JP3529437B2 - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JP3529437B2
JP3529437B2 JP20474394A JP20474394A JP3529437B2 JP 3529437 B2 JP3529437 B2 JP 3529437B2 JP 20474394 A JP20474394 A JP 20474394A JP 20474394 A JP20474394 A JP 20474394A JP 3529437 B2 JP3529437 B2 JP 3529437B2
Authority
JP
Japan
Prior art keywords
helium gas
magnet device
cooling
superconducting magnet
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20474394A
Other languages
Japanese (ja)
Other versions
JPH0869911A (en
Inventor
克時 佐々木
多美子 蛭町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20474394A priority Critical patent/JP3529437B2/en
Publication of JPH0869911A publication Critical patent/JPH0869911A/en
Application granted granted Critical
Publication of JP3529437B2 publication Critical patent/JP3529437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強磁場を利用した成分分
析を必要とする食品工業、材料工業、医療等の分野に用
いられる超電導磁石装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device used in the fields of food industry, material industry, medical field, etc., which require component analysis utilizing a strong magnetic field.

【0002】[0002]

【従来の技術】冷凍機で超電導コイルを冷却保持する超
電導磁石装置は冷凍機の冷凍能力向上に従って近年開発
が盛んになって来ている。図2に従来の超電導磁石装置
の断面図を示す。図2において、1は超電導線を巻回し
てなる超電導コイル、2は輻射シールド、3は内部を真
空断熱する真空容器、4は超電導コイルと熱伝導性良好
に結合された冷却部材、5は第1ステーションで輻射シ
ールドを冷却し、かつ第2ステーションで冷却部材を介
して超電導コイルを冷却するための冷凍機、6は冷凍機
に圧縮ヘリウムガスを供給すると共に運転制御する圧縮
機、7は超電導コイルに電流を供給する電流リードで、
本図では冷凍機の各ステーションで冷却される。電流リ
ードの端部は電源(図示せず)に接続される。8は超電
導コイルに永久電流を流すための永久電流スイッチであ
る。
2. Description of the Related Art A superconducting magnet device for cooling and holding a superconducting coil in a refrigerator has been actively developed in recent years as the refrigerating capacity of the refrigerator is improved. FIG. 2 shows a cross-sectional view of a conventional superconducting magnet device. In FIG. 2, 1 is a superconducting coil formed by winding a superconducting wire, 2 is a radiation shield, 3 is a vacuum container for vacuum heat insulation of the inside, 4 is a cooling member which is coupled to the superconducting coil with good thermal conductivity, and 5 is a A refrigerator for cooling the radiation shield in one station and for cooling the superconducting coil in the second station via a cooling member, 6 is a compressor that supplies compressed helium gas to the refrigerator and controls operation, and 7 is superconducting With a current lead that supplies current to the coil,
In this figure, it is cooled at each station of the refrigerator. The ends of the current leads are connected to a power source (not shown). Reference numeral 8 denotes a permanent current switch for supplying a permanent current to the superconducting coil.

【0003】図2の構成による超電導磁石装置によれ
ば、超電導コイルは冷凍機の運転により超電導線の臨界
温度以下に冷却され、超電導状態となる。この状態で電
流リードより電流が供給されると強磁界が生じる。その
後永久電流スイッチを閉状態にして電流リードの電流を
零としても、超電導コイルに永久電流が流れ、強磁界が
発生し続ける。
According to the superconducting magnet device having the structure shown in FIG. 2, the superconducting coil is cooled to a temperature below the critical temperature of the superconducting wire by the operation of the refrigerator, and becomes in the superconducting state. When a current is supplied from the current lead in this state, a strong magnetic field is generated. After that, even if the permanent current switch is closed to set the current of the current lead to zero, the persistent current flows in the superconducting coil and the strong magnetic field continues to be generated.

【0004】[0004]

【発明が解決しようとする課題】このような構成の装置
では、冷凍機が停電、断水等で停止すると、冷却能力は
零になるばかりか、熱の侵入源となり急速に超電導コイ
ルの温度上昇をきたし、臨界温度以上となり常電導転移
(以下クエンチ)を起こし、磁場が零となってしまう。
このようなクエンチを起こすと、超電導コイルの蓄積エ
ネルギーのため超電導コイル温度が大幅に上昇するた
め、復電後すぐ励磁することが不可能で臨界温度以下に
冷却するまで長時間を要し、本装置のシステム全体を停
止することになる。
In a device having such a structure, when the refrigerator stops due to a power failure, water interruption, etc., not only the cooling capacity becomes zero but also a heat intrusion source, causing a rapid rise in the temperature of the superconducting coil. However, the temperature rises above the critical temperature and a normal conduction transition (quenching) occurs, causing the magnetic field to become zero.
If such a quench occurs, the temperature of the superconducting coil will rise significantly due to the energy stored in the superconducting coil, so it will not be possible to excite immediately after power recovery and it will take a long time to cool below the critical temperature. The entire system of equipment will be stopped.

【0005】本発明はこの課題を解決するためになされ
たもので短時間の停電、断水等による冷凍機の運転停止
時でも、クエンチせず強磁場を発生することができる超
電導磁石を供給することを特徴とするものである。
The present invention has been made in order to solve this problem, and supplies a superconducting magnet which can generate a strong magnetic field without quenching even when the operation of the refrigerator is stopped due to short-term power failure, water interruption, etc. It is characterized by.

【0006】[0006]

【課題を解決するための手段】本発明は冷却部材に冷却
管を設け、真空容器の外部へ出し、圧力流量調整装置を
介してヘリウムガスが充填されたヘリウムガス容器に接
続し、この圧力流量調整装置は、ヘリウムガス容器から
のヘリウムガス流量を調整し、前記冷凍機の停止時に前
記ヘリウムガス容器からのヘリウムガスの供給を停止し
かつ前記冷却管内圧を大気開放して前記冷却管内の液体
ヘリウムを蒸発させて前記超電導コイルの温度を保持さ
せ前記冷却管内圧が大気圧より低い場合に大気の流入を
防止する構成を有する。
According to the present invention, a cooling member is provided with a cooling pipe, which is exposed to the outside of a vacuum container and connected to a helium gas container filled with helium gas through a pressure flow rate adjusting device. The adjusting device adjusts the helium gas flow rate from the helium gas container, stops the supply of the helium gas from the helium gas container when the refrigerator is stopped, and releases the cooling pipe internal pressure to the atmosphere to release the liquid in the cooling pipe.
Helium is evaporated to maintain the temperature of the superconducting coil.
In addition, when the internal pressure of the cooling pipe is lower than the atmospheric pressure, it is configured to prevent the inflow of the atmosphere.

【0007】[0007]

【作用】冷却管が冷却され始めるに従い、冷却管内部の
ヘリウムガスは冷却され最終段階では冷却部材温度が5.
22K以下の場合には液体ヘリウムになる。この場合ガス
の収縮に従ってヘリウムガス容器のヘリウムガスが供給
される。したがって冷凍機が停止した場合には熱侵入量
にともなって液体ヘリウムが蒸発し、その気化熱で冷却
するから、超電導コイルの温度上昇を防止でき、クエン
チの発生を防止できる。
[Operation] As the cooling pipe begins to cool, the helium gas inside the cooling pipe is cooled, and the cooling member temperature is 5.
Below 22K, it becomes liquid helium. In this case, the helium gas in the helium gas container is supplied as the gas contracts. Therefore, when the refrigerator stops, liquid helium evaporates with the amount of heat penetration and is cooled by the heat of vaporization, so that the temperature rise of the superconducting coil can be prevented and the occurrence of quench can be prevented.

【0008】[0008]

【実施例】(実施例の構成) 本発明の一実施例の構成を図1によって説明する。図1
は本発明の一実施例の構成を示す図である。1はNb−
Ti合金、Nb3 Sn等の超電導材料から成る超電導線
を巻回構成し、エポキシ樹脂含浸等の熱伝導性を良好に
成らしめた超電導コイル、2は内部への輻射熱を低減す
る輻射シールド、3は内部を真空断熱するための真空容
器、4は超電導コイル1に少なくとも1面と熱伝導性が
良好に接していて、アルミニウム又は銅等の熱伝導性良
好材料から成る冷却部材、5は第1ステーション、第2
ステーションを持ち、第1ステーションで輻射シールド
2を冷却し、第2ステーションで冷却部材4を冷却する
冷凍機、6は冷凍機5の運転制御に必要な圧縮機であ
る。7は超電導コイル1へ電流を供給する電流リード
で、冷凍機5の第1ステーションおよび第2ステーショ
ンで冷却保持されている。8は超電導コイル1と並列回
路で接続されていて、定常時に超電導コイル1に永久電
流を流すための永久電流スイッチで、熱伝導性セラミッ
クス例えばAlNを介して冷却部材4に固定冷却され
る。なお、この熱伝導性セラミックスはIn,Cu,A
g,Au,Ag及びこれらの合金よりなる薄板を介して
永久電流スイッチ8、冷却部材4に取付けてもよい。10
はアルミニウムパイプ、SUSパイプ等から成り冷却部
材4へ溶接、ロー付等の熱伝導性を良好になるように結
合した冷却管で、端部は真空容器の外部へ出ている。定
常時は本冷却管内部へ液体ヘリウムが貯液された状態に
なっている。11は冷却管10の一端と接続された外部配管
で途中にバルブを介し大気放出口11aが付いている。12
は11と同様な外部配管でバルブを介し、大気へ出てい
る。20は冷却部材4の温度がヘリウムガスの臨界温度
(5.22K)以上の場合は冷却管10の内部圧力を臨界圧力
(2.27 atm)以下に、又冷却部材4温度が5.22K未満の
場合には冷却管10の内部圧力をその温度でのヘリウムガ
スの飽和蒸気圧に設定できるように圧力流量調整できる
機能をもたせた圧力流量調整装置である。さらに本圧力
流量調整装置には、冷凍機停止時は冷却管の圧力を大気
へ開放すると共に、ヘリウムガス容器からのガス流入を
停止させる機能も持たせてある。30は冷却管10にヘリウ
ムガスを常に供給できるヘリウムガス容器である。この
ヘリウムガス容器10はヘリウムガスボンベでも良い。
Embodiment (Structure of Embodiment) The structure of an embodiment of the present invention will be described with reference to FIG. Figure 1
FIG. 1 is a diagram showing a configuration of an exemplary embodiment of the present invention. 1 is Nb-
A superconducting coil formed by winding a superconducting wire made of a superconducting material such as a Ti alloy or Nb3Sn, and having excellent thermal conductivity such as epoxy resin impregnation, 2 is a radiation shield for reducing radiant heat to the inside, 3 is a A vacuum container for vacuum heat insulation of the inside, 4 is in contact with at least one surface of the superconducting coil 1 with good thermal conductivity, and a cooling member 5 made of a material with good thermal conductivity such as aluminum or copper is the first station. , Second
A refrigerator having a station, which cools the radiation shield 2 at the first station and cools the cooling member 4 at the second station, and a compressor 6 required for controlling the operation of the refrigerator 5. Reference numeral 7 denotes a current lead for supplying a current to the superconducting coil 1, which is cooled and held in the first station and the second station of the refrigerator 5. Reference numeral 8 is a parallel circuit connected to the superconducting coil 1 and is a permanent current switch for supplying a permanent current to the superconducting coil 1 in a steady state, which is fixedly cooled to the cooling member 4 via a heat conductive ceramic such as AlN. In addition, this heat conductive ceramic is In, Cu, A
via a thin plate made of g, Au, Ag and their alloys
It may be attached to the permanent current switch 8 and the cooling member 4. Ten
Is a cooling pipe made of an aluminum pipe, a SUS pipe or the like and connected to the cooling member 4 so as to have good heat conductivity such as welding or brazing, and its end portion is exposed to the outside of the vacuum container. At regular times, liquid helium is stored inside the cooling pipe. Reference numeral 11 denotes an external pipe connected to one end of the cooling pipe 10, which is provided with an atmospheric air outlet 11a through a valve. 12
Is exposed to the atmosphere through a valve with an external pipe similar to 11. 20 indicates that when the temperature of the cooling member 4 is above the critical temperature of helium gas (5.22K), the internal pressure of the cooling pipe 10 is below the critical pressure (2.27 atm), and when the temperature of the cooling member 4 is below 5.22K. A pressure flow rate adjusting device having a function of adjusting the pressure flow rate so that the internal pressure of the cooling pipe 10 can be set to the saturated vapor pressure of helium gas at that temperature. Further, this pressure flow rate adjusting device is provided with a function of releasing the pressure of the cooling pipe to the atmosphere when the refrigerator is stopped and stopping the gas inflow from the helium gas container. Reference numeral 30 is a helium gas container that can constantly supply helium gas to the cooling pipe 10. The helium gas container 10 may be a helium gas cylinder.

【0009】圧力流量調整器20の一実施例について説明
する。21はヘリウムガス容器30からのヘリウムガス流量
を調整する流量調整弁、22は冷却管10の内圧を検知する
圧力検知器、23はヘリウムガスの供給を冷凍機停止時に
閉止する電磁弁、24は冷凍機停止時に冷却管内圧を大気
開放する電磁弁、25は冷却管内圧が大気圧より低い場
合、電磁弁24が開放しても大気の流入を防止する逆止
弁、26は冷却部材10の温度、圧力検知器の圧力、冷凍機
の運転、停止の各信号によって、流量調整弁21、電磁弁
23,24を制御する制御器である。
An embodiment of the pressure flow controller 20 will be described. 21 is a flow rate adjusting valve that adjusts the flow rate of helium gas from the helium gas container 30, 22 is a pressure detector that detects the internal pressure of the cooling pipe 10, 23 is a solenoid valve that closes the supply of helium gas when the refrigerator is stopped, and 24 is A solenoid valve that releases the internal pressure of the cooling pipe to the atmosphere when the refrigerator is stopped, 25 is a check valve that prevents the inflow of the atmospheric air even if the electromagnetic valve 24 is opened when the internal pressure of the cooling pipe is lower than atmospheric pressure, and 26 is a cooling member 10. Flow rate control valve 21 and solenoid valve depending on temperature, pressure detector pressure, refrigerator operation, and stop signal.
It is a controller that controls 23 and 24.

【0010】本実施例においては2段ステーションの冷
凍機で説明したが、3段冷凍機等の多数ステーションの
冷凍機を使用した構成とすることができる。又冷凍機を
2台使用し、輻射シールドおよび電流リードの冷却用1
台、超電導コイルおよびPCS等の最低温部に1台と構
成することもできる。 (実施例の作用)次に作用を説明する。前記構成で組立
終了後真空容器内部を真空排気し、冷凍機の運転開始す
ると輻射シールドおよび超電導コイル1、冷却部材4、
冷却管10は冷却される。この冷却による温度低下に伴い
冷却管内圧力が臨界圧力より低下しようとし、圧力流量
調整装置20の流量制御が働きヘリウムガス容器からヘリ
ウムガスが供給される。冷却部材温度が5.22K(ヘリウ
ム臨界温度)より低下すると、圧力流量調整装置によ
り、その温度のヘリウムガス飽和蒸気圧に調整される。
例えば冷却部材温度5Kでは冷却管内圧は約2atm とな
り冷却管内のヘリウムガスは液化し液体ヘリウムとして
貯液される。さて冷凍機が停電等により運転停止する
と、圧力流量調整器により、ヘリウムガス容器内からの
ヘリウムガス供給が停止されると共に、冷却管内圧力が
大気開放(1atm )されるため、液体ヘリウム温度を
4.2Kに保つように液体ヘリウムが蒸発する。このため
液体ヘリウムの貯液がなくなるまで、冷却管、冷却部
材、超電導コイル、永久電流スイッチ等は 4.2Kに保持
される。したがって貯液された液体ヘリウムが存在する
限り、温度上昇をしないので超電導コイルはクエンチせ
ず、正常に保持される。復電後、大気開放をやめ、ヘリ
ウムガスの供給を開始すれば、蒸発した分の液体ヘリウ
ムは再び液化し、必要量の液体ヘリウムが貯液される。 (実施例の効果)本発明の実施例により次の効果があ
る。
In the present embodiment, the refrigerator of the two-stage station has been described, but it is also possible to use a refrigerator of a large number of stations such as a three-stage refrigerator. In addition, two refrigerators are used to cool the radiation shield and the current lead 1
It is also possible to configure one unit in the lowest temperature part such as the table, the superconducting coil and the PCS. (Operation of Embodiment) Next, the operation will be described. When the interior of the vacuum container is evacuated after the assembly is completed with the above configuration and the operation of the refrigerator is started, the radiation shield and the superconducting coil 1, the cooling member 4,
The cooling pipe 10 is cooled. As the temperature decreases due to this cooling, the pressure inside the cooling pipe tends to fall below the critical pressure, and the flow rate control of the pressure flow rate adjusting device 20 works to supply helium gas from the helium gas container. When the temperature of the cooling member falls below 5.22K (helium critical temperature), the pressure and flow controller adjusts the helium gas saturated vapor pressure at that temperature.
For example, when the cooling member temperature is 5K, the internal pressure of the cooling pipe becomes about 2 atm, and the helium gas in the cooling pipe is liquefied and stored as liquid helium. When the refrigerator stops operating due to a power failure or the like, the pressure flow controller stops the supply of helium gas from the helium gas container, and the pressure in the cooling pipe is released to the atmosphere (1 atm), so the liquid helium temperature is reduced.
Liquid helium evaporates to keep it at 4.2K. Therefore, the cooling pipe, cooling member, superconducting coil, permanent current switch, etc. are kept at 4.2K until the liquid helium is no longer stored. Therefore, as long as the stored liquid helium exists, the temperature does not rise, so that the superconducting coil is not quenched and is normally held. After the power is restored, if the atmosphere is stopped and the supply of helium gas is started, the evaporated liquid helium is liquefied again and a necessary amount of liquid helium is stored. (Effects of Embodiments) The following effects are obtained by the embodiments of the present invention.

【0011】永久電流モード運転中の停電、冷却水断水
等の短時間の事故に対して超電導コイルはクエンチする
ことなく強磁場を発生し続けるので長時間のシステム全
体を停止することを未然に防ぐことができる。また、冷
却管内圧を大気開放しても、冷却管内圧が大気圧より低
い場合に大気の冷却管内への流入を防止することができ
る。 (他の実施例) 図1の圧力流量制御装置20およびヘリウムガス容器30を
圧縮機6の内部へ組み込まれた超電導磁石装置。 (他の実施例の効果) 圧縮機内部はそれ自体にヘリウムガスのタンクがあると
共に運転制御盤を持っているから、一体に組み込むこと
により、コンパクトに成り、信頼性向上になると共に安
価な超電導磁石装置が供給できる。
The superconducting coil continues to generate a strong magnetic field without quenching for a short time accident such as a power failure during a permanent current mode operation, a cooling water interruption, etc., so that it is possible to prevent the entire system from being stopped for a long time. be able to. Also cold
Even if the internal pressure of the cooling pipe is released to the atmosphere, the internal pressure of the cooling pipe is lower than the atmospheric pressure.
In this case, it is possible to prevent air from flowing into the cooling pipe.
It Other Embodiments A superconducting magnet device in which the pressure flow control device 20 and the helium gas container 30 of FIG. 1 are incorporated in the compressor 6. (Effects of Other Embodiments) Since the compressor has its own helium gas tank and an operation control panel, it can be integrated into a compact unit to improve reliability and reduce cost. A magnet device can be supplied.

【0012】[0012]

【発明の効果】本発明の構成により、停電、冷却水断水
等の軽微なトラブルでの冷凍機の運転停止時において、
超電導コイルのクエンチを防止できるので本超電導磁石
装置を使用したシステム全体の長時間の停止を防止する
ことができる。また、冷却管内圧を大気開放しても、冷
却管内圧が大気圧より低い場合に大気の冷却管内への流
入を防止することができる。さらに、圧縮機内へ一体化
すればコンパクトで信頼性向上した安価な超電導磁石装
置を供給できる。
EFFECTS OF THE INVENTION According to the structure of the present invention, when the operation of the refrigerator is stopped due to a slight trouble such as a power outage or cooling water interruption
Since quenching of the superconducting coil can be prevented, it is possible to prevent the entire system using the present superconducting magnet device from being stopped for a long time. Even if the pressure inside the cooling pipe is released to the atmosphere,
Flow of air into the cooling pipe when the internal pressure is lower than atmospheric pressure
Can be prevented. Furthermore, if integrated into the compressor, a compact superconducting magnet device with improved reliability can be supplied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す組立断面図FIG. 1 is an assembled sectional view showing a configuration of an embodiment of the present invention.

【図2】従来の一実施例の構成を示す組立断面図FIG. 2 is an assembled sectional view showing the configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1…超電導コイル 2…輻射シールド 3…真空容器 5…冷凍機 6…圧縮機 7…電流リード 8…永久電流スイッチ 10…冷却管 20…圧力流量調整装置 30…ヘリウムガス容器 1 ... Superconducting coil 2 ... Radiation shield 3 ... Vacuum container 5 ... Refrigerator 6 ... Compressor 7 ... Current lead 8 ... Permanent current switch 10 ... Cooling tube 20 ... Pressure flow controller 30 ... Helium gas container

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 6/00 - 6/06 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01F 6/00-6/06

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導線を巻回構成して成る超電導コイ
ル、前記超電導コイルを断熱して包囲する輻射シール
ド、前記輻射シールドを断熱して包囲する真空容器およ
び、前記超電導コイルを冷却部材を介して伝導冷却保持
する冷凍機を備えた超電導磁石装置において、前記冷却
部材に熱伝導性良好に取付けられた冷却管を設け、その
部分からの配管を前記真空容器より外部へ出し圧力流量
調整装置を介してヘリウムガス容器に接続し、この圧力
流量調整装置は前記ヘリウムガス容器からのヘリウムガ
ス流量を調整し、前記冷凍機の停止時に前記ヘリウムガ
ス容器からのヘリウムガスの供給を停止しかつ前記冷却
管内圧を大気開放して前記冷却管内の液体ヘリウムを蒸
発させて前記超電導コイルの温度を保持させ前記冷却管
内圧が大気圧より低い場合に大気の流入を防止すること
を特徴とする超電導磁石装置。
1. A superconducting coil formed by winding a superconducting wire, a radiation shield for insulating and enclosing the superconducting coil, a vacuum container for enclosing and insulating the radiation shield, and a cooling member for the superconducting coil. In a superconducting magnet device equipped with a refrigerator for conducting cooling and holding, a cooling pipe provided with good thermal conductivity is provided on the cooling member, and a pipe from that portion is taken out of the vacuum container to the outside to provide a pressure flow rate adjusting device. Connected to a helium gas container through, the pressure flow rate adjusting device adjusts the helium gas flow rate from the helium gas container, when the refrigerator is stopped to stop the supply of helium gas from the helium gas container and the cooling The pressure inside the pipe is released to the atmosphere and the liquid helium in the cooling pipe is vaporized.
The cooling pipe to maintain the temperature of the superconducting coil
A superconducting magnet device, which prevents inflow of air when the internal pressure is lower than the atmospheric pressure.
【請求項2】 圧力流量調整装置およびヘリウムガス容
器は冷凍機用圧縮機の内部へ収納したことを特徴とする
請求項1記載の超電導磁石装置。
2. The superconducting magnet device according to claim 1, wherein the pressure flow rate adjusting device and the helium gas container are housed inside a compressor for a refrigerator.
【請求項3】 超電導コイルと並列回路で接続され熱伝
導性の良好な永久電流スイッチを前記冷却部材に取付け
たことを特徴とする請求項1または2記載の超電導磁石
装置。
3. The superconducting magnet device according to claim 1, wherein a permanent current switch having good thermal conductivity and connected to the superconducting coil in a parallel circuit is attached to the cooling member.
【請求項4】 冷却部材と永久電流スイッチとを熱伝導
性セラミックスを介して取付けたことを特徴とする請求
項2記載の超電導磁石装置。
4. The superconducting magnet device according to claim 2, wherein the cooling member and the permanent current switch are attached via a heat conductive ceramics.
【請求項5】 熱伝導性セラミックスがIn,Cu,A
g,Au,Ag及びこれらの合金よりなる薄板を介して
永久電流スイッチ、冷却部材に取付けられていることを
特徴とする請求項4記載の超電導磁石装置。
5. The thermally conductive ceramic is In, Cu, A.
The superconducting magnet device according to claim 4, wherein the superconducting magnet device is attached to a permanent current switch and a cooling member via a thin plate made of g, Au, Ag and alloys thereof.
【請求項6】 熱伝導性セラミックスがAlNよりなる
ことを特徴とする請求項4記載の超電導磁石装置。
6. The superconducting magnet device according to claim 4, wherein the thermally conductive ceramic is made of AlN.
【請求項7】 冷却部材の温度をヘリウムガスの臨界温
度(5.22K)以下に冷却する冷凍機を具備してなること
を特徴とする請求項1ないし請求項6記載の超電導磁石
装置。
7. The superconducting magnet device according to claim 1, further comprising a refrigerator that cools the temperature of the cooling member to a critical temperature (5.22 K) or less of helium gas.
JP20474394A 1994-08-30 1994-08-30 Superconducting magnet device Expired - Lifetime JP3529437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20474394A JP3529437B2 (en) 1994-08-30 1994-08-30 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20474394A JP3529437B2 (en) 1994-08-30 1994-08-30 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPH0869911A JPH0869911A (en) 1996-03-12
JP3529437B2 true JP3529437B2 (en) 2004-05-24

Family

ID=16495596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20474394A Expired - Lifetime JP3529437B2 (en) 1994-08-30 1994-08-30 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP3529437B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275719A (en) * 1997-03-31 1998-10-13 Sumitomo Electric Ind Ltd Method for cooling superconductor
JP4799770B2 (en) * 2001-07-09 2011-10-26 九州電力株式会社 Superconducting magnet
JP2004087706A (en) * 2002-08-26 2004-03-18 Sumitomo Heavy Ind Ltd Refrigerator cooling superconducting magnet apparatus
JP6378039B2 (en) 2014-10-23 2018-08-22 株式会社日立製作所 Superconducting magnet, MRI equipment, NMR equipment
US11977139B2 (en) 2019-05-21 2024-05-07 Koninklijke Philips N.V. Accelerated cooldown of low-cryogen magnetic resonance imaging (MRI) magnets
CN110993247B (en) * 2019-12-19 2021-11-19 中国科学院合肥物质科学研究院 T-stage high-field superconducting magnet system for space-propelled ground simulation environment

Also Published As

Publication number Publication date
JPH0869911A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
JP3265139B2 (en) Cryogenic equipment
JP4855990B2 (en) Recondensing device, mounting method thereof and superconducting magnet using the same
JP3629725B2 (en) Superconducting magnet
JP3529437B2 (en) Superconducting magnet device
JP2002270913A (en) Superconductive coil unit and mri device
US5563369A (en) Current lead
JP2790549B2 (en) Superconducting magnet device for crystal pulling device
JP3045638B2 (en) Superconducting device and operating method thereof
JP2004235653A (en) Superconductive magnet
JP2952552B2 (en) Current leads for superconducting equipment
JP6644889B2 (en) Magnetic resonance imaging (MRI) device and cryostat for MRI device
JPH10247753A (en) Superconducting device and control method thereof
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JPH06132124A (en) Current lead for superconducting device
JP3310872B2 (en) Magnetic refrigerator
JP3147630B2 (en) Superconducting coil device
JPH09106909A (en) Conductive cooling superconducting magnet
JP3339118B2 (en) Superconducting device current leads
JP2004233047A (en) Superconductive magnet
US20220068530A1 (en) Apparatus and System to Maximize Heat Capacity in Cryogenic Devices
JP3382794B2 (en) Permanent current switch
JP2000269022A (en) Superconducting magnet
JPH06331253A (en) Superconducting cooling device
JPH06268266A (en) Superconducting device
JPH0927415A (en) Current lead for superconducting device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term