JP3534348B2 - Flat secondary battery - Google Patents

Flat secondary battery

Info

Publication number
JP3534348B2
JP3534348B2 JP33250892A JP33250892A JP3534348B2 JP 3534348 B2 JP3534348 B2 JP 3534348B2 JP 33250892 A JP33250892 A JP 33250892A JP 33250892 A JP33250892 A JP 33250892A JP 3534348 B2 JP3534348 B2 JP 3534348B2
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
negative electrode
electrode
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33250892A
Other languages
Japanese (ja)
Other versions
JPH06163047A (en
Inventor
利幸 加幡
利幸 大澤
俊茂 藤井
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP33250892A priority Critical patent/JP3534348B2/en
Priority to US08/117,286 priority patent/US5437943A/en
Publication of JPH06163047A publication Critical patent/JPH06163047A/en
Application granted granted Critical
Publication of JP3534348B2 publication Critical patent/JP3534348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高信頼性、高性能二次
電池および該電池に使用するシート状電池要素に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-reliability, high-performance secondary battery and a sheet-shaped battery element used for the battery.

【0002】[0002]

【従来技術】近年、電気機器の小型化、軽量化、ハンド
ヘルド化にともないその電源となる電池にも高エネルギ
ー密度化、小型化の要望が高まり、種々の電池が提案さ
れている。中でも高分子固体電解質を用いた扁平型二次
電池は高い起電力を持ち、理論エネルギー密度が高く、
液もれがなく信頼性が高く、またフレキシブルで省スペ
ースなため、その実用化が期待されている。しかし、現
在発表されている試作電池は、リチウム二次電池が本来
有する特性を生かしきっているとはいえず、寿命、性
能、エネルギー密度とも十分でない。この最も大きな理
由の一つは、負極の性能にあると考えられる。リチウム
二次電池の実用上の問題点としては、 負極である金属リチウムの反応性が非常に高いため、
負極表面が電解液と反応し、変性するので、繰り返しの
使用によって電池容量の低下が起こり、サイクル寿命の
低下の原因となる。 充電時においてリチウムカチオンの還元により生成す
る金属リチウムはデンドライトとして生成しやすく、
正、負極間の絶縁層(セパレータ)を破壊し、短絡が生
じやすく、サイクル寿命、安全性の点で問題がある。 これらの問題を解決する負極として、炭素材料からなる
負極の研究が進められている(例えば、特開昭62−9
0863、特開平2−66856等)。この炭素負極の
電極反応はアルカリ金属あるいは、アルカリ金属イオン
の可逆な保持、放出であり、アルカリ金属の析出を伴わ
ないことから高サイクル寿命、高信頼性負極として注目
されている。しかしながら、これら炭素材料は、黒鉛構
造が十分に発達していないため電気伝導度が十分でな
く、そのため大電流での使用では、電圧降下により電解
液の分解が生じガスが発生しやすい。また、グラファイ
トは、電気伝導度は十分なもののリチウムの吸蔵、放出
に伴う構造変化が大きいため、サイクル寿命が充分でな
い。また、正極活物質として無機系活物質は体積当りの
エネルギー密度が高い電極活物質として注目されてい
る。しかしながら、無機系活物質は電極への成型性が悪
く、導電性が低いため、一般にはポリテトラフルオロエ
チレン等の結着剤およびグラファイト等の導電剤を添加
し電極への加工が行なわれている。しかしながら、電極
の可撓性を向上させるためには結着剤の使用量は多くな
り、電極のエネルギー密度は低下してしまう。また可撓
性に富むシート電極への加工は難しい。また電極の導電
性を向上させるためにはやはり導電剤の使用量は多くな
ってしまい電極のエネルギー密度は低下する。
2. Description of the Related Art In recent years, with the miniaturization, weight reduction, and handheld use of electric equipment, there has been an increasing demand for higher energy density and miniaturization of a battery as a power source thereof, and various batteries have been proposed. Above all, the flat type secondary battery using the polymer solid electrolyte has high electromotive force, high theoretical energy density,
It is highly reliable without liquid leakage, and flexible and space-saving, so its practical application is expected. However, the prototype batteries currently announced cannot be said to fully utilize the characteristics inherent in lithium secondary batteries, and their life, performance, and energy density are not sufficient. One of the biggest reasons for this is considered to be the performance of the negative electrode. One of the practical problems of lithium secondary batteries is that the reactivity of metallic lithium, which is the negative electrode, is extremely high.
Since the surface of the negative electrode reacts with the electrolytic solution and is modified, repeated use causes a decrease in battery capacity, which causes a decrease in cycle life. Metal lithium generated by reduction of lithium cations during charging is easily generated as dendrites,
The insulating layer (separator) between the positive and negative electrodes is easily destroyed, and a short circuit easily occurs, which causes problems in cycle life and safety. As a negative electrode for solving these problems, research on a negative electrode made of a carbon material is underway (for example, Japanese Patent Laid-Open No. 62-9).
0863, JP-A-2-66856, etc.). The electrode reaction of this carbon negative electrode is reversible retention and release of alkali metal or alkali metal ion, and since it does not accompany the precipitation of alkali metal, it is attracting attention as a negative electrode having a long cycle life and high reliability. However, these carbon materials have insufficient electric conductivity because the graphite structure is not sufficiently developed, and therefore, when used at a large current, the electrolytic solution is decomposed due to the voltage drop and gas is easily generated. Further, although graphite has a sufficient electric conductivity, it has a large structural change due to absorption and desorption of lithium, and thus has a poor cycle life. Further, as a positive electrode active material, an inorganic active material has attracted attention as an electrode active material having a high energy density per volume. However, since an inorganic active material has poor moldability for an electrode and low electrical conductivity, a binder such as polytetrafluoroethylene and a conductive agent such as graphite are generally added to process the electrode. . However, in order to improve the flexibility of the electrode, the amount of the binder used increases, and the energy density of the electrode decreases. In addition, it is difficult to process a flexible sheet electrode. Further, in order to improve the conductivity of the electrode, the amount of the conductive agent used also increases, and the energy density of the electrode decreases.

【0003】[0003]

【本発明が解決しようとする課題】本発明は前記従来技
術の問題点を解決し、エネギー密度、可撓性が高く、高
信頼性の扁平二次電池を提供することを目的とすること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems of the prior art and to provide a highly reliable flat secondary battery having high energy density and flexibility. is there.

【0004】[0004]

【構成】本発明者らは、前記課題を解決するため鋭意検
討を重ねた結果、シート状正、負極及び高分子固体電解
質から構成される扁平型二次電池において、該負極活物
質が炭素材料であって、該炭素材料がグラファイト及び
面間隔d(002)が3.45〜3.7Åの乱層構造を
有する炭素体から構成される炭素材料を用いる場合に、
ガス発生がなく、サイクル寿命の十分な扁平型二次電池
を実現できることを見出した。また、このときの特に正
極が導電性高分子と結晶性バナジウム酸化物との複合体
であって、該正極の密度が1.4〜2.2g/cm3
場合に二次電池が高エネルギー密度と高い信頼性、電圧
平坦性および可撓性を有することを見出し、さらに二次
電池の正極がV酸化物と導電性高分子との複合体である
場合に特に優れた性能が得られることを見出した。ま
た、炭素材料から構成される二次電池においては、正極
の電位が2.5V vs Li/Li(+) 以上の電位で電池
の開放電圧が2V以下になる二次電池がサイクル寿命が
高く、高エネルギー密度であることが見出され、これら
二次電池がシート状である場合この効果が特に高いこと
を見出し本発明に至った。本発明の扁平型二次電池の電
解質としては、高い信頼性を有し、大面積化が可能な高
分子固体電解質が用いられる。本発明の高分子固体電解
質は、非水電解液に重合性化合物を加え、光重合反応に
より電解液を固体化した高イオン伝導性ゲル状固体電解
質が用いられ、このときの重合開始剤として、特にベン
ゾインイソプロピルエーテルを用いた場合に、前記炭素
材料を負極に用いる場合においてもガス発生がなく、高
信頼性の扁平型二次電池を作製することができる。本発
明に用いる高分子固体電解質の非水電解液、重合性化合
物としては、WO 91/14294 記載のものが用い
られる。本発明の高分子固体電解質は、電界を均一に
し、正、負極の短絡を防止するためセパレータと複合化
して用いることができる。セパレータとしては、電解質
のイオン伝導に対して低抵抗で、かつ保液性に優れたも
のが用いられる。例えば、ガラス繊維フィルタおよびポ
リエステル、ポリテトラフルオロエチレン、ポリエチレ
ン、ポリプロピレン等の高分子ポアフィルタあるいは不
織布、ガラス繊維とこれら高分子とからなる混抄紙を例
示することができる。前述したように、負極活物質はグ
ラファイト及び乱層構造を有する炭素体から構成され
る。グラファイトとしては、面間隔d(002)が3.
354〜3.37Å、好ましくは3.354〜3.36
Åのものが用いられる。この範囲外では、電気伝導度が
十分でなくなる。乱層構造を有する炭素体としては、面
間隔d(002)が3.45〜3.7Å、好ましくは
3.5〜3.7Åのものがサイクル寿命に優れ、また放
電容量も大きい。本発明に用いるグラファイトと乱層構
造を有する炭素体との割合としては、3:97〜50:
50、好ましくは5:95〜40:60である。この範
囲外では、負極の電気伝導性、サイクル寿命を確保する
ことができない。本発明に用いる乱層構造を有する炭素
体としては、互いに平行で等間隔に炭素六角網面が積み
重なってはいるが網面同士に規則性がなく、乱雑である
ような構造の炭素体を言い、モデル的には図1に示すよ
うな構造を持つものと考えられる。本発明における炭素
負極に用いる炭素材料としては石油コークス、ピッチコ
ークス、カーボンブラック、ガラス状炭素、グラファイ
ト、あるいはフェノール系樹脂、ポリアクリロニトリル
系樹脂、フラン系樹脂、ポリアミド系樹脂、ポリイミド
系樹脂等の有機高分子を焼成することにより得られる炭
素体、フェノール系、ポリアクリロニトリル系、ピッチ
系炭素繊維等を例示することができる。本発明の炭素負
極は上記炭素材料にテフロン、ポリフッ化ビニリデン、
ポリアクリロニトリル、ポリエチレンオキサイド等の結
着剤を添加し、Cu、Ti、Ni等の金属、ステンレス
鋼等の合金等のホイル、パンチングメタル、エキスパン
ドメタル、金網等に担持させることによりシート状炭素
負極を作製することができる。本発明におけるシート状
電極としては面積3cm2以上で可撓性を有し、屈曲可
能な電極のことをいう。本発明における炭素電極はアル
カリ金属からなる従来の負極に比べ、優れたサイクル寿
命を有する。また、その放電電位は炭素負極に保持して
いるアルカリ金属の量により変化するため、本発明にお
ける正極は電圧平坦性を有することが望まれる。本発明
における正極としてはシート状電極への加工が容易で、
活物質そのものに導電性を有する導電性高分子が用いら
れる。導電性高分子としては具体的にはポリアニリン、
ポリピロール、ポリチオフェン、ポリ3アルキルチオフ
ェン、ポリアセチレン、ポリアズレン、ポリパラフェニ
レン等が例示できるが、導電性、加工性、放電電位を考
慮するとポリアニリンが最も好ましい。本発明二次電池
に用いる正極には、体積当りのエネルギー密度を向上、
電位平坦性の改善を目的に導電性高分子と無機酸化物を
複合することが好ましい。導電性高分子に複合化する無
機酸化物としては、正極の電位平坦性を確保するため電
圧平坦性を有することが好ましい。正極の密度は、1.
2g/cm3以下では、エネルギー密度が十分でなく、
また正極内に空隙が多数あるため正極の電気伝導度が低
く、内部抵抗が高くなってしまう。好ましくは1.5g
/cm3以上、さらに好ましくは1.6〜4g/cm
3で、エネルギー密度が高く、内部抵抗の小さい正極が
実現できる。本発明における正極に用いる電圧平坦性を
有する無機系活物質としては放電時に100mAh/g
の放電量で電位の変化が1V以下、好ましくは0.8V
以下のプラトー領域の存在する活物質が好ましい。10
0mAh/gの放電量で1V以上の電位が変化する活物
質では作製される電池の放電電圧範囲が大きすぎ実用的
でない。具体的にはV、Co、Mn、Ni等の遷移金属
の酸化物あるいは前記遷移金属とアルカリ金属との複合
酸化物を例示することができ、電解液が安定な電極電
位、電圧平坦性、エネルギー密度を考慮するとV酸化物
がさらに好ましく、特に結晶性V25が電位平坦性、エ
ネルギー密度、導電性高分子の複合化の点で最も好まし
い。また、導電性高分子とV25との複合正極の密度と
しては、1.4〜2.2g/cm3、好ましくは1.5
〜2.2g/cm3である。1.4g/cm3以下では、
導電性高分子とV25の複合が十分でなく、正極内に空
隙が多数あるため、電気導電度の低下が生じ大電流の充
放電が難しくなる。2.2g/cm3以上では、正極内
に電解質を保持するスペースがほとんどなくなるため、
充放電に伴うイオンの補給が遅くなり、やはり大電流で
の充放電は難しくなる。本発明の二次電池に用いる正極
の導電性高分子と無機活物質の組み合わせとしては導電
性高分子と無機活物質の放電電位が近い活物質が用いら
れる。本発明の電池における正極には電位平坦性を有す
る無機系活物質と導電性高分子との複合体を用いるた
め、エネルギー密度、加工性が高く、電位平坦性が優れ
るシート状正極として得られ、本発明の電池は高エネル
ギー密度で電圧平坦性に優れ高信頼性である。本発明の
電池における正極には導電性高分子材料が複合化されて
いるため、電極の導電率が高く、電極反応をスムーズに
進行させることができ、大電流での放電を可能とする。
本発明の電池における正極の電気伝導度としては充電状
態で10-3S/cm以上好ましくは10-2S/cm以上
である。10-3S/cm以下では電極反応の進行が均一
でなくなり、電池の内部インピーダンスは高くなってし
まう。本発明の電池における正極中の導電性高分子材料
の量としては5〜70重量%、好ましくは10〜50重
量%でこの範囲で最も効果が高い。本発明電池のもう一
つの特徴は、炭素材料から構成される負極を用いる二次
電池において、正極の電位が2.5V vs Li/Li
(+) 、好ましくは2.7V vs Li/Li(+) 以上の電
位で電池の開放電圧が2V以下となることである。本発
明における二次電池は正極の電位が2.5V vs Li/
Li(+) 以上の電位で電池の開放電圧が2V以下となる
ため、過放電状態での電池の使用が発生しずらく、その
ため正極の安定な電位範囲で充放電が行なわれ、電池の
サイクル寿命は向上する。2.5V vs Li/Li(+)
以下では正極は不安定となり電池のサイクル寿命は低下
する。本発明の二次電池の電解質としては、固体電解質
が使用される。電解質塩としては、例えば、以下に示す
陰イオンまたは陽イオンが用いられる。陰イオンとして
は、例えばPF6 -、SbF6 -、AsF6 -等のVa族の元
素のハロゲン化物アニオン、BF4 -、BR4 -(Rはフェ
ニル基、アルキル基)等のIIIa族元素のアニオン、C
-、Br-、I-等のハロゲンアニオン、過塩素酸アニ
オン、トリフルオロメタンスルホン酸アニオン、チオシ
アン酸アニオン等が挙げられる。陽イオンとしては例え
ばLi(+)、Na(+)、K(+)等のアルカリ金属
カチオン、(R4N)(+)(Rは炭素数1〜20の炭
化水素基)等が挙げられる。本発明における高分子固体
電解質としては、ポリエチレンオキサイド、ポリプロピ
レンオキサイド、ポリフッ化ビニリデン、ポリアクリロ
ニトリル、ポリビニルアルコール等をポリマーマトリッ
クスとして電解質塩をポリマーマトリックス中に溶解せ
しめた複合体、あるいはこれらの架橋体、低分子量ポリ
エチレンオキサイド、クラウンエーテル等のイオン解離
基をポリマー主鎖にグラフト化した高分子固体電解質、
あるいは高分子量重合体に前記電解液を含有した構造を
有する固体状電解質が挙げられる。これは通常の電解液
に重合性化合物を加え、熱あるいは光により重合を行い
電解液を固体化するものである。より具体的には、重合
性化合物としてアクリレート(例えばメトキシジエチレ
ングリコールメタアクリレート、メトキシジエチレング
リコールジアクリレート)系化合物を過酸化ベンゾイ
ル、アゾビスイソブチロニトリル、メチルベンゾイルホ
ルメート等の重合開始剤を用い重合させ電解液を固体化
するものである。
[Structure] As a result of intensive studies to solve the above problems, the present inventors have found that in a flat secondary battery composed of a sheet-shaped positive electrode, a negative electrode and a solid polymer electrolyte, the negative electrode active material is a carbon material. When using a carbon material composed of graphite and a carbon body having a turbostratic structure with a surface spacing d (002) of 3.45 to 3.7Å,
It has been found that a flat type secondary battery that does not generate gas and has a sufficient cycle life can be realized. At this time, particularly when the positive electrode is a composite of a conductive polymer and crystalline vanadium oxide, and the density of the positive electrode is 1.4 to 2.2 g / cm 3 , the secondary battery has high energy. It has been found that it has high density, high reliability, voltage flatness and flexibility, and that particularly excellent performance can be obtained when the positive electrode of the secondary battery is a composite of V oxide and a conductive polymer. Found. Further, in a secondary battery composed of a carbon material, a secondary battery having a positive electrode potential of 2.5 V vs. Li / Li (+) or higher and an open circuit voltage of 2 V or lower has a long cycle life, It was found that the secondary battery had a high energy density, and it was found that this effect was particularly high when these secondary batteries were in the form of a sheet, and the present invention was accomplished. As the electrolyte of the flat secondary battery of the present invention, a polymer solid electrolyte having high reliability and capable of having a large area is used. Polymer solid electrolyte of the present invention, a polymerizable compound is added to the non-aqueous electrolyte, a high ion conductive gel-like solid electrolyte solidified electrolyte by a photopolymerization reaction is used, as a polymerization initiator at this time, In particular, when benzoin isopropyl ether is used, no gas is generated even when the carbon material is used for the negative electrode, and a highly reliable flat secondary battery can be manufactured. As the non-aqueous electrolyte solution and the polymerizable compound of the polymer solid electrolyte used in the present invention, those described in WO 91/14294 are used. The solid polymer electrolyte of the present invention can be used in combination with a separator in order to make the electric field uniform and prevent short circuit between the positive and negative electrodes. As the separator, one having low resistance to ionic conduction of the electrolyte and excellent liquid retention is used. Examples thereof include a glass fiber filter, a polymer pore filter such as polyester, polytetrafluoroethylene, polyethylene, and polypropylene, a non-woven fabric, and a mixed paper made of glass fiber and these polymers. As described above, the negative electrode active material is composed of graphite and a carbon body having a turbostratic structure. For graphite, the interplanar spacing d (002) is 3.
354-3.37Å, preferably 3.354-3.36
Å is used. Outside this range, the electric conductivity becomes insufficient. As a carbon body having a turbostratic structure, a carbon body having an interplanar spacing d (002) of 3.45 to 3.7Å, preferably 3.5 to 3.7Å has excellent cycle life and a large discharge capacity. The ratio of graphite used in the present invention to the carbon body having a turbostratic structure is 3:97 to 50 :.
50, preferably 5:95 to 40:60. Outside this range, the electrical conductivity and cycle life of the negative electrode cannot be secured. The carbon body having a disordered structure used in the present invention is a carbon body having a structure in which carbon hexagonal mesh planes are parallel to each other and are equidistantly stacked but the mesh planes have no regularity and are disordered. It is considered that the model has a structure as shown in FIG. Examples of the carbon material used for the carbon negative electrode in the present invention include petroleum coke, pitch coke, carbon black, glassy carbon, graphite, or an organic material such as a phenol resin, a polyacrylonitrile resin, a furan resin, a polyamide resin, or a polyimide resin. Examples thereof include carbon materials obtained by firing a polymer, phenol-based, polyacrylonitrile-based, pitch-based carbon fibers, and the like. The carbon negative electrode of the present invention is obtained by adding Teflon, polyvinylidene fluoride,
By adding a binder such as polyacrylonitrile or polyethylene oxide and supporting it on a metal such as Cu, Ti or Ni, a foil such as an alloy such as stainless steel, a punching metal, an expanded metal or a wire mesh, a sheet-like carbon negative electrode can be obtained. Can be made. The sheet-like electrode in the present invention is a flexible electrode having an area of 3 cm 2 or more and being flexible. The carbon electrode of the present invention has an excellent cycle life as compared with the conventional negative electrode made of an alkali metal. Further, the discharge potential changes depending on the amount of the alkali metal held in the carbon negative electrode, and therefore the positive electrode in the present invention is desired to have voltage flatness. As the positive electrode in the present invention, it is easy to process into a sheet electrode,
A conductive polymer having conductivity is used as the active material itself. Specifically as the conductive polymer, polyaniline,
Polypyrrole, polythiophene, poly (3 alkylthiophene), polyacetylene, polyazulene, polyparaphenylene and the like can be exemplified, but polyaniline is most preferable in consideration of conductivity, processability and discharge potential. The positive electrode used in the secondary battery of the present invention has an improved energy density per volume,
It is preferable to combine a conductive polymer and an inorganic oxide for the purpose of improving potential flatness. The inorganic oxide complexed with the conductive polymer preferably has voltage flatness in order to secure the potential flatness of the positive electrode. The density of the positive electrode is 1.
At 2 g / cm 3 or less, the energy density is not sufficient,
Further, since there are many voids in the positive electrode, the electric conductivity of the positive electrode is low and the internal resistance is high. Preferably 1.5 g
/ Cm 3 or more, more preferably 1.6 to 4 g / cm
In 3 , a positive electrode with high energy density and low internal resistance can be realized. The inorganic active material having voltage flatness used for the positive electrode in the present invention is 100 mAh / g during discharge.
Change of the electric potential is less than 1V, preferably 0.8V
The active materials having the following plateau regions are preferable. 10
With an active material in which the potential changes by 1 V or more at a discharge amount of 0 mAh / g, the discharge voltage range of the manufactured battery is too large to be practical. Specific examples thereof include oxides of transition metals such as V, Co, Mn, and Ni, or complex oxides of the above transition metals and alkali metals, and electrode potential, voltage flatness, and energy in which the electrolyte is stable. Considering the density, V oxide is more preferable, and crystalline V 2 O 5 is most preferable in terms of potential flatness, energy density, and composite of conductive polymer. The density of the composite positive electrode of the conductive polymer and V 2 O 5 is 1.4 to 2.2 g / cm 3 , preferably 1.5.
Is about 2.2 g / cm 3 . Below 1.4 g / cm 3 ,
Since the composite of the conductive polymer and V 2 O 5 is not sufficient and there are a large number of voids in the positive electrode, the electric conductivity is lowered and charging / discharging of a large current becomes difficult. At 2.2 g / cm 3 or more, there is almost no space for holding the electrolyte in the positive electrode,
Ion replenishment due to charging / discharging becomes slow, and charging / discharging with a large current also becomes difficult. As a combination of the conductive polymer of the positive electrode and the inorganic active material used in the secondary battery of the present invention, an active material in which the conductive polymer and the inorganic active material have similar discharge potentials is used. Since a positive electrode in the battery of the present invention uses a composite of an inorganic active material having potential flatness and a conductive polymer, energy density, high processability, obtained as a positive electrode sheet having excellent potential flatness, The battery of the present invention has high energy density, excellent voltage flatness, and high reliability. Since the conductive polymer material is compounded in the positive electrode in the battery of the present invention, the conductivity of the electrode is high, the electrode reaction can smoothly proceed, and discharge with a large current becomes possible.
The electric conductivity of the positive electrode in the battery of the present invention is 10 −3 S / cm or more, preferably 10 −2 S / cm or more in a charged state. If it is 10 −3 S / cm or less, the progress of the electrode reaction is not uniform and the internal impedance of the battery becomes high. The amount of the conductive polymer material in the positive electrode of the battery of the present invention is 5 to 70% by weight, preferably 10 to 50% by weight, and the most effective effect is obtained in this range. Another feature of the battery of the present invention is that in a secondary battery using a negative electrode composed of a carbon material, the positive electrode has a potential of 2.5 V vs Li / Li.
(+), Preferably 2.7 V vs. Li / Li (+) or more, the open circuit voltage of the battery is 2 V or less. The secondary battery of the present invention has a positive electrode potential of 2.5 V vs Li /
Since the open-circuit voltage of the battery becomes 2 V or less at the potential of Li (+) or more, it is difficult to use the battery in the over-discharged state, and therefore the charge and discharge are performed in the stable potential range of the positive electrode, and the battery cycle Lifespan is improved. 2.5V vs Li / Li (+)
Below, the positive electrode becomes unstable and the cycle life of the battery decreases. A solid electrolyte is used as the electrolyte of the secondary battery of the present invention. As the electrolyte salt, for example, the following anions or cations are used. Examples of the anion include halide anions of Va group elements such as PF 6 , SbF 6 and AsF 6 , and group IIIa elements such as BF 4 and BR 4 (R is a phenyl group or an alkyl group). Anion, C
Examples thereof include a halogen anion such as l , Br , and I , a perchlorate anion, a trifluoromethanesulfonate anion, and a thiocyanate anion. Examples of the cation include alkali metal cations such as Li (+), Na (+) and K (+), (R 4 N) (+) (R is a hydrocarbon group having 1 to 20 carbon atoms) and the like. . As the polymer solid electrolyte in the present invention, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylonitrile, a composite of an electrolyte salt dissolved in a polymer matrix as a polymer matrix such as polyvinyl alcohol, or a cross-linked product thereof, a low Polymer solid electrolyte in which ionic dissociative groups such as molecular weight polyethylene oxide and crown ether are grafted on the polymer main chain,
Alternatively, a solid electrolyte having a structure in which the electrolyte solution is contained in a high molecular weight polymer can be used. This is a method in which a polymerizable compound is added to an ordinary electrolytic solution and polymerization is performed by heat or light to solidify the electrolytic solution. More specifically, an acrylate (eg, methoxydiethylene glycol methacrylate, methoxydiethylene glycol diacrylate) -based compound as a polymerizable compound is polymerized using a polymerization initiator such as benzoyl peroxide, azobisisobutyronitrile, or methylbenzoyl formate. It solidifies the electrolytic solution.

【0005】[0005]

【実施例】実施例1 面間隔(d002)が3.54Å、結晶子の厚さLcが
15Åの乱層構造を有する炭素繊維と面間隔(d00
2)が3.35Å、結晶子の厚さLcが100Å以上の
グラファイトとを9:1で混合した炭素体に、テフロン
粉末を重量比9:1で混合、混練し200メッシュのス
テンレス金網に圧着し、シート状負極を作製した。SU
S304ホイルに電解重合によりポリアニリンを重合し
シート状正極とした。LiBF20重量部、プロピレ
ンカーボネート48重量部、ジメトキシエタン19重量
部、エトキシジエチレングリコールアクリレート12.
8重量部、トリメチロールプロパントリアクリレート
0.2重量部、0.1重量部のベンゾインイソプロピル
エーテルを混合し、高分子固体電解質組成液とした。こ
の組成液を正、負極及び微多孔性ポリプロピレンに含浸
させ、超高圧水銀灯を照射し、各電池要素に高分子固体
電解質を複合した。これら複合体を積層し4cm×7c
mの扁平型二次電池を作製した。この二次電池を3.6
Vに充電したところ正極の電気伝導度は1.5S/cm
であった。この二次電池を2V〜3.6Vの範囲で充放
電を行い正極重量当りのエネルギー密度を測定した。 実施例2 結晶性V粉末とポリアニリン粉末を重量比1:1
で混合、混練し200メッシュのステンレス金網に圧着
し、シート状正極を作製した。この正極を用いる以外
は、実施例1と同様にして4cm×7cmの扁平型二次
電池を作製した。この二次電池を3.6Vに充電したと
ころ正極の電気伝導度は0.8S/cmであった。この
二次電池を2V〜3.6Vの範囲で充放電を行い正極重
量当りのエネルギー密度を測定した。 実施例3、4 実施例2において結晶性V粉末とポリアニリン粉
末の混合比率を変化させ、正極を作製する以外は実施例
1と同様にしてシート状電池を作製し放電容量を測定し
た。 比較例1 実施例2において結晶性V2O5粉末とグラファイトと
テフロン粉末を7:1:1で混合し、シート状正極を作
製する以外は実施例1と同様にしてシート状二次電池を
作製し放電容量を測定した。 比較例2 実施例1において、炭素材料として面間隔(d002)
が3.36Å、結晶子の厚さLcが1000Å以上の炭
素材料を用いる以外は、実施例1と同様に電池を作製
し、充放電試験を行ったところ1サイクル目より電池の
ふくらみが観察され放電不能であった。
EXAMPLES Example 1 Carbon fibers having a disordered layer structure with a face spacing (d002) of 3.54 Å and a crystallite thickness Lc of 15 Å and face spacing (d00
2) is 3.35Å and graphite having a crystallite thickness Lc of 100 Å or more is mixed at 9: 1 with Teflon powder at a weight ratio of 9: 1, kneaded, and pressed onto a 200-mesh stainless wire mesh. Then, a sheet-shaped negative electrode was produced. SU
S304 foil was polymerized with polyaniline by electrolytic polymerization to obtain a sheet-shaped positive electrode. 20 parts by weight of LiBF 4 , 48 parts by weight of propylene carbonate, 19 parts by weight of dimethoxyethane, ethoxydiethylene glycol acrylate 12.
8 parts by weight, 0.2 parts by weight of trimethylolpropane triacrylate and 0.1 parts by weight of benzoin isopropyl ether were mixed to obtain a polymer solid electrolyte composition liquid. This composition liquid was impregnated into positive and negative electrodes and microporous polypropylene and irradiated with an ultra-high pressure mercury lamp to compound each polymer element with a solid polymer electrolyte. 4 cm × 7 c by stacking these composites
m flat type secondary battery was produced. This secondary battery is 3.6
When charged to V, the positive electrode has an electric conductivity of 1.5 S / cm.
Met. This secondary battery was charged / discharged in the range of 2V to 3.6V, and the energy density per positive electrode weight was measured. Example 2 A crystalline V 2 O 5 powder and a polyaniline powder in a weight ratio of 1: 1.
Was mixed and kneaded, and pressure-bonded to a 200-mesh stainless wire mesh to prepare a sheet-shaped positive electrode. A flat type secondary battery of 4 cm × 7 cm was produced in the same manner as in Example 1 except that this positive electrode was used. When this secondary battery was charged to 3.6 V, the positive electrode had an electric conductivity of 0.8 S / cm. This secondary battery was charged / discharged in the range of 2V to 3.6V, and the energy density per positive electrode weight was measured. Examples 3 and 4 In the same manner as in Example 1 except that the mixing ratio of the crystalline V 2 O 5 powder and the polyaniline powder was changed and the positive electrode was manufactured in Example 2, a sheet-shaped battery was manufactured and the discharge capacity was measured. . Comparative Example 1 A sheet-shaped secondary battery was prepared and discharged in the same manner as in Example 1 except that the crystalline V2O5 powder, graphite and Teflon powder were mixed at 7: 1: 1 in Example 2 to prepare a sheet-shaped positive electrode. The capacity was measured. Comparative Example 2 In Example 1, the carbon material has an interplanar spacing (d002).
Was 3.36Å and the thickness Lc of the crystallite was 1000 Å or more, except that a carbon material was used, and a battery was produced in the same manner as in Example 1, and a charge / discharge test was conducted. A bulge of the battery was observed from the first cycle. It was impossible to discharge.

【表1】 実施例5、6 面間隔(d002)が3.54Å、結晶子の厚みLcが
18Åの乱層構造を有するピッチ系炭素繊維と面間隔
(d002)が3.35Å、結晶子の厚さLcが100
0Å以上のグラファイトを85:15で混合した炭素体
にテフロンを10:1で混合、混練し200メッシュの
ステンレス金網に圧着し、シート状負極を作製した。ポ
リピロール粉末とLiMnとを混合し、混練し2
00メッシュのステンレス金網に圧着し、シート状正極
を作製した。この正極、負極を用いる以外は、実施例1
と同様にして4cm×7cmの扁平型二次電池を作製し
た。1.5V〜3.5Vの範囲で充放電を行い正極重量
当りのエネルギー密度を測定した。
[Table 1] Examples 5 and 6 Pitch-based carbon fibers having a turbostratic structure having a face spacing (d002) of 3.54Å, a crystallite thickness Lc of 18Å, a face spacing (d002) of 3.35Å, and a crystallite thickness Lc of 100
Teflon was mixed and kneaded at a ratio of 10: 1 to a carbon body in which graphite of 0Å or more was mixed at 85:15, and the mixture was pressed onto a 200-mesh stainless wire mesh to prepare a sheet-shaped negative electrode. Polypyrrole powder and LiMn 3 O 6 were mixed and kneaded 2
The sheet-like positive electrode was produced by pressure bonding to a 00 mesh stainless wire mesh. Example 1 except that this positive electrode and negative electrode were used
A 4 cm × 7 cm flat secondary battery was prepared in the same manner as in. Charge / discharge was performed in the range of 1.5 V to 3.5 V, and the energy density per positive electrode weight was measured.

【表2】 実施例7 面間隔(d002)が3.58Å、結晶子の厚みLcが
15Åの乱層構造を有するピッチ系炭素繊維と面間隔
(d002)が3.35Å、結晶子の厚みLcが100
0Å以上のグラファイトを80:20で混合した炭素体
にテフロンを10:1で混合、混練し200メッシュの
ステンレス金網に圧着し、シート状負極を作製した。結
晶性V粉末とポリアニリン粉末を重量比1:1で
混合、混練し200メッシュのステンレス金網に圧着
し、シート状正極を作製した。この正極、負極を用いる
以外は、実施例1と同様にして4cm×7cmの扁平型
二次電池を作製した。このとき二次電池の開放電圧が2
Vのとき、正極の電位が2.8V vs Li/Li(+) に
なるように設計した。この二次電池を2V〜3.6Vの
範囲で5mAの定電流で充放電を行い二次電池の放電容
量を測定した。 比較例3 実施例1において結晶性V粉末とグラファイトと
テフロン粉末を7:1:1で混合し、シート状正極を作
製する以外は実施例1と同様にしてシート状二次電池を
作製し放電容量を測定した。なお、このとき二次電池の
開放電圧が2Vのとき、正極の電位が2.3V vs Li
/Li(+) になるように設計した。この二次電池を2V
〜3.6Vの範囲で5mAの定電流で充放電を行い二次
電池の放電容量を測定した。 比較例4 実施例4において、負極にLiホイルを用いる以外は実
施例4と同様にして二次電池を作製し、放電容量を測定
した。 比較例5 比較例4の高分子固体電解質の調整において、重合開始
剤としてベンゾインイソプロピルエーテルの代わりに、
メチルベンゾイルフォーメートを用いる以外は、実施例
7と同様にして扁平型二次電池を作製し充放電試験を行
った。サイクルをくり返すに従い電池のふくらみが観察
された。
[Table 2] Example 7 Pitch-based carbon fibers having a disordered structure with a face spacing (d002) of 3.58Å, a crystallite thickness Lc of 15Å, a face spacing (d002) of 3.35Å, and a crystallite thickness Lc of 100.
A carbon body obtained by mixing 0Å or more of graphite at 80:20 was mixed with Teflon at 10: 1, kneaded, and pressure-bonded to a 200-mesh stainless wire mesh to prepare a sheet-shaped negative electrode. A crystalline V 2 O 5 powder and a polyaniline powder were mixed and kneaded at a weight ratio of 1: 1 and pressure-bonded to a 200-mesh stainless wire net to produce a sheet-shaped positive electrode. A flat type secondary battery of 4 cm × 7 cm was produced in the same manner as in Example 1 except that this positive electrode and negative electrode were used. At this time, the open-circuit voltage of the secondary battery is 2
When the voltage was V, the positive electrode potential was designed to be 2.8 V vs Li / Li (+). This secondary battery was charged / discharged at a constant current of 5 mA in the range of 2V to 3.6V to measure the discharge capacity of the secondary battery. Comparative Example 3 A sheet-shaped secondary battery was prepared in the same manner as in Example 1 except that the crystalline V 2 O 5 powder, graphite and Teflon powder were mixed at 7: 1: 1 in Example 1 to prepare a sheet-shaped positive electrode. It was prepared and the discharge capacity was measured. At this time, when the open circuit voltage of the secondary battery is 2V, the potential of the positive electrode is 2.3V vs Li.
It was designed to be / Li (+). This secondary battery is 2V
The discharge capacity of the secondary battery was measured by charging and discharging at a constant current of 5 mA in the range of up to 3.6V. Comparative Example 4 A secondary battery was prepared in the same manner as in Example 4 except that Li foil was used for the negative electrode, and the discharge capacity was measured. Comparative Example 5 In the preparation of the polymer solid electrolyte of Comparative Example 4, instead of benzoin isopropyl ether as a polymerization initiator,
A flat secondary battery was prepared and a charge / discharge test was conducted in the same manner as in Example 7 except that methylbenzoyl formate was used. Bulging of the battery was observed as the cycle was repeated.

【表3】 [Table 3]

【0006】[0006]

【発明の効果】本発明によると、高エネルギー密度、高
信頼性の二次電池、特に該電池の電池要素をシート状で
形成すると、可撓性かつスペースレスな二次電池が提供
される。
According to the present invention, a secondary battery having high energy density and high reliability, particularly when the battery element of the battery is formed into a sheet, a flexible and spaceless secondary battery is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する乱層構造を有する炭素体の構
造をモデル的に示す図である。
FIG. 1 is a model view showing the structure of a carbon body having a turbostratic structure used in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 興利 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (56)参考文献 特開 平4−280068(JP,A) 特開 平4−323260(JP,A) 特開 平1−311565(JP,A) 特開 平2−309556(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kouri Kimura 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (56) Reference JP-A-4-280068 (JP, A) JP HEI 4-323260 (JP, A) JP-A 1-311565 (JP, A) JP-A 2-309556 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4 / 58 H01M 4/02 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シート状正、負極及び高分子固体電解質
から構成される扁平型二次電池において、負極活物質が
グラファイトと乱層構造を有する炭素繊維から構成され
ることを特徴とする扁平型二次電池。
1. A flat secondary battery composed of a sheet-shaped positive electrode, a negative electrode and a solid polymer electrolyte, wherein the negative electrode active material is composed of graphite and carbon fibers having a turbostratic structure. Secondary battery.
【請求項2】 シート状正、負極及び高分子固体電解質
から構成される扁平型二次電池において、負極活物質が
グラファイトと面間隔d(002)が3.45〜3.7
Åの乱層構造を有する炭素繊維から構成されることを特
徴とする扁平型二次電池。
2. A flat secondary battery comprising a sheet-shaped positive electrode, a negative electrode and a solid polymer electrolyte, wherein the negative electrode active material is graphite and the interplanar spacing d (002) is 3.45 to 3.7.
A flat type secondary battery characterized by comprising carbon fiber having a disordered layer structure of Å.
【請求項3】 請求項1記載の正極が、導電性高分子と
結晶性五酸化バナジウムとの複合体であって、該正極の
密度が1.4〜2.2g/cmであることを特徴とす
る扁平型二次電池。
3. The positive electrode according to claim 1, wherein the positive electrode is a composite of a conductive polymer and crystalline vanadium pentoxide, and the positive electrode has a density of 1.4 to 2.2 g / cm 3. A characteristic flat type secondary battery.
【請求項4】 前記高分子固体電解質が、重合開始剤と
してベンゾインイソプロピルエーテルを用いて製造され
たものであることを特徴とする請求項1、2または3記
載の扁平型二次電池。
4. The flat secondary battery according to claim 1, wherein the polymer solid electrolyte is produced by using benzoin isopropyl ether as a polymerization initiator.
JP33250892A 1992-09-04 1992-11-18 Flat secondary battery Expired - Fee Related JP3534348B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33250892A JP3534348B2 (en) 1992-11-18 1992-11-18 Flat secondary battery
US08/117,286 US5437943A (en) 1992-09-04 1993-09-07 Positive electrode and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33250892A JP3534348B2 (en) 1992-11-18 1992-11-18 Flat secondary battery

Publications (2)

Publication Number Publication Date
JPH06163047A JPH06163047A (en) 1994-06-10
JP3534348B2 true JP3534348B2 (en) 2004-06-07

Family

ID=18255718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33250892A Expired - Fee Related JP3534348B2 (en) 1992-09-04 1992-11-18 Flat secondary battery

Country Status (1)

Country Link
JP (1) JP3534348B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251894A (en) * 1998-12-29 2000-09-14 Hitachi Maxell Ltd Nonaqueous secondary battery, and usage thereof

Also Published As

Publication number Publication date
JPH06163047A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
US6645667B1 (en) Lithium secondary cell
US5851504A (en) Carbon based electrodes
JP3566891B2 (en) Lithium secondary battery
JP2003077463A (en) Lithium secondary battery and its manufacturing method
JP4797577B2 (en) battery
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
KR100462668B1 (en) Polymer cell
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
JP5177211B2 (en) Negative electrode active material, negative electrode and battery
JP2003092138A (en) Polymer solid electrolyte and polymer solid electrolyte lithium battery
US6806004B1 (en) Polymeric solid electrolyte and lithium secondary cell using the same
WO2018135624A1 (en) Electrode and secondary battery using radical polymer
JPH09237623A (en) Nonaqueous electrolyte secondary battery
WO2018135623A1 (en) Electrode and secondary battery using radical polymer
JP3534348B2 (en) Flat secondary battery
JP3553697B2 (en) Rechargeable battery
JP3529802B2 (en) Negative electrode for secondary battery
JP2004200058A (en) Power storage device
JPH09320599A (en) Nonaqueous electrolyte secondary battery
JP2003249266A (en) Polymer solid electrolyte and polymer solid electrolyte cell
JPH0973917A (en) Nonaqueous electrolytic secondary battery
JP5299242B2 (en) Lithium polymer secondary battery
JPH0864200A (en) Electrode for secondary battery and secondary battery using this electrode
JPH0927313A (en) Nonaqueous electrolyte secondary battery
JP3409093B2 (en) Electrode for secondary battery and battery using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees