KR20030067241A (en) Method and Apparatus for excluding dioxin and fly ash using high temperature plasma
US5602297A (en) Multistage double closed-loop process for waste decontamination
US4925389A (en) Method and apparatus for treating waste containing organic contaminants
US4766822A (en) Method and apparatus for treating waste containing organic contaminants
JP3535405B2 (en) Dioxin resynthesis prevention rapid cooling device
JP3509695B2 (en) Rapid cooling apparatus and method
DE10304489B4 (en) Device for purifying exhaust gases containing fluorine-containing compounds in a low-nitrogen-oxide combustion reactor
Lee et al. Effect of soot and copper combustor deposits on dioxin emissions
JP3980226B2 (en) Exhaust gas treatment method and apparatus
JP3535403B2 (en) Dioxin resynthesis prevention rapid cooling device
Takeshita et al. Relationship between the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans and the control of combustion, hydrogen chloride level in flue gas and gas temperature in a municipal waste incinerator
Xu et al. A new solution for destruction of PCDD/Fs by a catalytic filter system at waste incinerators
JP2006175338A (en) Exhaust gas treating equipment having integrated filter dust collector
US3504894A (en) Apparatus for purifying and accelerating the flow of effluent gases in a gaseous flow stream
JP2002079027A (en) Exhaust gas cooling tower with dust collecting part
JPH10328531A (en) Filtration type dust collector
Lee et al. Effects of copper contamination on dioxin emissions from CFC incineration
Reimann Dioxin Emissions: Possible Techniques for Maintaining the Limit of 0.1 ng TE m− 3 (as of 1990/91)
KR100345891B1 (en) Flue Gas Treatment Apparatus and Flue Gas Treatment System
JP2005324176A (en) Method and apparatus for melting/decomposing pcb-containing waste at ultra-high temperature
WO2000061993A1 (en) COOLING DEVICE AND METHOD FOR PREVENTING SYNTHESIS OF PCDDs
KR200280676Y1 (en) System for excluding dioxin and fly ash using high temperature plasma
JP2002349845A (en) Condensed liquid discharging device for quenching system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees