JP3534205B2 - Compensation circuit for transient temperature characteristics in strain gauge transducer and its compensation method - Google Patents

Compensation circuit for transient temperature characteristics in strain gauge transducer and its compensation method

Info

Publication number
JP3534205B2
JP3534205B2 JP11907295A JP11907295A JP3534205B2 JP 3534205 B2 JP3534205 B2 JP 3534205B2 JP 11907295 A JP11907295 A JP 11907295A JP 11907295 A JP11907295 A JP 11907295A JP 3534205 B2 JP3534205 B2 JP 3534205B2
Authority
JP
Japan
Prior art keywords
temperature characteristic
transient temperature
strain
circuit
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11907295A
Other languages
Japanese (ja)
Other versions
JPH08292065A (en
Inventor
博之 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP11907295A priority Critical patent/JP3534205B2/en
Publication of JPH08292065A publication Critical patent/JPH08292065A/en
Application granted granted Critical
Publication of JP3534205B2 publication Critical patent/JP3534205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ひずみゲージ式変換器
における過渡温度特性の補償回路およびその補償方法に
関し、より詳細には、ひずみゲージ式変換器の受感部あ
るいは起歪部に急激な熱変化が生じたときの過渡温度特
性を打ち消し得るひずみゲージ式変換器における過渡温
度特性の補償回路およびその補償方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transient temperature characteristic compensating circuit in a strain gauge type transducer and its compensating method, and more specifically, to a sensitive portion or a strain generating portion of a strain gauge type transducer. The present invention relates to a compensation circuit for a transient temperature characteristic in a strain gauge type converter capable of canceling the transient temperature characteristic when a thermal change occurs, and a compensation method therefor.

【0002】[0002]

【従来の技術】ひずみゲージを用いて圧力、荷重、加速
度、などの物理量を受けて、これを電気量に変換するも
のに、圧力変換器、荷重変換器、加速度変換器などがあ
る。これらのひずみゲージ式変換器(以下単に「変換
器」という)は、測定環境または測定対象物に温度変化
が生じると、その温度変化が変換器に伝達され、測定対
象とする物理量によるひずみ以外に温度変化による見か
けひずみが発生し、それが無視し得ない大きな誤差とし
て測定値に混入する、という問題がある。図8および図
9は、上記みかけひずみを打ち消すための第1の従来例
および第2の従来例としての補償回路を示すものであ
り、図6および図7は、図8および図9に対応する第1
および第2の従来例の変換器の構成をそれぞれ示す断面
図である。
2. Description of the Related Art Pressure transducers, load transducers, acceleration transducers, and the like are used to receive physical quantities such as pressure, load, and acceleration using a strain gauge and convert the physical quantities into electric quantities. These strain gauge type transducers (hereinafter simply referred to as "transducers") transmit temperature changes to the transducer when a temperature change occurs in the measurement environment or measurement object, and in addition to strain due to the physical quantity to be measured. There is a problem that an apparent strain occurs due to a temperature change, and this is mixed into the measured value as a large error that cannot be ignored. 8 and 9 show compensating circuits as a first conventional example and a second conventional example for canceling the apparent distortion, and FIGS. 6 and 7 correspond to FIGS. 8 and 9. First
FIG. 6 is a cross-sectional view showing a configuration of a converter of the second conventional example.

【0003】図6および図7において、1は、弾性変形
可能な起歪体であり、一端(図においては上端)が開放
された略円筒状を呈しており、他端(図においては下
端)が極く薄肉に形成されてダイヤフラム1aが設けら
れ、円筒部1bは、十分に厚肉に形成され、実質上剛体
部とされている。開放端側には、円筒部1bの内壁1c
の内径より大径の円形溝1dが形成されて、その円形溝
1dと内壁1cとの間に形成された段部1eには、円孔
2aが穿設された基板2が載置され、締付ねじ(図示せ
ず)等によって固定されている。
In FIGS. 6 and 7, reference numeral 1 denotes an elastically deformable flexure element, which has a substantially cylindrical shape with one end (upper end in the drawings) opened and the other end (lower end in the drawings). Is formed to be extremely thin to provide the diaphragm 1a, and the cylindrical portion 1b is formed to be sufficiently thick to be a substantially rigid body portion. On the open end side, the inner wall 1c of the cylindrical portion 1b
A circular groove 1d having a diameter larger than the inner diameter of the circular groove 2a is formed, and a stepped portion 1e formed between the circular groove 1d and the inner wall 1c is mounted with a substrate 2 having a circular hole 2a, and is tightened. It is fixed by a screw (not shown) or the like.

【0004】4つのひずみケージRgは、第1,第2の
従来例のいずれにおいてもダイヤフラム1aの非受圧面
側に添着されているが、零点温度特性補償抵抗rtは、
第1の従来例の場合ダイヤフラム1aから所定距離隔て
た位置に配設された基板2上に添着されているが、第2
の従来例の場合、ひずみゲージRgと同様に、ダイヤフ
ラム1aの非受圧面側に添着されている。
In each of the first and second conventional examples, the four strain cages R g are attached to the non-pressure receiving surface side of the diaphragm 1a, but the zero-point temperature characteristic compensation resistance r t is
In the case of the first conventional example, it is affixed on the substrate 2 arranged at a position separated from the diaphragm 1a by a predetermined distance.
In the case of the above conventional example, like the strain gauge R g , it is attached to the non-pressure receiving surface side of the diaphragm 1a.

【0005】このように構成された変換器に被測定対象
から圧力Pが印加されると、ダイヤフラム1aはその圧
力Pに対応して内方に撓むように変形する。この変形
は、ダイヤフラム1aの非受圧面側に添着されたひずみ
ゲージRgを伸長しあるいは圧縮するので、ひずみゲー
ジRgの抵抗値が増加しあるいは減少する。
When a pressure P is applied from the object to be measured to the transducer thus constructed, the diaphragm 1a is deformed so as to bend inward corresponding to the pressure P. This deformation expands or compresses the strain gauge R g attached to the non-pressure receiving surface side of the diaphragm 1a, so that the resistance value of the strain gauge R g increases or decreases.

【0006】通常は、4つまたはその倍数のひずみゲー
ジRgがダイヤフラム1aの伸長部分と圧縮部分に少な
くとも各2つ添着され、図8および図9に示すように、
それぞれホイートストンブリッジ回路(以下単に「ブリ
ッジ回路」という)の隣接する各2辺にそれぞれ回路接
続されるため、ブリッジ回路のブリッジ電源入力端IN
(+)、IN(−)にブリッジ電源を印加すると、その
出力端OUT(+)、OUT(−)から、上記印加圧力
に対応した出力が得られる。尚、零点温度特性補償抵抗
tは、環境温度が緩慢に変化する場合には、図6、図
8に示すように基板2上に配設されていても、また、図
7、図9に示すようにダイヤフラム1a上に配設されて
いても、ほぼ所期の温度補償効果が得られる。
Usually, at least two strain gauges R g or four strain gage R g are attached to each of the extending portion and the compressing portion of the diaphragm 1a, and as shown in FIGS. 8 and 9,
Since the circuit is connected to each two adjacent sides of the Wheatstone bridge circuit (hereinafter simply referred to as "bridge circuit"), the bridge power source input terminal IN of the bridge circuit
When the bridge power supply is applied to (+) and IN (-), the output corresponding to the applied pressure is obtained from the output terminals OUT (+) and OUT (-). Note that the zero-point temperature characteristic compensating resistor r t is arranged on the substrate 2 as shown in FIGS. 6 and 8 when the environmental temperature changes slowly. Even if it is arranged on the diaphragm 1a as shown, the desired temperature compensation effect can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図6〜
図9に示すような従来の変換器の温度補償方法は、環境
温度および変換器温度が安定した状態ないしは極く緩慢
に変化する状態だけを考慮していたものであるために、
受感部(あるいは起歪部)に衝撃的、瞬間的な温度変化
(以下、「熱衝撃」という)を受けると、変換器全体の
温度が安定するまでの間に上記ブリッジ回路の出力信号
に大きな過渡温度特性を示すという問題を有している。
However, as shown in FIG.
Since the conventional temperature compensation method for a converter as shown in FIG. 9 considers only the state where the environmental temperature and the converter temperature are stable or changes very slowly,
When the sensing part (or strain generating part) is subjected to a shock and momentary temperature change (hereinafter referred to as "thermal shock"), the output signal of the bridge circuit is output until the temperature of the entire converter stabilizes. It has a problem of showing a large transient temperature characteristic.

【0008】つまり、上記従来の変換器は、緩かな温度
変化に伴う温度ドリフトに対しては補償機能を果たすも
のの上記熱衝撃に対しては、温度補償機能が全く働かな
いという致命的な欠陥を有しているのである。このこと
を圧力変換器を例として説明する。図6または図7に示
す圧力変換器(但し、零点温度特性補償抵抗rtは添着
されていないものとする。)のダイヤフラム1aに図1
0の(A)のような熱衝撃が印加されると、ブリッジ回
路の出力は、多くの場合、図10の(B)のような過渡
温度特性(β)を示す。
That is, the above-mentioned conventional converter has a fatal defect that the temperature compensating function does not work at all against the thermal shock, although it fulfills the function of compensating for the temperature drift caused by the gentle temperature change. I have it. This will be described by taking a pressure converter as an example. The diaphragm 1a of the pressure converter shown in FIG. 6 or FIG. 7 (however, the zero-point temperature characteristic compensating resistance r t is not attached) is shown in FIG.
When a thermal shock such as (A) of 0 is applied, the output of the bridge circuit often exhibits a transient temperature characteristic (β) as shown in (B) of FIG. 10.

【0009】即ち、熱衝撃を受けた瞬間に、ダイヤフラ
ムは、局部的に急激な変形をすると共にひずみゲージも
局部的な加熱による抵抗変化が生じる結果、ブリッジ回
路の出力は、急激に負方向に降下した後、やや緩かに正
方向に戻り圧力変換器全体の正の温度特性(α)に安定
化する。次に、これと同じ圧力変換器に、図6に示すよ
うにブリッジ回路の零点温度特性を補償する零点温度特
性補償抵抗rtを基板2に添着し且つ図8に示すように
ブリッジ回路の一辺に接続してなる圧力変換器(以下
「第1の従来例」という)のダイヤフラム1aに、同様
に図10の(A)のような熱衝撃が印加されると、ブリ
ッジ回路の出力は、図10の(D)のような過渡温度特
性(β)を示す。
That is, at the moment when a thermal shock is applied, the diaphragm locally undergoes rapid deformation and the strain gauge also undergoes resistance change due to local heating. As a result, the output of the bridge circuit suddenly becomes negative. After falling, it returns to the positive direction slightly and stabilizes to the positive temperature characteristic (α) of the entire pressure transducer. Next, as shown in FIG. 6, a zero-point temperature characteristic compensating resistor r t for compensating the zero-point temperature characteristic of the bridge circuit is attached to the same pressure converter as shown in FIG. 6 and one side of the bridge circuit as shown in FIG. Similarly, when a thermal shock as shown in FIG. 10A is applied to the diaphragm 1a of the pressure converter (hereinafter referred to as the "first conventional example") connected to the output of the bridge circuit, 10 shows a transient temperature characteristic (β) such as 10 (D).

【0010】さらに、図7に示すように、零点温度特性
補償抵抗rtをひずみゲージRgと同じダイヤフラム1a
上に添着し且つ図9に示すようにブリッジ回路の一辺に
接続してなる圧力変換器(以下「第2の従来例」とい
う)のダイヤフラム1aに、同様に図10の(A)のよ
うな熱衝撃が印加されると、ブリッジ出力の出力は、図
10の(E)のような過渡温度特性(α+β)を示す。
即ち、第1の従来例および第2の従来例ともに、ダイヤ
フラム1aに熱衝撃を受けた瞬間にブリッジ回路の出力
は、急激に負方向に降下した後、やや緩かに正方向に戻
り、零点温度特性補償抵抗rtが機能して、0レベルに
安定化する。
Further, as shown in FIG. 7, the zero point temperature characteristic compensation resistance r t is the same as the strain gauge R g in the diaphragm 1a.
A diaphragm 1a of a pressure transducer (hereinafter referred to as "second conventional example") attached to the above and connected to one side of a bridge circuit as shown in FIG. When thermal shock is applied, the output of the bridge output exhibits a transient temperature characteristic (α + β) as shown in (E) of FIG.
That is, in both the first conventional example and the second conventional example, the output of the bridge circuit suddenly drops in the negative direction at the moment when the diaphragm 1a is subjected to thermal shock, and then returns to the positive direction slightly slowly to reach the zero point. The temperature characteristic compensation resistance r t functions and stabilizes at 0 level.

【0011】しかしながら、図10の(D)と(E)を
比べて見ると分るように、図7に示すように、零点温度
特性補償抵抗rtを受感部であるダイヤフラム1aに添
着した場合の過渡温度特性は、図6に示すように零点温
度特性補償抵抗rtをダイヤフラム1aから離れた部位
に配設された基板2上に添着した場合よりも大きいばか
りでなく、何らの温度補償を施さない圧力変換器の過渡
温度特性よりもさらに大きな過渡温度特性を示すことが
判明した。
However, as can be seen by comparing (D) and (E) of FIG. 10, as shown in FIG. 7, the zero-point temperature characteristic compensating resistance r t is attached to the diaphragm 1a which is the sensing section. The transient temperature characteristic in this case is not only larger than that in the case where the zero temperature characteristic compensating resistance r t is attached on the substrate 2 arranged at a position away from the diaphragm 1a as shown in FIG. It was found that the transient temperature characteristics were even larger than those of the pressure transducer without the heat treatment.

【0012】上記図7、図9に示す第2の従来例は、本
来、ひずみゲージRgと同一温度環境条件となるように
ひずみゲージRgの近傍に敢えて零点温度特性補償抵抗
tを配設して、温度応答性の速い圧力変換器に対応さ
せるように構成したものであるが、実際に上述したよう
な熱衝撃がダイヤフラム1aに印加された場合に、何ら
の温度補償を施さないものより悪い過渡温度特性を示す
ために、例えば蒸気圧が印加されるサニタリ用の圧力変
換器や、高温のガスが噴射される熱機関用の圧力変換器
など極部的に衝撃的な温度変化を頻繁に受ける場合に
は、略んど使用することができない。
[0012] The second conventional example shown in FIG. 7, FIG. 9 is essentially the strain gauges R g the same temperature strain so that the environmental conditions gauge R g dare zero temperature characteristic compensation resistor r t in the vicinity of the distribution However, when the thermal shock as described above is actually applied to the diaphragm 1a, no temperature compensation is performed. In order to show worse transient temperature characteristics, for example, pressure converters for sanitary applications where vapor pressure is applied, pressure converters for heat engines where hot gas is injected, and extreme shocking temperature changes are applied. If you receive it frequently, you cannot use it.

【0013】本発明は、上述した事情に鑑みてなされた
もので、その目的とするところは、変換器の受感部ある
いは起歪部に測定すべき物理量が印加されると共に熱衝
撃が頻繁に印加されても、熱衝撃に伴う過渡温度特性を
効果的に打消し、真に求めるべき物理量を正確に検出し
得るひずみゲージ式変換器における過渡温度特性の補償
回路およびその補償方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to apply a physical quantity to be measured to a sensing section or a strain generating section of a transducer and to frequently cause thermal shock. To provide a compensating circuit for a transient temperature characteristic in a strain gauge converter capable of effectively canceling a transient temperature characteristic due to thermal shock even if applied and accurately detecting a physical quantity that should be truly obtained, and a compensation method therefor. It is in.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明は、変換器の起歪部に添着された
ひずみゲージによって物理量を電気量に変換するひずみ
ゲージ式変換器において、物理量を受けると共に被測定
対象より衝撃的な温度変化を受ける起歪部に添着された
ひずみゲージおよび過渡温度特性補償抵抗と、前記変換
器のうち前記温度変化を緩慢に受ける熱的緩衝部に添着
され前記過渡温度特性補償抵抗と同じ抵抗値を有するバ
ランス抵抗と、を具備し、前記ひずみゲージにより形成
されたホイートストンブリッジ回路の過渡温度特性に見
合う特性を有する前記過渡温度特性補償抵抗を、前記ホ
イートストンブリッジ回路の一辺に回路挿入し、この一
辺と隣り合う他の辺に前記バランス抵抗を回路挿入する
ことにより、前記ホイートストンブリッジ回路の過渡温
度特性を打ち消すように構成したことを特徴とするもの
である。
In order to achieve the above-mentioned object, the invention of claim 1 is a strain gauge type transducer for converting a physical quantity into an electric quantity by a strain gauge attached to a strain generating part of the transducer. In, a strain gauge and a transient temperature characteristic compensating resistor attached to a strain-generating part which receives a physical quantity and undergoes a shocking temperature change from the object to be measured, and a thermal buffer part of the converter which receives the temperature change slowly. Balance resistance having the same resistance value as the transient temperature characteristic compensation resistance attached to, and the transient temperature characteristic compensation resistor having a characteristic corresponding to the transient temperature characteristic of the Wheatstone bridge circuit formed by the strain gauge, By inserting the circuit into one side of the Wheatstone bridge circuit, and inserting the balance resistance into the other side adjacent to the one side, It is characterized in that it has configured to cancel the transient temperature characteristics of Wheatstone bridge circuits.

【0015】また、請求項2の発明は、前記ホイートス
トンブリッジ回路全体の零点温度特性に見合う零点温度
特性補償抵抗を、前記熱的緩衝部に添着し且つ前記ホイ
ートストンブリッジ回路のうち、零点温度特性を打ち消
す方向の一辺に直列に回路挿入するように構成したこと
を特徴とするものである。
According to a second aspect of the present invention, a zero-point temperature characteristic compensating resistor matching the zero-point temperature characteristic of the whole Wheatstone bridge circuit is attached to the thermal buffer section, and the zero-point temperature characteristic of the Wheatstone bridge circuit is adjusted. The circuit is characterized in that the circuit is inserted in series on one side in the canceling direction.

【0016】また、請求項3の発明は、前記起歪部は、
ダイヤフラムとして形成され、このダイヤフラムのう
ち、大きなひずみを生じる部位に前記ひずみゲージが添
着され、小さなひずみを生じる部位に過渡温度特性補償
抵抗が添着され、前記ダイヤフラムから所定の距離を隔
てて配設された基板に前記バランス抵抗が添着されてい
ることを特徴とするものである。また、請求項4の発明
は、前記過渡温度特性補償抵抗および前記バランス抵抗
は、銅またはニッケルを材料として線状もしくは箔状に
形成されていることを特徴とするものである。
According to a third aspect of the invention, the strain-flexing portion is
The diaphragm is formed as a diaphragm, and the strain gauge is attached to a portion of the diaphragm where a large strain is generated, and a transient temperature characteristic compensation resistor is attached to a portion of the diaphragm where a small strain is generated. The strain gauge is disposed at a predetermined distance from the diaphragm. The balance resistance is attached to the substrate. Further, the invention of claim 4 is characterized in that the transient temperature characteristic compensation resistor and the balance resistor are formed in a linear or foil shape using copper or nickel as a material.

【0017】また、請求項5の発明は、変換器の起歪部
に添着されたひずみゲージによって物理量を電気量に変
換するひずみゲージ式変換器において、物理量を受ける
と共に被測定対象より衝撃的な温度変化を受ける受感部
に添着された過渡温度特性補償抵抗と、前記受感部から
所定の間隔を隔てた位置に配設されると共に前記受感部
との間が力伝達ロッドにより連接された起歪部に添着さ
れたひずみゲージと、前記受感部に対し前記起歪部より
遠くの位置に配設された熱的緩衝部に添着され前記過渡
温度特性補償抵抗と同じ抵抗値を有するバランス抵抗
と、を具備し、前記ひずみゲージにより形成されたホイ
ートストンブリッジ回路の過渡温度特性に見合う特性を
有する前記過渡温度特性補償抵抗を、前記ホイートスト
ンブリッジ回路の一辺に回路挿入し、この一辺と隣り合
う他の辺に前記バランス抵抗を回路挿入することにより
前記ホイートストンブリッジ回路の過渡温度特性を打ち
消すように構成したことを特徴とするものである。
According to a fifth aspect of the present invention, in a strain gauge type transducer for converting a physical quantity into an electric quantity by a strain gauge attached to a strain-generating portion of the transducer, the strain gauge type transducer receives a physical quantity and is more shocking than an object to be measured. The transient temperature characteristic compensating resistor attached to the sensing unit that receives a temperature change is disposed at a position spaced apart from the sensing unit by a predetermined distance, and the sensing unit is connected by a force transmission rod. And a strain gauge attached to the strain-flexing portion, and a resistance value equal to that of the transient temperature characteristic compensating resistor attached to the thermal buffer portion arranged at a position farther from the strain-generating portion with respect to the sensing portion. A balance resistor, the transient temperature characteristic compensating resistor having a characteristic matching the transient temperature characteristic of the Wheatstone bridge circuit formed by the strain gauge, And circuit inserted into and is characterized by being configured to cancel the transient temperature characteristics of the Wheatstone bridge circuit by circuit inserting the balancing resistor to the other side adjacent to the one side.

【0018】また、請求項6の発明は、前記受感部は、
ダイヤフラムとして形成され、前記起歪部は、その中心
部が前記ダイヤフラムの中心部に前記力伝達ロッドを介
して連接された一文字状ビームとして形成され、前記熱
的緩衝部は、前記変換器内に配設された基板として形成
されていることを特徴とするものである。
According to a sixth aspect of the invention, the sensing section is
It is formed as a diaphragm, and the strain-flexing portion is formed as a one-character beam whose central portion is connected to the central portion of the diaphragm via the force transmission rod, and the thermal buffering portion is provided inside the transducer. It is characterized in that it is formed as an arranged substrate.

【0019】また、請求項7の発明に係るひずみゲージ
式変換器における過渡温度特性補償回路の過渡温度特性
の補償方法は、物理量を受けると共に被測定対象より衝
撃的な温度変化を受ける受感部に添着された複数のひず
みゲージによってホイートストンブリッジ回路が形成さ
れてなるひずみゲージ式変換器において、既知の温度の
油中に前記受感部を急激に浸漬して上記ホイートストン
ブリッジ回路の過渡温度特性のピーク値を測定する第1
手順と、この第1手順で得られたピーク値に見合う過渡
温度特性補償抵抗を選択して前記受感部に添着し且つ前
記過渡温度特性補償抵抗をホイートストンブリッジ回路
の過渡温度特性を打ち消し得る一辺に回路接続する第2
手順と、前記過渡温度特性補償抵抗と同じ抵抗値を持つ
バランス抵抗を選択して前記変換器のうち温度変化を緩
慢に受ける熱的緩衝部に添着し且つ前記ホイートストン
ブリッジ回路の前記過渡温度特性補償抵抗が接続されて
いる辺と隣接する他の一辺に回路接続する第3手順と、
次いで、恒温槽などの温度制御手段により変換器の温度
を段階的に変化させて零点温度特性を測定し、この零点
温度特性に見合う零点温度特性補償抵抗を選択して前記
熱的緩衝部に添着し且つ前記ホイートストンブリッジ回
路の前記零点温度特性を打ち消す方向の一辺に回路接続
する第4手順と、からなることを特徴とするものであ
る。
The method for compensating for the transient temperature characteristic of the transient temperature characteristic compensating circuit in the strain gauge type converter according to the invention of claim 7 is a sensing unit which receives a physical quantity and a shocking temperature change from an object to be measured. In a strain gauge type transducer in which a Wheatstone bridge circuit is formed by a plurality of strain gauges attached to, the transient temperature characteristic of the Wheatstone bridge circuit is obtained by rapidly immersing the sensing unit in oil of known temperature. First to measure the peak value
One side capable of canceling the transient temperature characteristic of the Wheatstone bridge circuit by selecting the procedure and the transient temperature characteristic compensating resistor corresponding to the peak value obtained in the first procedure and attaching the transient temperature characteristic compensating resistor to the sensing section. Second circuit connection to
And a balance resistor having the same resistance value as that of the transient temperature characteristic compensating resistor, which is attached to a thermal buffer portion of the converter that slowly receives a temperature change and compensates for the transient temperature characteristic of the Wheatstone bridge circuit. A third step of connecting a circuit to another side adjacent to the side to which the resistor is connected,
Next, the temperature of the converter is changed stepwise by temperature control means such as a constant temperature bath to measure the zero point temperature characteristic, and a zero point temperature characteristic compensating resistor that matches this zero point temperature characteristic is selected and attached to the thermal buffer section. And a fourth step of connecting the circuit to one side of the Wheatstone bridge circuit in a direction in which the zero-point temperature characteristic is canceled out.

【0020】[0020]

【作用】上記のように構成されたひずみゲージ式変換器
は、被測定対象から測定すべき物理量を受けると、起歪
部が変形するため、その起歪部に添着されたひずみゲー
ジによって当該変形を抵抗値に変換し、さらに上記ひず
みゲージにより形成されたホイートストンブリッジの出
力端より上記物理量に対応した電気信号が得られる。
In the strain gauge type transducer configured as described above, when the physical quantity to be measured is received from the object to be measured, the strain-flexing portion is deformed. Therefore, the strain gauge attached to the strain-flexing portion causes the deformation. Is converted into a resistance value, and an electric signal corresponding to the physical quantity is obtained from the output end of the Wheatstone bridge formed by the strain gauge.

【0021】一方、上記起歪部に被測定対象より衝撃的
な温度変化を受けたときに、上記ブリッジ回路の出力と
して表われる大きな過渡温度特性については、起歪部に
添着された過渡温度特性補償抵抗を上記ブリッジ回路の
一辺に回路挿入することで電気的に打ち消すようにして
いる。
On the other hand, regarding the large transient temperature characteristic appearing as the output of the bridge circuit when the strain generating section is subjected to a shocking temperature change from the object to be measured, the transient temperature characteristic attached to the strain generating section is as follows. A compensating resistor is electrically inserted to one side of the bridge circuit to cancel it electrically.

【0022】また、上記過渡温度特性補償抵抗をブリッ
ジ回路の一辺に挿入したことにより、不平衡状態となっ
たブリッジ回路の平衝をとるために、変換器のうち、上
記温度変化を緩慢に受ける熱的緩衝部に添着され且つ上
記過渡温度特性補償抵抗と略同じ抵抗値を有するバラン
ス抵抗を、ブリッジ回路の上記過渡温度特性補償抵抗が
接続された辺に隣接する他の辺に接続してある。尚、ブ
リッジ回路全体の零点温度特性は、これに見合う特性を
持つ零点温度特性補償抵抗を上記ブリッジ回路の一辺に
直列に回路接続して打ち消すようにしている。
Further, by inserting the transient temperature characteristic compensating resistance into one side of the bridge circuit, the converter is slowly subjected to the temperature change in order to balance the bridge circuit in an unbalanced state. A balance resistor attached to the thermal buffer and having a resistance value substantially the same as that of the transient temperature characteristic compensating resistor is connected to another side of the bridge circuit adjacent to the side to which the transient temperature characteristic compensating resistor is connected. . The zero-point temperature characteristic of the bridge circuit as a whole is such that a zero-point temperature characteristic compensating resistor having a characteristic matching this is connected in series to one side of the bridge circuit to cancel it.

【0023】[0023]

【実施例】以下、本発明に係るひずみゲージ式変換器に
おける過渡温度特性の補償回路およびその補償方法を実
施例に基づき詳細に説明する。図1は、本発明に係るひ
ずみゲージ式変換器の第1の実施例である圧力変換器に
おける過渡温度特性補償回路の構成を示す回路図であ
り、図2は、第1の実施例の圧力変換器の断面構成を示
すと共に、ダイヤフラムの変形の態様および平面構成を
併せて示す説明図、図3は、図1の実施例の温度補償動
作を説明するために、変換器のダイヤフラムに熱衝撃が
印加された場合の過渡温度特性を示す特性図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A compensation circuit for a transient temperature characteristic in a strain gauge type converter according to the present invention and a compensation method therefor will be described in detail below with reference to embodiments. 1 is a circuit diagram showing a configuration of a transient temperature characteristic compensating circuit in a pressure transducer which is a first embodiment of a strain gauge type transducer according to the present invention, and FIG. 2 is a pressure chart of the first embodiment. FIG. 3 is an explanatory view showing a cross-sectional structure of the converter, and also showing a deformation mode and a planar structure of the diaphragm. FIG. 3 is a schematic view showing the temperature compensation operation of the embodiment of FIG. FIG. 7 is a characteristic diagram showing a transient temperature characteristic when is applied.

【0024】図2において、10は弾性変形可能な起歪
体であり、図6において既述したような従来の圧力変換
器と同様に、一端(図においては、上端)が開放された
略円筒状を呈しており、他端(図においては下端)が極
く薄肉に形成された起歪部としてのダイヤフラム10a
が設けられ、円筒部10bは、十分に厚肉に形成され、
実質上剛体部とされている。
In FIG. 2, reference numeral 10 denotes an elastically deformable flexure element, and like the conventional pressure transducer as described above with reference to FIG. 6, a substantially cylindrical body having one end (upper end in the figure) opened. The diaphragm 10a has a shape, and the other end (the lower end in the figure) is formed as a very thin wall as a strain-flexing portion.
Is provided, the cylindrical portion 10b is formed sufficiently thick,
It is essentially a rigid body.

【0025】開放端側には、円筒部10bの内壁10c
の内径よりも大径の浅い円形溝10dが形成されて、そ
の円形溝10dと内壁10cとの間に形成された段部1
0eには、円孔20aが穿設された基板20が載置され
且つ図示しない締付ねじによって固定されている。4つ
のひずみゲージRg1〜Rg4は、図2の(B)に示すよう
に、被測定対象から測定圧力が印加されたとき、大きな
ひずみを生じるダイヤフラム10aの非受圧面側の部位
にそれぞれ添着されている。また、ダイヤフラム10a
の非受圧面側の比較的ひずみの少ない部位には、過渡温
度特性補償抵抗rs1が添着されている。
On the open end side, the inner wall 10c of the cylindrical portion 10b is formed.
Is formed with a shallow circular groove 10d having a diameter larger than the inner diameter of the stepped portion 1 formed between the circular groove 10d and the inner wall 10c.
A substrate 20 having a circular hole 20a is placed on 0e and is fixed by a tightening screw (not shown). As shown in (B) of FIG. 2, the four strain gauges R g1 to R g4 are attached to the non-pressure receiving surface side of the diaphragm 10a that produces a large strain when a measurement pressure is applied from the measured object. Has been done. Also, the diaphragm 10a
A transient temperature characteristic compensating resistor r s1 is attached to a portion of the non-pressure receiving surface side where the strain is relatively small.

【0026】この過渡温度特性補償抵抗rs1と略同じ抵
抗値を持つバランス抵抗rs2は、ダイヤフラム10aか
ら離れた部位に配設された基板20の上面側に取付けら
れている。さらに、この基板20の上面側には、零点温
度特性補償抵抗rtが取付けられている。このように圧
力変換器の起歪体10のダイヤフラム10aまたは基板
20に添着または取付けられたひずみゲージRg1
g4、過渡温度特性補償抵抗rs1、バランス抵抗rs2
よび零点温度特性補償抵抗rtは、図1に示すようにブ
リッジ回路にそれぞれ回路接続されている。
The balance resistance r s2 having substantially the same resistance value as the transient temperature characteristic compensating resistance r s1 is attached to the upper surface side of the substrate 20 arranged at a position away from the diaphragm 10a. Further, a zero-point temperature characteristic compensation resistor r t is attached to the upper surface side of the substrate 20. In this way, strain gauges R g1 ~ affixed to or attached to the diaphragm 10a of the flexure element 10 of the pressure transducer or the substrate 20.
The R g4 , the transient temperature characteristic compensation resistor r s1 , the balance resistor r s2, and the zero temperature characteristic compensation resistor r t are connected to the bridge circuit as shown in FIG.

【0027】即ち、図1において、被測定対象からの物
理量としての負荷(この場合、圧力)を受けたとき、ダ
イヤフラム10a上で同じ極性の挙動を示すひずみゲー
ジRg1とRg3とは、ブリッジ回路の一方の対辺にそれぞ
れ回路接続され、他の極性の挙動を示すひずみゲージR
g2とRg4とはブリッジ回路の他方の対辺(隣接辺)にそ
れぞれ回路接続されている。
That is, in FIG. 1, strain gages R g1 and R g3 , which exhibit the behavior of the same polarity on the diaphragm 10a when receiving a load (in this case, pressure) as a physical quantity from the object to be measured, are bridges. Strain gauge R that is connected to one opposite side of the circuit and shows the behavior of other polarity
The g2 and R g4 are circuit-connected to the other opposite side (adjacent side) of the bridge circuit.

【0028】そして、過渡温度特性補償抵抗rs1は、ブ
リッジ回路の過渡温度特性に見合う特性を持ち、該過渡
温度特性を打ち消す方向の一辺、この第1の実施例の場
合、ひずみゲージRg4を含む辺に直列接続されている。
そして、この過渡温度特性補償抵抗rs1と略同じ抵抗値
を持つバランス抵抗rs2を、上記過渡温度特性補償抵抗
s1が回路挿入された辺と隣接する辺に回路接続されて
いる。このバランス抵抗rs2と同じ辺(常に同じ辺とは
限らない)に直列に回路接続されている零点温度特性補
償抵抗rtは、圧力変換器が極く緩かな温度変化を受け
る時に生じるブリッジ回路全体の零点温度特性を打ち消
し得るものが選択され且つ回路接続される。
The transient temperature characteristic compensating resistor r s1 has a characteristic matching the transient temperature characteristic of the bridge circuit, and one side in the direction in which the transient temperature characteristic is canceled, in the case of the first embodiment, the strain gauge R g4 is It is connected in series to the containing side.
Then, the balancing resistor r s2 which substantially have the same resistance value as the transient temperature compensation resistor r s1, are circuit connected to a side where the transient temperature characteristics compensation resistor r s1 is adjacent to the circuit inserted edges. The zero-point temperature characteristic compensating resistor r t , which is connected in series on the same side (not always the same side) as the balance resistor r s2 , is a bridge circuit generated when the pressure transducer undergoes an extremely gentle temperature change. The one that can cancel the entire zero-point temperature characteristic is selected and connected in a circuit.

【0029】次に、このような構成よりなる圧力変換器
の過渡温度特性の補償方法について具体的に説明する。
先ず、予め、図2に示す起歪体10のダイヤフラム10
aの非受圧面側には、ひずみゲージRg1〜Rg4のみが図
2に示す配置の如く、接着、蒸着、融着、その他の手段
により添着され、それぞれのひずみゲージRg1〜Rg4
ゲージタブには、図示省略のゲージリード、リード線等
が接続され、且つブリッジ回路が形成されているものと
する。
Next, a method of compensating for the transient temperature characteristic of the pressure converter having such a configuration will be specifically described.
First, in advance, the diaphragm 10 of the flexure element 10 shown in FIG.
Non pressure receiving surface side of a, as the arrangement shown in the strain gauge R g1 to R g4 although only 2, adhesion, vapor deposition, fusion bonding, is affixed by other means, the respective strain gauges R g1 to R g4 Gauge leads (not shown), lead wires, and the like are connected to the gauge tab, and a bridge circuit is formed.

【0030】そして、入力端子IN(+)とIN(−)
には、ブリッジ電源が接続され、出力端子OUT(+)
とOUT(−)には、リード線が接続され且つその先端
側は、図示しないひずみ測定器等の計測器が接続されて
いるものとして説明を進める。そこでまず、第1手順と
して、例えば、基準温度25℃の周囲環境から既知の高
温の油(例えば、130℃)中に、図10の(A)のよ
うに、圧力変換器の受感部あるいは起歪部としてのダイ
ヤフラム20aの部分を急激に浸漬して上記計測器によ
りブリッジ回路の図3の(A)に示すような過渡温度特
性のピーク値βを測定する。
Then, the input terminals IN (+) and IN (-)
Is connected to the bridge power supply, and the output terminal OUT (+)
A description will be given assuming that a lead wire is connected to OUT and OUT (-) and a measuring instrument such as a strain measuring instrument (not shown) is connected to the tip side thereof. Therefore, first, as a first procedure, for example, in a known high temperature oil (for example, 130 ° C.) from an ambient environment having a reference temperature of 25 ° C., as shown in FIG. The portion of the diaphragm 20a serving as the strain-flexing portion is rapidly dipped, and the peak value β of the transient temperature characteristic of the bridge circuit as shown in FIG.

【0031】次に、第2手順として、上記第1手順で得
られたピーク値βに見合う図3の(B)に示すような過
渡温度特性(β)を持つ過渡温度特性補償抵抗rs1を選
択して、ダイヤフラム20aのひずみゲージRg1〜Rg4
の添着部位のひずみ量よりなるべく少ないひずみ量の部
位に取付ける(あるいは添着する)。そして、この過渡
温度特性補償抵抗rs1を、ブリッジ回路のうち、過渡温
度特性を打ち消し得る一辺に回路接続する(図1参
照)。熱的衝撃を受けるダイヤフラム20aに添着され
た過渡温度特性補償抵抗rs1の過渡温度特性は、図3の
(B)に示すように、急峻な立ち上がり特性を呈する。
Next, as a second procedure, a transient temperature characteristic compensating resistor r s1 having a transient temperature characteristic (β) shown in FIG. 3B corresponding to the peak value β obtained in the first procedure is set. Select the strain gauges R g1 to R g4 of the diaphragm 20a.
Attach (or attach) to a site with a strain amount as small as possible than the strain amount of the attachment site of. The transient temperature characteristic compensating resistor r s1 is connected to one side of the bridge circuit that can cancel the transient temperature characteristic (see FIG. 1). The transient temperature characteristic of the transient temperature characteristic compensating resistor r s1 attached to the diaphragm 20a that receives a thermal shock exhibits a steep rising characteristic, as shown in FIG. 3B.

【0032】第3の手順として、上記過渡温度特性補償
抵抗rs1と同じ抵抗値(厳密に同じ抵抗値でなくてもよ
い)を持つバランス抵抗rs2を選択し、圧力変換器のう
ち、ダイヤフラム10aに熱衝撃が加わった場合でも温
度変化を緩慢に受ける熱的緩衝部である基板20上に添
着し且つブリッジ回路のうち、上記過渡温度特性補償抵
抗が接続されている辺と隣接する他の一辺に回路接続す
る(図1参照)。基板20に添着されて緩慢な温度変化
を受けるバランス抵抗rs2の過渡温度特性は、図3の
(C)のように、緩慢な立ち下がり特性を呈する。
As the third procedure, the balance resistance r s2 having the same resistance value as the transient temperature characteristic compensation resistance r s1 (not necessarily the same resistance value strictly) is selected, and the diaphragm of the pressure converter is selected. Even if a thermal shock is applied to 10a, it is attached on the substrate 20 which is a thermal buffering part that is subjected to a temperature change slowly and is adjacent to the side of the bridge circuit to which the transient temperature characteristic compensating resistor is connected. Circuit connection to one side (see Fig. 1). The transient temperature characteristic of the balance resistance r s2 attached to the substrate 20 and subjected to a slow temperature change exhibits a slow falling characteristic as shown in FIG.

【0033】次いで、第4の手順として、恒温槽などの
温度制御手段により圧力変換器全体の温度を段階的にゆ
っくり変化させて図3の(D)に示すような零点温度特
性(温度による見掛けひずみ)を測定し、この零点温度
特性に見合う図3の(E)に示すような零点温度特性を
呈する零点温度特性補償抵抗rtを選択し上記熱的緩衝
部である基板20上に添着し(または取付け)、且つブ
リッジ回路の上記図3の(D)に示す零点温度特性を打
ち消す方向の一辺に回路接続する。
Then, as a fourth procedure, the temperature of the entire pressure transducer is gradually changed stepwise by a temperature control means such as a constant temperature bath, and the zero-point temperature characteristic (apparent depending on temperature) as shown in FIG. strain) was measured and impregnated on the substrate 20 to select the zero point temperature characteristic compensation resistor r t exhibiting a zero temperature characteristic as shown in (E) of FIG. 3 is the above thermal buffer portion commensurate with the zero point temperature characteristic The circuit is connected (or attached) and is connected to one side of the bridge circuit in the direction in which the zero-point temperature characteristic shown in FIG.

【0034】以上、第1の手順〜第4の手順により過渡
温度特性の補償方法を実施すると、図3の(F)に示す
ように、熱的衝撃を受けたことによる図3の(A)に示
される過渡温度特性および図3の(D)に示される零点
温度特性のいずれも打ち消されて、全く温度影響を受け
ない程度に温度補償されたことが分かる。
As described above, when the transient temperature characteristic compensating method is carried out by the first to fourth steps, as shown in FIG. 3 (F), (A) in FIG. It can be seen that both the transient temperature characteristic shown in FIG. 3 and the zero-point temperature characteristic shown in FIG. 3D are canceled and the temperature is compensated to the extent that there is no temperature influence.

【0035】次に、本発明に係る圧力変換器における過
渡温度補償回路の第2の実施例を、図4および図5を参
照しつつ説明する。図4は、第2の実施例の温度補償回
路の構成を示す回路図、図5は、同実施例に係る圧力変
換器の断面構成を示す断面図である。同図において、起
歪体30の構成は、図2に示すものと比べて、ダイヤフ
ラム30aとは別に、一文字状の両端支持梁型の起歪部
30gを設け、この起歪部30gの中心部とダイヤフラ
ム30aの中心部との間を連接する力伝達ロッド30f
を設けた点が異なっている。
Next, a second embodiment of the transient temperature compensation circuit in the pressure converter according to the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 is a circuit diagram showing the configuration of the temperature compensation circuit of the second embodiment, and FIG. 5 is a sectional view showing the sectional configuration of the pressure converter according to the same embodiment. In the figure, the configuration of the strain-flexing body 30 is different from that shown in FIG. 2 in that, apart from the diaphragm 30a, a single-character-shaped both-end-supporting beam-type strain-flexing portion 30g is provided. And a force transmission rod 30f connecting between the center of the diaphragm 30a and the center of the diaphragm 30a.
The difference is that.

【0036】即ち、ダイヤフラム30a、円筒部30
b、内壁30c、円形溝30d、段部30e、および基
板40は、図2に示すダイヤフラム10a、円筒部10
b、内壁10c、円形溝10d、段部10e、および基
板20とほぼ共通であるので、上記説明したところを援
用することとし、ここでは重複した構成の説明は省略す
ることとする。また、過渡温度特性補償抵抗rs1、バラ
ンス抵抗rs2、零点温度特性補償抵抗rtも、図2に示
したものと同様の部位に配設されている。
That is, the diaphragm 30a and the cylindrical portion 30
b, the inner wall 30c, the circular groove 30d, the step portion 30e, and the substrate 40 are the diaphragm 10a and the cylindrical portion 10 shown in FIG.
Since it is almost common to b, the inner wall 10c, the circular groove 10d, the step portion 10e, and the substrate 20, the above description is used, and the description of the duplicated configuration will be omitted here. Further, the transient temperature characteristic compensation resistance r s1 , the balance resistance r s2 , and the zero-point temperature characteristic compensation resistance r t are also arranged at the same parts as those shown in FIG.

【0037】ただ、ひずみゲージRg1〜Rg4のみが、熱
衝撃を受ける受感部としてのダイヤフラム30aには添
着されておらず、ダイヤフラム30aから所定の間隔を
隔てた位置に配設されると共に力伝達ロッド30fによ
り連接された起歪部30g上に添着されている点が図2
に示す圧力変換器と相違している。
However, only the strain gauges R g1 to R g4 are not attached to the diaphragm 30a serving as a sensing unit that receives a thermal shock, and are arranged at a position separated from the diaphragm 30a by a predetermined distance. The point attached on the strain-flexing portion 30g connected by the force transmission rod 30f is shown in FIG.
It is different from the pressure transducer shown in.

【0038】このような構成よりなる第2の実施例の動
作は、基本的には図1、図2に示される第1の実施例と
同じであるが、ひずみゲージRg1〜Rg4は、直接的に熱
衝撃を受けないので、ブリッジ回路の過渡温度特性は、
第1の実施例のものより小さく、従って、過渡温度特性
補償抵抗rs1およびバランス抵抗rs2の抵抗値も小さい
もので足りる。即ち、ひずみゲージRg1〜Rg4の抵抗値
に比べ、十分に小さいので、圧力印加時のダイヤフラム
30aのひずみ量の大きい部位に添着しても、物理量に
対応したひずみによる抵抗値変化は、ブリッジ回路の出
力には実質的に影響を与えない。
The operation of the second embodiment having such a structure is basically the same as that of the first embodiment shown in FIGS. 1 and 2, but the strain gauges R g1 to R g4 are: Since it is not directly subjected to thermal shock, the transient temperature characteristic of the bridge circuit is
It is smaller than that of the first embodiment, and therefore, the resistance values of the transient temperature characteristic compensating resistor r s1 and the balance resistor r s2 are also small. That is, since it is sufficiently smaller than the resistance values of the strain gauges R g1 to R g4 , even if the strain gauge R is attached to a large strain amount portion of the diaphragm 30a at the time of pressure application, the change in resistance value due to the strain corresponding to the physical amount is It has virtually no effect on the output of the circuit.

【0039】即ち、第2の実施例の方が過渡温度特性の
補償が容易であり、より的確な温度補償を行うことがで
きる。尚、上記第1および第2の実施例において、過渡
温度特性補償抵抗rs1およびバランス抵抗rs2は、銅ま
たはニッケルを材料として線状または箔状形成されるこ
とが望ましい。
That is, in the second embodiment, the transient temperature characteristic can be easily compensated, and more accurate temperature compensation can be performed. In the first and second embodiments, it is desirable that the transient temperature characteristic compensating resistor r s1 and the balance resistor r s2 be formed of copper or nickel in a linear or foil shape.

【0040】それは、銅やニッケルは、ひずみゲージR
g1〜Rg4に比べ、抵抗温度係数が極めて大きい(銅は、
3400〜3900PPM/℃であり、ニッケルは、約
4500PPM/℃である)ため、その抵抗値が小さい
もので足り、上記したように、測定すべき負荷(物理
量)によりひずみを受けてもその抵抗値変化は無視し得
る範囲にとどまる。
It is the strain gauge R for copper and nickel.
The temperature coefficient of resistance is much higher than that of g1 to Rg4 (copper is
Since it is 3400 to 3900 PPM / ° C, and nickel has a resistance value of about 4500PPM / ° C), a small resistance value is sufficient, and as described above, the resistance value even if strained by the load (physical quantity) to be measured. The change remains negligible.

【0041】ところで、従来、熱衝撃を受ける部位の変
形や受熱に起因する他の部位の変形を逃がすために構造
的な工夫を加えたり、熱が均等に加わるようにひずみゲ
ージを配置したり、温度差が生じないように極力近接し
て配置したり、抵抗温度係数を揃えて製造するなどひず
みゲージ素子についての工夫を加えたものはあるが、過
渡温度特性を精度良く補償し得るものではなかった。
By the way, conventionally, a structural measure is added in order to release the deformation of the portion which is subjected to thermal shock and the deformation of the other portion due to the heat reception, or the strain gauge is arranged so that the heat is evenly applied, Some strain gauge elements have been added such as placing them as close to each other as possible so that no temperature difference will occur, or manufacturing them with the same resistance temperature coefficient, but they cannot accurately compensate for transient temperature characteristics. It was

【0042】これに対し本発明によれば、他の特性を何
ら犠牲にすることなく、また、上記のように特別に構造
的な工夫や、ひずみゲージ素子について特別に工夫を施
すことを要せず、過渡温度特性を極めて良好に補償する
ことができる。従って、設計の自由度が広がり、また、
変換器自体の構造的工夫をこらす必要がないから、低コ
スト化を実現できると共に、従来不可能視されていた、
高温度の熱衝撃下での物理量の高精度な測定を初めて実
現することができた。
On the other hand, according to the present invention, it is necessary to specially devise the structure and the strain gauge element as described above without sacrificing other characteristics. Therefore, the transient temperature characteristic can be compensated extremely well. Therefore, the degree of freedom in design is expanded, and
Since it is not necessary to devise the structural ingenuity of the converter itself, cost reduction can be realized and it was considered impossible in the past.
For the first time, highly accurate measurement of physical quantities under high temperature thermal shock was realized.

【0043】尚、本発明は、上述し且つ図示した実施例
にのみ限定されるものではなく、本発明の要旨を逸脱し
ない範囲内で種々の変形実施が可能である。例えば、ひ
ずみゲージ式変換器としては、上述した圧力変換器に限
らず、荷重変換器、変位変換器、加速度変換器、トルク
変換器等、熱衝撃を受ける環境下で物理量をひずみゲー
ジにより電気量に変換して検出するものにも適用するこ
とができる。
The present invention is not limited to the above-described and illustrated embodiments, and various modifications can be made without departing from the gist of the present invention. For example, the strain gauge type transducer is not limited to the pressure transducer described above, but a load transducer, a displacement transducer, an acceleration transducer, a torque transducer, etc. are used to measure the physical quantity of the strain gauge under the environment of thermal shock. It can also be applied to the one that is converted into and detected.

【0044】また、過渡温度特性補償抵抗rs1およびバ
ランス抵抗rs2は、銅やニッケルを素材として製作した
ものに限らず、抵抗温度係数が比較的大きいものであれ
ば、他の材料よりなるものでもよいし、過渡温度特性が
小さい変換器の場合には、必らずしも抵抗温度係数が大
きな材料によらないものでも適用可能である。また、ブ
リッジ回路は、図示した実施例のように4つのひずみゲ
ージでフルブリッジ回路を構成するものに限らず、1つ
または2つのひずみゲージよりブリッジ回路を形成する
場合にも、本発明は、適用可能である。
The transient temperature characteristic compensating resistor r s1 and the balance resistor r s2 are not limited to those made of copper or nickel, but may be made of other materials as long as the temperature coefficient of resistance is relatively large. However, in the case of a converter having a small transient temperature characteristic, it is inevitable that a material having a large temperature coefficient of resistance is not used. In addition, the bridge circuit is not limited to the one in which the full bridge circuit is configured by four strain gauges as in the illustrated embodiment, and the present invention is also applicable to a case where the bridge circuit is formed by one or two strain gauges. Applicable.

【0045】[0045]

【発明の効果】以上の説明より明らかなように、本発明
によれば、被測定対象より、測定すべき物理量のほか
に、受感部あるいは起歪部に衝撃的な温度変化を受けて
も、その熱衝撃に伴う大きな過渡温度特性を簡略且つ安
価な構成で、確実に補償し得ると共に、変換器が緩慢な
温度変化を受けても零点温度特性も併せて良好に補償
し、実質的に変換器の温度影響を無くし得るひずみゲー
ジ式変換器における過渡温度特性の補償回路およびその
補償方法を提供することができる。
As is apparent from the above description, according to the present invention, even if the sensitive portion or the strain generating portion is subjected to a shocking temperature change from the object to be measured, in addition to the physical quantity to be measured. , A large transient temperature characteristic due to the thermal shock can be reliably compensated by a simple and inexpensive structure, and even if the converter is subjected to a slow temperature change, the zero point temperature characteristic is also well compensated and substantially It is possible to provide a compensation circuit for a transient temperature characteristic in a strain gauge type converter that can eliminate the temperature effect of the converter and a method for compensating for it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の回路構成を示す回路図
である。
FIG. 1 is a circuit diagram showing a circuit configuration of a first embodiment of the present invention.

【図2】本発明の第1の実施例のひずみゲージ式変換器
の構成を示す図であり、(A)はその断面図、(B)は
その動作を説明するためにダイヤフラムの受圧時の変形
を誇張して示す図、(C)はひずみゲージ、過渡温度特
性補償抵抗の添着状態を示す平面図である。
2A and 2B are views showing a configuration of a strain gauge type transducer according to a first embodiment of the present invention, in which FIG. 2A is a sectional view thereof, and FIG. 2B is a diagram for explaining the operation thereof when a diaphragm is receiving pressure. FIG. 7C is a plan view showing the deformation of the strain gauge and the transient temperature characteristic compensating resistor in an exaggerated manner.

【図3】第1の実施例のひずみゲージ式変換器に熱衝撃
が加わったときの過渡温度特性および零点温度特性の各
補償方法を説明するための特性図であり、(A)は、温
度補償前のブリッジ回路の過渡温度特性を示す図、
(B)は、過渡温度特性補償抵抗の過渡温度特性図、
(C)は、バランス抵抗の過渡温度特性図、(D)は、
変換器に過渡温度特性補償抵抗とバランス抵抗とを取り
付け且つブリッジ回路に接続した状態における過渡温度
特性図、(E)は、零点温度特性補償抵抗の過渡温度特
性図、(F)は、変換器に過渡温度特性補償抵抗とバラ
ンス抵抗と零点温度特性補償抵抗とを取り付け且つブリ
ッジ回路に接続した状態における過渡温度特性と零点温
度特性とを結合的に示す特性図である。
FIG. 3 is a characteristic diagram for explaining respective compensation methods for transient temperature characteristics and zero-point temperature characteristics when a thermal shock is applied to the strain gauge type converter of the first embodiment, and (A) is a temperature chart. Diagram showing the transient temperature characteristics of the bridge circuit before compensation,
(B) is a transient temperature characteristic diagram of the transient temperature characteristic compensation resistor,
(C) is a transient temperature characteristic diagram of the balance resistance, and (D) is
(E) is a transient temperature characteristic diagram of a zero temperature characteristic compensating resistor, and (F) is a converter. FIG. 7 is a characteristic diagram jointly showing the transient temperature characteristic and the zero point temperature characteristic in a state where the transient temperature characteristic compensating resistor, the balance resistor and the zero point temperature characteristic compensating resistor are attached to and connected to the bridge circuit.

【図4】本発明の第2の実施例の回路構成を示す回路図
である。
FIG. 4 is a circuit diagram showing a circuit configuration of a second embodiment of the present invention.

【図5】本発明の第2の実施例の変換器の構成を示す断
面図である。
FIG. 5 is a sectional view showing a configuration of a converter according to a second embodiment of the present invention.

【図6】第1の従来例の圧力変換器の構成を示す断面図
である。
FIG. 6 is a sectional view showing a configuration of a pressure converter of a first conventional example.

【図7】第2の従来例の圧力変換器の構成を示す断面図
である。
FIG. 7 is a cross-sectional view showing a configuration of a pressure converter of a second conventional example.

【図8】第1の従来例の圧力変換器における零点温度特
性補償回路の回路構成を示す回路図である。
FIG. 8 is a circuit diagram showing a circuit configuration of a zero-point temperature characteristic compensation circuit in a pressure converter of a first conventional example.

【図9】第2の従来例の圧力変換器における零点温度特
性補償回路の回路構成を示す回路図である。
FIG. 9 is a circuit diagram showing a circuit configuration of a zero-point temperature characteristic compensation circuit in a pressure converter of a second conventional example.

【図10】従来の圧力変換器に熱衝撃が加えられたとき
における過渡温度特性を説明するための図であり、この
うち(A)は、その圧力変換器のダイヤフラムに熱衝撃
が加わったときの時間に対する温度変化の関係を表わす
熱衝撃特性図、(B)は、温度補償が施されていない状
態におけるブリッジ回路の過渡温度特性図、(C)は、
本発明が適用された圧力変換器におけるブリッジ回路の
過渡温度特性図、(D)は、第1の従来例の圧力変換器
におけるブリッジ回路の過渡温度特性図、(E)は、第
2の従来例の圧力変換器におけるブリッジ回路の過渡温
度特性図である。
FIG. 10 is a diagram for explaining a transient temperature characteristic when a thermal shock is applied to a conventional pressure converter, in which (A) shows a case where a thermal shock is applied to a diaphragm of the pressure converter. (B) is a transient temperature characteristic diagram of a bridge circuit in the state where temperature compensation is not applied, and (C) is
The transient temperature characteristic diagram of the bridge circuit in the pressure converter to which the present invention is applied, (D) is the transient temperature characteristic diagram of the bridge circuit in the pressure converter of the first conventional example, and (E) is the second conventional example. It is a transient temperature characteristic figure of the bridge circuit in the pressure converter of an example.

【符号の説明】[Explanation of symbols]

10,30 起歪体 10a,30a ダイヤフラム 10b,30b 円筒部 10c,30c 内壁 10d,30d 円形溝 10e,30e 段部 20,40 基板 20a,40a 円孔 30f 力伝達ロッド 30g 起歪部 Rg1,Rg2,Rg3,Rg4 ひずみゲージ rs1 過渡温度特性補償抵抗 rs2 バランス抵抗 rt 零点温度特性補償抵抗10, 30 Strain element 10a, 30a Diaphragm 10b, 30b Cylindrical portion 10c, 30c Inner wall 10d, 30d Circular groove 10e, 30e Step portion 20, 40 Substrate 20a, 40a Circular hole 30f Force transmission rod 30g Strain portion Rg1 , R g2 , R g3 , R g4 Strain gauge r s1 Transient temperature characteristic compensation resistance r s2 Balance resistance r t Zero point temperature characteristic compensation resistance

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01D 3/028 G01B 7/16 G01G 23/48 G01L 1/22 G01L 9/04 101 G01L 19/04 ─────────────────────────────────────────────────── ─── Continued Front Page (58) Fields surveyed (Int.Cl. 7 , DB name) G01D 3/028 G01B 7/16 G01G 23/48 G01L 1/22 G01L 9/04 101 G01L 19/04

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 変換器の起歪部に添着されたひずみゲー
ジによって物理量を電気量に変換するひずみゲージ式変
換器において、物理量を受けると共に被測定対象より衝
撃的な温度変化を受ける起歪部に添着されたひずみゲー
ジおよび過渡温度特性補償抵抗と、前記変換器のうち前
記温度変化を緩慢に受ける熱的緩衝部に添着され前記過
渡温度特性補償抵抗と同じ抵抗値を有するバランス抵抗
と、を具備し、前記ひずみゲージにより形成されたホイ
ートストンブリッジ回路の過渡温度特性に見合う特性を
有する前記過渡温度特性補償抵抗を、前記ホイートスト
ンブリッジ回路の一辺に回路挿入し、この一辺と隣り合
う他の辺に前記バランス抵抗を回路挿入することによ
り、前記ホイートストンブリッジ回路の過渡温度特性を
打ち消すように構成したことを特徴とするひずみゲージ
式変換器における過渡温度特性の補償回路。
1. A strain gauge type converter for converting a physical quantity into an electric quantity by means of a strain gauge attached to the strain generating section of the transducer, wherein the strain generating section receives a physical quantity and is subjected to a shocking temperature change from an object to be measured. A strain gauge and a transient temperature characteristic compensating resistor attached to, and a balance resistor having the same resistance value as the transient temperature characteristic compensating resistor attached to a thermal buffer part that slowly receives the temperature change of the converter, Comprising, the transient temperature characteristic compensation resistor having a characteristic corresponding to the transient temperature characteristic of the Wheatstone bridge circuit formed by the strain gauge, the circuit is inserted into one side of the Wheatstone bridge circuit, the other side adjacent to this one side. By inserting the balance resistor in the circuit, the Wheatstone bridge circuit is configured to cancel the transient temperature characteristic. Compensation circuit for transient temperature characteristics in strain gage applied transducer.
【請求項2】 前記ホイートストンブリッジ回路全体の
零点温度特性に見合う零点温度特性補償抵抗を、前記熱
的緩衝部に添着し且つ前記ホイートストンブリッジ回路
のうち、零点温度特性を打ち消す方向の一辺に直列に回
路挿入するように構成したことを特徴とする請求項1の
ひずみゲージ式変換器における過渡温度特性の補償回
路。
2. A zero-point temperature characteristic compensating resistor suitable for the zero-point temperature characteristic of the whole Wheatstone bridge circuit is attached to the thermal buffer and is serially connected to one side of the Wheatstone bridge circuit in the direction in which the zero-point temperature characteristic is canceled. A circuit for compensating for transient temperature characteristics in a strain gauge type converter according to claim 1, wherein the circuit is inserted.
【請求項3】 前記起歪部は、ダイヤフラムとして形成
され、このダイヤフラムのうち、大きなひずみを生じる
部位に前記ひずみゲージが添着され、小さなひずみを生
じる部位に過渡温度特性補償抵抗が添着され、前記ダイ
ヤフラムから所定の距離を隔てて配設された基板に前記
バランス抵抗が添着されていることを特徴とする請求項
1のひずみゲージ式変換器における過渡温度特性の補償
回路。
3. The strain-inducing portion is formed as a diaphragm, the strain gauge is attached to a portion of the diaphragm that produces a large strain, and the transient temperature characteristic compensation resistor is attached to a portion of the diaphragm that produces a small strain. The compensation circuit for a transient temperature characteristic in a strain gauge type converter according to claim 1, wherein the balance resistor is attached to a substrate arranged at a predetermined distance from the diaphragm.
【請求項4】 前記過渡温度特性補償抵抗および前記バ
ランス抵抗は、銅またはニッケルを材料として線状もし
くは箔状に形成されていることを特徴とする請求項1な
いし3のうちのいずれか1項のひずみゲージ式変換器に
おける過渡温度特性の補償回路。
4. The transient temperature characteristic compensating resistor and the balance resistor are formed in a linear or foil shape using copper or nickel as a material. Compensation Circuit for Transient Temperature Characteristic in Strain Gage Transducer.
【請求項5】 変換器の起歪部に添着されたひずみゲー
ジによって物理量を電気量に変換するひずみゲージ式変
換器において、物理量を受けると共に被測定対象より衝
撃的な温度変化を受ける受感部に添着された過渡温度特
性補償抵抗と、前記受感部から所定の間隔を隔てた位置
に配設されると共に前記受感部との間が力伝達ロッドに
より連接された起歪部に添着されたひずみゲージと、前
記受感部に対し前記起歪部より遠くの位置に配設された
熱的緩衝部に添着され前記過渡温度特性補償抵抗と同じ
抵抗値を有するバランス抵抗と、を具備し、前記ひずみ
ゲージにより形成されたホイートストンブリッジ回路の
過渡温度特性に見合う特性を有する前記過渡温度特性補
償抵抗を、前記ホイートストンブリッジ回路の一辺に回
路挿入し、この一辺と隣り合う他の辺に前記バランス抵
抗を回路挿入することにより前記ホイートストンブリッ
ジ回路の過渡温度特性を打ち消すように構成したことを
特徴とするひずみゲージ式変換器における過渡温度特性
の補償回路。
5. A strain gauge type converter for converting a physical quantity into an electric quantity by means of a strain gauge attached to a strain generating part of the transducer, wherein the sensing section receives a physical quantity and is subjected to a shocking temperature change from an object to be measured. The transient temperature characteristic compensating resistance attached to the sensor and the strain sensing element disposed at a position spaced apart from the sensing section by a predetermined distance and connected to the strain sensing section between the sensing section and the force sensing rod. A strain gauge, and a balance resistor attached to a thermal buffer disposed at a position farther from the strain generating unit with respect to the sensing unit and having the same resistance value as the transient temperature characteristic compensation resistor. , The transient temperature characteristic compensating resistor having characteristics matching the transient temperature characteristic of the Wheatstone bridge circuit formed by the strain gauge is inserted into one side of the Wheatstone bridge circuit, and this one side A circuit for compensating the transient temperature characteristic in the strain gauge type converter, wherein the transient temperature characteristic of the Wheatstone bridge circuit is canceled by inserting the balance resistance circuit in another side adjacent to the circuit.
【請求項6】 前記受感部は、ダイヤフラムとして形成
され、前記起歪部は、その中心部が前記ダイヤフラムの
中心部に前記力伝達ロッドを介して連接された一文字状
ビームとして形成され、前記熱的緩衝部は、前記変換器
内に配設された基板として形成されていることを特徴と
する請求項5のひずみゲージ変換器における過渡温度特
性の補償回路。
6. The sensing part is formed as a diaphragm, and the strain-flexing part is formed as a single-character beam in which the center part is connected to the center part of the diaphragm via the force transmission rod. The compensation circuit for transient temperature characteristics in a strain gauge converter according to claim 5, wherein the thermal buffer is formed as a substrate arranged in the converter.
【請求項7】 物理量を受けると共に被測定対象より衝
撃的な温度変化を受ける受感部に添着された複数のひず
みゲージによってホイートストンブリッジ回路が形成さ
れてなるひずみゲージ式変換器において、 既知の温度の油中に前記受感部を急激に浸漬して上記ホ
イートストンブリッジ回路の過渡温度特性のピーク値を
測定する第1手順と、この第1手順で得られたピーク値
に見合う過渡温度特性補償抵抗を選択して前記受感部に
添着し且つ前記過渡温度特性補償抵抗をホイートストン
ブリッジ回路の過渡温度特性を打ち消し得る一辺に回路
接続する第2手順と、前記過渡温度特性補償抵抗と同じ
抵抗値を持つバランス抵抗を選択して前記変換器のうち
温度変化を緩慢に受ける熱的緩衝部に添着し且つ前記ホ
イートストンブリッジ回路の前記過渡温度特性補償抵抗
が接続されている辺と隣接する他の一辺に回路接続する
第3手順と、 次いで、恒温槽などの温度制御手段により変換器の温度
を段階的に変化させて零点温度特性を測定し、この零点
温度特性に見合う零点温度特性補償抵抗を選択して前記
熱的緩衝部に添着し且つ前記ホイートストンブリッジ回
路の前記零点温度特性を打ち消す方向の一辺に回路接続
する第4手順と、からなるひずみゲージ式変換器におけ
る過渡温度特性の補償方法。
7. A strain gauge transducer in which a Wheatstone bridge circuit is formed by a plurality of strain gauges attached to a sensing unit that receives a physical quantity and is subjected to a shocking temperature change from an object to be measured, at a known temperature. Of the transient temperature characteristic of the Wheatstone bridge circuit by suddenly immersing the sensing part in the oil of No. 1 and the transient temperature characteristic compensating resistance corresponding to the peak value obtained by the first procedure. Is selected and attached to the sensing section, and the transient temperature characteristic compensation resistor is connected to one side capable of canceling the transient temperature characteristic of the Wheatstone bridge circuit, and the same resistance value as the transient temperature characteristic compensation resistor is set. A balance resistance is selected to be attached to a thermal buffer portion of the converter that slowly receives a temperature change, and the balance resistor is provided in front of the Wheatstone bridge circuit. A third step of connecting a circuit to the other side adjacent to the side to which the transient temperature characteristic compensating resistor is connected, and then changing the temperature of the converter stepwise by temperature control means such as a constant temperature bath to obtain the zero point temperature characteristic. And a fourth step of selecting a zero-point temperature characteristic compensating resistor suitable for this zero-point temperature characteristic and attaching it to the thermal buffer and connecting to one side of the Wheatstone bridge circuit in a direction in which the zero-point temperature characteristic is canceled. Compensation method for transient temperature characteristics in strain gauge type transducer consisting of.
JP11907295A 1995-04-21 1995-04-21 Compensation circuit for transient temperature characteristics in strain gauge transducer and its compensation method Expired - Fee Related JP3534205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11907295A JP3534205B2 (en) 1995-04-21 1995-04-21 Compensation circuit for transient temperature characteristics in strain gauge transducer and its compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11907295A JP3534205B2 (en) 1995-04-21 1995-04-21 Compensation circuit for transient temperature characteristics in strain gauge transducer and its compensation method

Publications (2)

Publication Number Publication Date
JPH08292065A JPH08292065A (en) 1996-11-05
JP3534205B2 true JP3534205B2 (en) 2004-06-07

Family

ID=14752194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11907295A Expired - Fee Related JP3534205B2 (en) 1995-04-21 1995-04-21 Compensation circuit for transient temperature characteristics in strain gauge transducer and its compensation method

Country Status (1)

Country Link
JP (1) JP3534205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492654A2 (en) 2011-02-25 2012-08-29 Ishida Co., Ltd. Label printing scale device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195905A (en) * 2000-12-27 2002-07-10 Minebea Co Ltd Sanitary pressure transducer dealing with high temperature
AU2003254107B2 (en) * 2002-07-25 2008-06-19 Covidien Ag Electrosurgical pencil with drag sensing capability
JP5126852B2 (en) * 2009-02-04 2013-01-23 株式会社タニタ Multi-point scale manufacturing method and multi-point scale
CN111928771A (en) * 2020-08-06 2020-11-13 广东高标电子科技有限公司 Strain detection device and strain detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492654A2 (en) 2011-02-25 2012-08-29 Ishida Co., Ltd. Label printing scale device
US9091587B2 (en) 2011-02-25 2015-07-28 Ishida Co., Ltd. Label printing scale device

Also Published As

Publication number Publication date
JPH08292065A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US4765188A (en) Pressure transducer with integral digital temperature compensation
US5712428A (en) Pressure sensor with a solid to minimize temperature-related measurement error
GB2369889A (en) Strain sensing device
US4703663A (en) Force sensor for electrical measuring of forces, torques, acceleration pressures and mechanical stresses
US4938068A (en) Pressure transducer
US6578434B1 (en) Tensile testing sensor for measuring mechanical jamming deformations on first installation and automatic calibrating based on said jamming
NL8602362A (en) THICK-FILM STRETCH METER FOR SCANNING STRESSES AND STRENGTHS IN MECHANICAL PARTS OR CONSTRUCTIONS.
EP0677725A1 (en) Improved electronic circuit for a transducer
JPH0264430A (en) Semiconductor pressure converter
US5134885A (en) Circuit arrangement for measuring a mechanical deformation, in particular under the influence of a pressure
US6225576B1 (en) Shear beam load cell
JP2017506737A (en) High precision load cell with elastic body
JP3534205B2 (en) Compensation circuit for transient temperature characteristics in strain gauge transducer and its compensation method
JP2000120611A (en) Fluid pressure cylinder device
Zhang et al. A high-accuracy multi-element silicon barometric pressure sensor
Elbestawi Force measurement
JPH10253467A (en) Method and device for measuring load
US5447071A (en) Direct coupled pressure sensing device
Trieu et al. Monolithic integrated surface micromachined pressure sensors with analog on-chip linearization and temperature compensation
US20230314245A1 (en) Effective gauge factor utilizing integrated millivolt amplifier for strain gauge applications
JPS59217374A (en) Semiconductor strain converter
JPS62211526A (en) Mechanism for receiving force or pressure having split leaf spring so that bending moment is not generated
JPH0339569B2 (en)
JP2536822B2 (en) Temperature compensation circuit for weighing device
JPH08201202A (en) Balanced-bridge adjusting circuit of strain guide converter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040303

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees