JP3529273B2 - Aluminum foil base for thin foil and method for producing the same - Google Patents

Aluminum foil base for thin foil and method for producing the same

Info

Publication number
JP3529273B2
JP3529273B2 JP22501298A JP22501298A JP3529273B2 JP 3529273 B2 JP3529273 B2 JP 3529273B2 JP 22501298 A JP22501298 A JP 22501298A JP 22501298 A JP22501298 A JP 22501298A JP 3529273 B2 JP3529273 B2 JP 3529273B2
Authority
JP
Japan
Prior art keywords
rolling
foil
less
aluminum foil
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22501298A
Other languages
Japanese (ja)
Other versions
JP2000054046A (en
Inventor
晋一郎 細野
信希 田波
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22501298A priority Critical patent/JP3529273B2/en
Publication of JP2000054046A publication Critical patent/JP2000054046A/en
Application granted granted Critical
Publication of JP3529273B2 publication Critical patent/JP3529273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品及びその他の
包装、フィルムコンデンサ、ラベル又はたばこ等に使用
される箔、特に箔厚が15μm以下の極薄のアルミニウ
ム箔用途に使用されるピンホール特性に優れるアルミニ
ウム箔地に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foil used for food and other packaging, a film capacitor, a label, a cigarette, etc., and particularly a pinhole characteristic used for an extremely thin aluminum foil having a foil thickness of 15 μm or less. Aluminum foil excellent in heat resistance.

【0002】[0002]

【従来の技術】従来、薄箔用のアルミニウム又はアルミ
ニウム合金は箔地材料としては、JIS1N30等の純
アルミニウム、8079合金又は8021合金等が使用
されている。なお、以下、純アルミニウム及びアルミニ
ウム合金を総称してアルミニウムという。アルミニウム
箔地は、一般的に、これらのアルミニウム鋳塊に均質化
処理、熱間圧延、冷間圧延及び中間焼鈍を施し、また、
必要に応じてその後、冷間圧延を施すことにより製造さ
れている。
2. Description of the Related Art Conventionally, as aluminum or aluminum alloy for thin foil, pure aluminum such as JIS1N30, 8079 alloy or 8021 alloy has been used as a foil material. In the following, pure aluminum and aluminum alloys are collectively referred to as aluminum. Aluminum foil is generally obtained by subjecting these aluminum ingots to homogenization treatment, hot rolling, cold rolling and intermediate annealing, and
After that, it is manufactured by performing cold rolling if necessary.

【0003】そして、得られたアルミニウム箔地に箔圧
延及び最終焼鈍を行うことによりアルミニウム箔が得ら
れる。ところで、5.5乃至7μmのアルミニウム箔が
実用化されているが、箔需要は6乃至7μmが大半であ
り、同じ厚さのアルミニウム箔は箔圧延での互換性の点
によりJIS1N30を使用したいとの要望が強い。一
般的に、箔厚の減少に伴う問題点としては、ピンホール
が著しく増加し、箔が本来有するべき性能である光、気
体及び液体等に対するバリアー性が低下すると共に、ピ
ンホールによる箔断裂が生じることが知られている。
Then, the aluminum foil obtained is subjected to foil rolling and final annealing to obtain an aluminum foil. By the way, although 5.5 to 7 μm aluminum foil has been put into practical use, most of the foil demand is 6 to 7 μm, and it is desirable to use JIS1N30 for aluminum foil of the same thickness due to compatibility in foil rolling. Is strongly requested. Generally, the problem with the reduction of foil thickness is that the number of pinholes increases significantly, the barrier properties against light, gas, liquid, etc., which the foil originally should have, are reduced, and the foil tears due to pinholes. It is known to occur.

【0004】薄箔の仕上箔圧延は通常重合圧延により行
われ、ピンホールはマット面うねりの最大のところがブ
ライト面オイルピット等と連結して生ずることが知られ
ている。また、ピンホールはオイルピット面等の表面欠
陥と比べて、主にマット粗度に支配されることも知られ
ている。更に、オイルピットは圧延条件(リダクション
・バックテンション)に主に支配され、マット面は結晶
粒の自由変形により形成されると考えられ、箔地により
支配される要因が大きい(特公平3−60562号公
報、軽金属学会第70回予行集33,34,35)。
It is known that finishing foil rolling of thin foil is usually carried out by polymerization rolling, and pinholes are formed at the maximum waviness of matt surface by connecting with bright surface oil pits. It is also known that pinholes are mainly governed by matte roughness as compared with surface defects such as oil pit surfaces. Further, it is considered that the oil pits are mainly controlled by rolling conditions (reduction / back tension), and the matte surface is formed by free deformation of crystal grains, and the factor controlled by the foil is large (Japanese Patent Publication No. 3-60562). No. Gazette, 70th Reconstruction of Japan Institute of Light Metals 33, 34, 35).

【0005】そこで、マット面粗度を低減させるべく、
Fe含有量の増加や均質化処理以降の製造条件変更によ
りFe固溶度を減少させ、結晶粒を微細化することによ
り加工硬化を抑制できる箔として特開昭63−2632
2号公報等に開示されている。また、他の元素を添加す
るものも知られていて、例えば、Ni、Mn及びCrの
添加により結晶粒の微細化及び加工硬化の抑制を発現す
ることができる箔として特開昭63−282228号公
報、特開昭63−282244号公報及び特開平8−3
3644号公報等に開示されている。
Therefore, in order to reduce the matte surface roughness,
As a foil capable of suppressing work hardening by decreasing the Fe solid solubility by changing the manufacturing conditions after the Fe content increase and the homogenization treatment and by refining the crystal grains, JP-A-63-2632.
It is disclosed in Japanese Patent Publication No. 2 and the like. Further, it is known to add other elements, for example, as a foil capable of exhibiting the miniaturization of crystal grains and suppression of work hardening by addition of Ni, Mn and Cr, as disclosed in JP-A-63-228228. Japanese Patent Laid-Open No. 63-282244 and Japanese Patent Laid-Open No. 8-3
It is disclosed in Japanese Patent No. 3644 and the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Fe、
Ni、Mn、Crを添加するアルミニウム箔地では前述
のような互換性のメリットがない。また、JIS1N3
0相当の組成(Fe含有量のない場合)では、均質化処
理以降の製造条件変更により析出促進を行っても、箔厚
が6乃至7μmのアルミニウム箔を得る箔圧延において
は、大きな加工硬化の抑制効果を得られないばかりか、
工程変更によっては結晶粒が逆に大きくなってしまうこ
ともあり、ピンホールの発生量の増加及び圧延中に箔切
れの頻発を生じ易い等の問題があった。
However, Fe,
The aluminum foil material to which Ni, Mn and Cr are added does not have the above-mentioned merit of compatibility. Also, JIS1N3
With a composition equivalent to 0 (when there is no Fe content), even if the precipitation is promoted by changing the manufacturing conditions after the homogenization treatment, in the foil rolling to obtain an aluminum foil having a foil thickness of 6 to 7 μm, a large work hardening is caused. Not only can you not obtain the suppression effect,
On the contrary, the crystal grains may become large depending on the process change, which causes problems such as an increase in the amount of pinholes and frequent occurrence of foil breakage during rolling.

【0007】本発明はかかる問題に鑑みてなされたもの
であり、JIS1N30相当の組成であっても、箔圧延
及びピンホール特性を損なうことなく、箔を薄箔化でき
るアルミニウム箔地及びその製造方法を提供することを
目的とする。
The present invention has been made in view of the above problems, and an aluminum foil material capable of thinning the foil without impairing the foil rolling and pinhole characteristics even with a composition equivalent to JIS1N30, and a method for producing the same. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本願第1発明に係る薄箔
用アルミニウム箔地は、Fe:0.3乃至1.0重量
%、Si:0.15重量%未満を含有し、残部がAl及
び不可避的不純物からな、粒径が0.1乃至0.8μ
mの金属間化合物の平均粒子間距離が0.7乃至2.5
μmであると共に、平均結晶粒径が35μm以下である
ことを特徴とする。
Means for Solving the Problems] According to the present Application first invention thin foil for aluminum foil land is, Fe: 0.3 to 1.0 wt%, Si: containing less than 0.15 wt%, the balance being Ri Do Al and inevitable impurities, particle size 0.1 to 0.8μ
The average interparticle distance of the intermetallic compound of m is 0.7 to 2.5.
with a [mu] m, the average grain size is equal to or is 35μm or less.

【0009】本願第2発明に係る薄箔用アルミニウム箔
地の製造方法は、Fe:0.3乃至1.0重量%、S
i:0.15重量%未満を含有し、残部がAl及び不可
避的不純物である組成のアルミニウム合金の溶湯を、凝
固時の冷却速度を0.3乃至3.0℃/secで半連続
鋳造し、面削した後、400乃至620℃の温度範囲で
均質化処理を施し、終了温度が200乃至260℃の温
度範囲となるように仕上熱間圧延し、前記仕上熱間圧延
終了後に圧延率50%以上の冷間圧延を行い、300乃
至450℃で2時間以上の中間焼鈍を施し、更に冷間圧
延をすることにより、粒径が0.1乃至0.8μmの
属間化合物の平均粒子間距離が0.7乃至2.5μmで
あると共に、平均結晶粒径が35μm以下であるアルミ
ニウム箔地を製作することを特徴とする。
The preparation process of the present Application the second according to the invention a thin foil for aluminum foil land is, Fe: 0.3 to 1.0 wt%, S
i: Semi-continuous casting of a molten aluminum alloy containing less than 0.15% by weight and the balance being Al and unavoidable impurities at a cooling rate during solidification of 0.3 to 3.0 ° C./sec. After the surface cutting, homogenization treatment is performed in the temperature range of 400 to 620 ° C., finish hot rolling is performed so that the end temperature is in the temperature range of 200 to 260 ° C., and the rolling ratio is 50 after the finish hot rolling. % Or more, cold rolling is performed at 300 to 450 ° C. for 2 hours or more, and cold rolling is performed to obtain a metal having a grain size of 0.1 to 0.8 μm. It is characterized in that an aluminum foil having an average interparticle distance of the intermetallic compound of 0.7 to 2.5 μm and an average crystal grain size of 35 μm or less is manufactured.

【0010】また、薄箔用アルミニウム箔地の製造方法
においては、320乃至450℃の温度範囲で、1パス
当たり37乃至60%の圧延率で熱間粗圧延を行うこと
が好ましい。
Further, in the method for producing an aluminum foil for thin foil, it is preferable to perform hot rough rolling at a rolling rate of 37 to 60% per pass in a temperature range of 320 to 450 ° C.

【0011】また、本発明においては、前記アルミニウ
ム合金に添加するCuの添加量が0.02重量%以下で
あると共に、Tiの添加量も0.03重量%以下である
ことが好ましい。
In the present invention, it is preferable that the amount of Cu added to the aluminum alloy is 0.02% by weight or less and the amount of Ti added is 0.03% by weight or less.

【0012】更に、本発明においては、鋳造凝固時の冷
却速度、均質化処理条件、冷間圧延率及び中間焼鈍条件
の制御により平均粒子間距離の適正化を図ることによ
り、箔圧延性に優れ、箔圧延後、ピンホールの発生数が
少ないアルミニウム箔地を得ることができる。
Further, according to the present invention, the foil rolling property is excellent by optimizing the average inter-particle distance by controlling the cooling rate at the time of solidification by casting, homogenization treatment conditions, cold rolling ratio and intermediate annealing conditions. After the foil is rolled, it is possible to obtain an aluminum foil with a small number of pinholes.

【0013】更にまた、本発明においては、熱間粗圧延
における温度範囲及び1パス当たりの圧延率並びに熱間
仕上圧延の終了温度を適正に組み合わせることにより、
結晶粒の微細化が図れる。
Furthermore, in the present invention, by properly combining the temperature range in hot rough rolling, the rolling ratio per pass, and the finish temperature of hot finish rolling,
Finer crystal grains can be achieved.

【0014】[0014]

【発明の実施の形態】本発明者等らは、これまでのアル
ミニウム箔及び箔地に関する研究から、ピンホールを少
なくすることは、マット面粗度を低くすること、即ち、
仕上箔圧延時の変形ブロックを微小化することが必要で
あることを見出した。更には、マット面は結晶粒サイズ
のみではなく、転位セルサイズの自由変形によっても形
成されることも見出した。また、ピンホールを少なくす
るには、加工硬化を抑制することが有効であることは知
られているが、これは、転位整理によるサブグレイン化
により達成されることも究明した。
BEST MODE FOR CARRYING OUT THE INVENTION From the research on aluminum foils and foils up to now, the present inventors have found that reducing pinholes reduces matte surface roughness, that is,
It was found that it is necessary to miniaturize the deformed block when rolling the finishing foil. Furthermore, they have found that the matte surface is formed not only by the crystal grain size but also by free deformation of the dislocation cell size. Further, it is known that suppressing work hardening is effective for reducing pinholes, but it was also clarified that this can be achieved by forming subgrains by dislocation organization.

【0015】そこで、前述の特性を発現するアルミニウ
ム箔地を開発するため、鋭意研究を重ねた結果、粒径が
0.1乃至0.8μmの金属間化合物の平均粒子間距離
を転位セルサイズに調整することが有効であることを見
出した。また、JIS1N30組成の場合には、この平
均粒子間距離の適正化は、従来行われてきた均質化処理
以降の製造条件変更のみでは、調整困難であり、鋳造条
件の適正化と均質化処理以降の箔地製造条件を組合わせ
て制御すると共に、箔圧延の温度領域を管理することに
より、その目的が達成されることを見出した。本発明は
この知見に基づいてなされたものである。
Therefore, as a result of intensive studies to develop an aluminum foil having the above-mentioned characteristics, the average interparticle distance of the intermetallic compound having a particle size of 0.1 to 0.8 μm was determined as the dislocation cell size. We have found that adjustments are effective. Further, in the case of JIS1N30 composition, the optimization of the average interparticle distance is difficult only by changing the manufacturing conditions after the conventional homogenization treatment, and it is difficult to optimize the casting conditions and the homogenization treatment. It has been found that the objective can be achieved by controlling the temperature range of foil rolling while controlling the combination of the foil manufacturing conditions. The present invention has been made based on this finding.

【0016】即ち、本発明においては、Fe:0.3乃
至1.0重量%、Si:0.15重量%未満を含有し、
残部がAl及び不可避的不純物である組成のアルミニウ
ム合金の溶湯を、凝固時の冷却速度を0.3乃至3.0
℃/secで半連続鋳造し、面削した後、400乃至6
20℃の温度範囲で均質化処理を施し、320乃至45
0℃の温度範囲で、1パス当たり37乃至60%の圧延
率で熱間粗圧延を行い、終了温度が200乃至260℃
の温度範囲となるように仕上熱間圧延し、前記仕上熱間
圧延終了後に圧延率50%以上の冷間圧延を行い、30
0乃至450℃で2時間以上の中間焼鈍を施し、更に冷
間圧延をすることにより、粒径が0.1乃至0.8μ
金属間化合物の平均粒子間距離が0.7乃至2.5μ
mであると共に、平均結晶粒径が35μm以下であるア
ルミニウム箔地を製作する。
That is, in the present invention, Fe: 0.3 to 1.0% by weight, Si: less than 0.15% by weight,
A molten aluminum alloy having a composition in which the balance is Al and inevitable impurities has a cooling rate of 0.3 to 3.0 during solidification.
400 ~ 6 after semi-continuous casting at ℃ / sec and chamfering
Homogenized in the temperature range of 20 ℃, 320 to 45
Hot rough rolling is performed at a rolling rate of 37 to 60% per pass in a temperature range of 0 ° C, and an end temperature is 200 to 260 ° C.
Finish hot-rolling so as to be within the temperature range of, and after completion of the finish hot-rolling, cold-rolling with a rolling ratio of 50% or more is performed.
Subjected to intermediate annealing at least 2 hours at 0 to 450 ° C., further by cold rolling, grain size 0.1 to 0.8 micron m
The average interparticle distance of the intermetallic compound of 0.7 to 2.5 μ
An aluminum foil having an average crystal grain size of 35 μm or less is produced.

【0017】以下、本発明におけるアルミニウム箔地の
成分限定理由について説明する。
The reasons for limiting the components of the aluminum foil in the present invention will be described below.

【0018】Fe:0.3乃至1.0重量% Feは、アルミニウムへの固溶限が小さく、アルミニウ
ム中において他の元素と結合してAl−Fe系の金属間
化合物を生成する元素である。また、このAl−Fe系
の金属間化合物は、再結晶の核として作用するために、
Fe添加は結晶粒の微細化に効果がある。Fe含有量が
0.3重量%未満の場合では、鋳造時に晶出する金属間
化合物の数が不十分であり、結晶粒を微細化する効果を
得にくい。一方、Fe含有量が1.0重量%を超える場
合には、Al−Fe系の金属間化合物の数が多く形成さ
れるので、結晶粒の微細化効果は大きいが、箔圧延時の
変形抵抗が増大するため、圧延性が極端に低下する。従
って、Fe含有量は0.3乃至1.0重量%とする。
[0018]Fe: 0.3 to 1.0% by weight Fe has a small solid solubility limit in aluminum, and
Between Al-Fe-based metals by bonding with other elements in the aluminum
An element that produces a compound. In addition, this Al-Fe system
The intermetallic compound of acts as a nucleus of recrystallization,
The addition of Fe is effective in making the crystal grains finer. Fe content is
In the case of less than 0.3% by weight, between the metals that crystallize during casting
Insufficient number of compounds has the effect of refining crystal grains.
Hard to get. On the other hand, when the Fe content exceeds 1.0% by weight
In this case, a large number of Al-Fe-based intermetallic compounds are formed.
Therefore, the grain refining effect is great, but it is
Since the deformation resistance is increased, the rolling property is extremely reduced. Servant
Thus, the Fe content is 0.3 to 1.0% by weight.

【0019】Si:0.15重量%未満 Siは、地金中の不可避的不純物の1つである。Si
は、粗大なAl−Fe−Si系金属間化合物を生成し易
く、ピンホールが増大する原因となるため、少ない方が
良い。このため、Si含有量は0.15重量%未満であ
ることが望ましい。
[0019]Si: less than 0.15% by weight Si is one of the inevitable impurities in the metal. Si
Easily forms a coarse Al-Fe-Si-based intermetallic compound.
Smaller, the number of pinholes increases.
good. Therefore, the Si content is less than 0.15% by weight.
Is desirable.

【0020】粒径が0.1乃至0.8μmの金属間化合
物の平均粒子間距離:0.7乃至2.5μm 粒径が0.1乃至0.8μmの金属間化合物は、主に析
出物であり、均質化処理、熱間圧延及び中間焼鈍にて生
成する。これらの金属間化合物の分布は、箔圧延中の転
位蓄積及び整理に作用するために、その後の重合圧延に
おけるセルオーダーの変形ブロックサイズに影響を及ぼ
す。金属間化合物の平均粒子間距離が0.7μm未満の
場合には、重合圧延前パスで転位蓄積が過多となり、後
の重合圧延にて個々のセルがピン止めされ、複数の転位
セル単位での変形ブロックとなるために、マット面が粗
くなり、ピンホールが多発する。一方、変形ブロックサ
イズの金属間化合物の平均粒子間距離が2.5μmを超
える場合には、重合圧延前パスでの転位整理は容易とな
り、単一セルでの変形ブロックとなるが、粗大セルが形
成され易いために、マット面が粗くなり、ピンホールが
多発する。従って、粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離は0.7乃至2.5μmとす
る。
[0020]Intermetallic compound with a particle size of 0.1 to 0.8 μm
Average particle-to-particle distance: 0.7 to 2.5 μm Intermetallic compounds with a particle size of 0.1 to 0.8 μm are mainly deposited.
It is a good product and is produced by homogenization, hot rolling and intermediate annealing.
To achieve. The distribution of these intermetallic compounds is
In order to affect the accumulation and rearrangement,
Affects the cell-order deformation block size in
You The average interparticle distance of the intermetallic compound is less than 0.7 μm
In some cases, dislocation accumulation was excessive in the pass before polymerization rolling and
Each cell is pinned by multiple rolling of
The matte surface is rough because it becomes a deformed block in cell units.
And pinholes frequently occur. On the other hand, the modified block
The average interparticle distance of Izu's intermetallic compounds exceeds 2.5 μm
In this case, it is not easy to arrange the dislocations in the pass before the polymerization rolling.
It becomes a deformed block with a single cell, but a coarse cell
Since it is easy to make, the matte surface becomes rough and pinholes
It occurs frequently. Therefore, a metal having a particle size of 0.1 to 0.8 μm
The average interparticle distance of the intercalation compound is 0.7 to 2.5 μm.
It

【0021】平均結晶粒径:35μm以下 箔地の結晶粒径は、中間焼鈍での結晶粒径である。この
結晶粒径は、重合圧延における変形ブロックサイズと軟
質強度に影響を及ぼす。平均結晶粒径が35μmを超え
る場合には、マット面粗度が粗くなり、ピンホールの多
発を招くと共に、軟質強度が不足する。
[0021]Average crystal grain size: 35 μm or less The grain size of the foil is the grain size in the intermediate annealing. this
The grain size depends on the deformation block size and
Affects quality strength. Average crystal grain size exceeds 35 μm
In this case, the surface roughness of the mat becomes rough and pin holes are
In addition, the soft strength is insufficient.

【0022】Cu:0.02重量%以下 Cuは、アルミニウム中に固溶する元素であり、固溶硬
化によるO材強度の向上に有効であり、必要に応じて添
加しても良い。Cu含有量が0.005重量%未満の場
合には、固溶硬化が不十分であり、O材強度を向上する
強度を得にくい。一方、Cu含有量が0.02重量%を
超える場合には、固溶硬化の程度が大きすぎ、箔圧延時
の変形抵抗が増大するため、圧延性が極端に低下する。
従って、Cuは、0.02重量%以下であれば、必要に
応じて添加しても良い。
[0022]Cu: 0.02 wt% or less Cu is an element that forms a solid solution in aluminum, and solid solution hardening
Is effective in improving the strength of O material, and if necessary, added
You may add. When the Cu content is less than 0.005% by weight
In this case, solid solution hardening is insufficient and the O material strength is improved.
Hard to get strength. On the other hand, the Cu content is 0.02% by weight.
If it exceeds, the degree of solid solution hardening is too great and the foil is rolled.
Since the deformation resistance of No. 1 increases, the rolling property is extremely reduced.
Therefore, if Cu is 0.02 wt% or less, it is necessary.
You may add according to it.

【0023】Ti:0.03重量%以下 Tiは、Al−Ti又はAl−Ti−B母合金として添
加され、鋳塊組織を微細化するために使用される。箔圧
延後に筋模様が問題となる場合には、0.03重量%以
下の範囲で添加しても良いが、添加しないで羽毛状晶と
した方が鋳塊で晶出する金属間化合物が微細になるた
め、筋模様に支障がなければTiは少ない方が好まし
い。従ってTiは、0.03重量%以下であれば、必要
に応じて添加しても良い。
[0023]Ti: 0.03 wt% or less Ti is added as an Al-Ti or Al-Ti-B mother alloy.
And used for refining the ingot structure. Foil pressure
If streaking becomes a problem after stretching, 0.03% by weight or more
It may be added in the range below, but without adding it
The finer the intermetallic compounds crystallized in the ingot.
Therefore, if there is no hindrance to the streak pattern, less Ti is preferable.
Yes. Therefore, if Ti is 0.03% by weight or less, it is necessary.
You may add according to.

【0024】不可避的不純物 アルミニウムに含有する前記以外の不可避的不純物とし
ては、Mn,Mg,Zn,Cr,V,Zr,Bi,S
n,In,Pb等が挙げられるが、JIS1100及J
IS1N30程度の含有範囲であれば本発明の目的を損
なうものではない。
[0024]Inevitable impurities As unavoidable impurities other than the above contained in aluminum
For Mn, Mg, Zn, Cr, V, Zr, Bi, S
n, In, Pb, etc. may be mentioned, but JIS 1100 and J
If the content range is around IS1N30, the purpose of the present invention will be impaired.
It's not like that.

【0025】次に、本発明におけるアルミニウム箔地の
製造方法における条件処理の限定理由について説明す
る。
Next, the reasons for limiting the condition treatment in the method for producing an aluminum foil according to the present invention will be described.

【0026】凝固時の冷却速度:0.3乃至3.0℃/
sec 前述のように、箔として優れたピンホール特性を発現す
るためには、箔地で粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適性化する必要がある。こ
の平均粒子間距離の適性化は、従来行われてきた均質化
処理以降の製造条件の変更のみでは調整困難であり、鋳
造条件の適正化と均質化処理以降の箔地製造条件を組合
わせて制御することにより、その目的は達成される。即
ち、凝固時の冷却速度を適正化することは平均粒子間距
離を適正化することとなり、ピンホールの低減に寄与す
る。
[0026]Cooling rate during solidification: 0.3 to 3.0 ° C /
sec As mentioned above, it exhibits excellent pinhole characteristics as a foil.
In order to achieve this, a metal with a grain size of 0.1 to 0.8 μm
It is necessary to optimize the average interparticle distance of the interstitial compound. This
Optimization of the average interparticle distance of
It is difficult to adjust simply by changing the manufacturing conditions after the treatment.
A combination of appropriate manufacturing conditions and foil manufacturing conditions after homogenization
By controlling it together, the purpose is achieved. Immediately
It is important to optimize the cooling rate during solidification by measuring the average interparticle distance.
This will optimize the separation and contribute to the reduction of pinholes.
It

【0027】凝固時の冷却速度が3.0℃/secを超
えた場合には、造塊されたスラブは、その後の均質化処
理、熱間圧延処理及び中間焼鈍により、過飽和固溶した
Feが微細析出物として排出され、粒径が0.3μm以
下の析出物数を極端に増加させ、粒径が0.1乃至0.
8μmの金属間化合物の平均粒子間距離が狭くなり、ピ
ンホールの多発を招く。一方、0.3℃/sec未満の
場合には、グラススクリーン内で浮遊晶を生じるため、
圧延用スラブとして造塊することは困難となる。従っ
て、凝固時の冷却速度は0.3乃至3.0℃/secと
する。好ましくは、凝固時の冷却速度は0.3乃至2.
4℃/secである。
When the cooling rate at the time of solidification exceeds 3.0 ° C./sec, the ingot-cast slab is subjected to the subsequent homogenization treatment, hot rolling treatment and intermediate annealing, so that the supersaturated solid solution Fe is formed. The number of precipitates discharged as fine precipitates and having a grain size of 0.3 μm or less is extremely increased, and the grain size is 0.1 to 0.
The average interparticle distance of the intermetallic compound of 8 μm becomes narrow, which causes frequent occurrence of pinholes. On the other hand, if it is less than 0.3 ° C / sec, floating crystals are generated in the glass screen,
It becomes difficult to make an ingot as a rolling slab. Therefore, the cooling rate during solidification is 0.3 to 3.0 ° C./sec. Preferably, the cooling rate during solidification is 0.3 to 2.
4 ° C./sec.

【0028】均質化処理:400乃至620℃ 本発明の組成及び造塊条件のスラブを面削した後、均質
化処理を施す。この均質化処理は、固溶及び析出調整を
目的として行われ、粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適正化する重要な処理であ
り、ピンホールの低減に寄与する。均質化処理温度が4
00℃未満の場合には、固溶元素の析出による析出数が
不十分となり、平均粒子間距離を広くするため、ピンホ
ールの多発を招く。なお、長時間の焼鈍を行う場合には
均質化処理温度が400℃未満でも固溶元素が充分に析
出するが、生産効率が悪くなるために好ましくない。一
方、均質化処理温度が620℃を超える場合には、固溶
元素の析出による析出数が不十分となり、平均粒子間距
離を広くするため、ピンホールの多発を招く。従って、
均質化処理温度は、400乃至620℃とする。この均
質化処理時間は特に規定するものではないが、工業的な
生産を考慮すると2時間以上行うことが好ましい。
[0028]Homogenization treatment: 400 to 620 ° C After chamfering a slab having the composition and ingot of the present invention,
Apply chemical treatment. This homogenization process controls solid solution and precipitation.
Metals with a particle size of 0.1 to 0.8 μm
It is an important process to optimize the average interparticle distance of intermetallic compounds.
Contributes to the reduction of pinholes. Homogenization temperature is 4
When the temperature is less than 00 ° C, the number of precipitates due to the precipitation of solid solution elements is
It becomes insufficient and the average particle distance is widened
Invite a lot of reports. When performing annealing for a long time,
Even if the homogenization temperature is less than 400 ° C, the solid solution elements are sufficiently deposited.
However, it is not preferable because the production efficiency is deteriorated. one
On the other hand, if the homogenization temperature exceeds 620 ° C, solid solution
The number of precipitates due to the precipitation of elements becomes insufficient and the average interparticle distance
Since the separation is wide, many pinholes are caused. Therefore,
The homogenization treatment temperature is 400 to 620 ° C. This average
The qualification treatment time is not specified, but it is
Considering production, it is preferable to carry out for 2 hours or more.

【0029】圧延率:50%以上、中間焼鈍:300乃
至450℃ 前述の均質処理の後、熱間圧延し、次に冷間圧延を施
し、更に中間焼鈍する。この焼鈍は固溶元素の析出及び
再結晶を目的として行われるものであるが、前述の平均
粒子間距離は、中間焼鈍温度及び仕上げ熱間圧延終了後
の冷間圧延率に影響される。この冷間圧延率が50%未
満又は、中間焼鈍温度が300℃未満の場合には、固溶
元素の析出による析出数が不十分となり、平均粒子間距
離を広くするため、ピンホールの多発を招く。なお、長
時間の焼鈍を行う場合には中間焼鈍温度が300℃未満
でも固溶元素が充分に析出するが、生産効率が悪くなる
ために好ましくない。一方、中間焼鈍温度が450℃を
超える場合には、固溶元素の析出による析出数が不十分
となり、平均粒子間距離を広くするため、ピンホールの
多発を招くと共に、平均結晶粒径が粗大化し、O材強度
も不足する。従って、中間焼鈍温度は300乃至450
℃とする。この中間焼鈍時間は特に規定するものではな
いが、2時間以上行うことが好ましい。
Rolling ratio: 50% or more, intermediate annealing: 300
After homogenization of the optimum 450 ° C. above, hot rolling, then subjected to cold rolling, further intermediate annealing. This annealing is performed for the purpose of precipitating and recrystallizing solid solution elements, but the above-mentioned average inter-particle distance is after the intermediate annealing temperature and after finishing hot rolling.
Is affected by the cold rolling rate. If the cold rolling ratio is less than 50% or the intermediate annealing temperature is less than 300 ° C., the number of precipitates due to the precipitation of solid solution elements becomes insufficient, and the average inter-particle distance is widened, so that frequent occurrence of pinholes occurs. Invite. When performing annealing for a long time, solid solution elements are sufficiently precipitated even if the intermediate annealing temperature is lower than 300 ° C, but this is not preferable because the production efficiency is deteriorated. On the other hand, when the intermediate annealing temperature exceeds 450 ° C., the number of precipitates due to the precipitation of the solid solution element becomes insufficient and the average interparticle distance is widened, which causes frequent occurrence of pinholes and the average crystal grain size is large. And the O material strength is insufficient. Therefore, the intermediate annealing temperature is 300 to 450.
℃. This intermediate annealing time is not particularly specified, but it is preferably performed for 2 hours or more.

【0030】仕上熱間圧延終了温度:200乃至260
箔地の結晶粒微細化を図るには熱間仕上圧延を低温で終
了することにより、再結晶核を増加させることが有効で
ある。即ち、再結晶核の増加は、仕上熱間圧延温度によ
り変化し、熱間圧延終了温度を低温にすることでホット
コイルの厚みを厚くすることなくR方位を増加させ、中
間焼鈍での再結晶粒微細化を図ることができる。仕上熱
間圧延終了温度が200℃未満の場合には、箔地として
必要なコイル形状が得られず、箔圧延での圧延性に劣
る。一方、仕上熱間圧延終了温度が260℃を超える場
合には、R方位強度が不足し、中間焼鈍であまり微細な
再結晶粒が得られない。従って、結晶粒微細化するため
に、仕上熱間圧延終了温度を200乃至260℃の範囲
で終了する必要がある。
[0030]Finishing hot rolling finish temperature: 200 to 260
In order to refine the grain of the foil, hot finish rolling is finished at low temperature.
Therefore, it is effective to increase the number of recrystallization nuclei.
is there. That is, the increase of recrystallization nuclei depends on the finish hot rolling temperature.
Change and the hot rolling finish temperature becomes low
R direction is increased without increasing the coil thickness,
Recrystallized grains can be refined by hot annealing. Finishing heat
If the inter-rolling end temperature is less than 200 ° C, as a foil
The required coil shape cannot be obtained, and the rollability of foil rolling is poor.
It On the other hand, when the finish hot rolling finish temperature exceeds 260 ° C.
In this case, the R azimuth strength is insufficient and the intermediate anneal is too fine.
Recrystallized grains cannot be obtained. Therefore, to refine the crystal grains
The finishing hot rolling finish temperature in the range of 200 to 260 ° C.
Need to end with.

【0031】熱間粗圧延:320乃至450℃、1パス
当たり圧延率:37乃至60% O材強度の向上及びマット面粗度の低減には、結晶粒の
微細化も有効である。熱間粗圧延で確実な再結晶を繰り
返すことは、結晶粒微細化に有効であるために、必要に
応じて熱間粗圧延を施しても良い。この再結晶粒径の適
正化には、熱間圧延での1パス当たりの圧延率と温度
範囲とを適正化する必要がある。1パス当たりの圧延率
が37%未満又は、熱間粗圧延温度が320℃未満の場
合には、再結晶に至らず、結晶粒の微細化の程度が不足
する。一方、1パス当たりの圧延率が60%を超える又
は、熱間粗圧延温度が450℃を超える場合には、再結
晶に伴う粒成長が生じ、結晶粒が粗大化する。従って、
必要に応じて結晶粒を微細化する場合には、熱間粗圧延
を320乃至450℃で1パス当たりの圧延率を37乃
至60%で行っても良い。
Hot rough rolling: 320 to 450 ° C., 1 pass
Rolling rate: 37 to 60% Fine graining is also effective for improving the O material strength and reducing the matte surface roughness. Repeating reliable recrystallization by hot rough rolling is effective for refining crystal grains, and therefore hot rough rolling may be performed as necessary. In order to optimize the recrystallized grain size, it is necessary to optimize the rolling ratio per pass and the temperature range in the hot rough rolling. When the rolling rate per pass is less than 37% or the hot rough rolling temperature is less than 320 ° C., recrystallization does not occur and the degree of refinement of crystal grains is insufficient. On the other hand, when the rolling rate per pass exceeds 60% or the hot rough rolling temperature exceeds 450 ° C., grain growth accompanying recrystallization occurs and the crystal grains become coarse. Therefore,
When the crystal grains are refined as required, hot rough rolling may be performed at 320 to 450 ° C. and a rolling rate per pass of 37 to 60%.

【0032】[0032]

【実施例】以下、本発明に係るアルミニウム箔地につい
てその比較例と比較して具体的に説明する。
EXAMPLES The aluminum foil material according to the present invention will be specifically described below in comparison with its comparative example.

【0033】第1実施例 下記表1に示す組成を有するアルミニウム溶湯を下記
に示す凝固時の冷却速度で半連続鋳造し、スラブを面
削した後、550℃の温度で5時間の均質化処理を行
い、その直後に仕上熱間圧延を開始し、240℃で仕上
熱間圧延を終了し、板厚5mmのアルミニウム板を得
た。その後、圧延率86%で冷間圧延を行い、得た板を
375℃の温度で4時間の中間焼鈍を行った。更に、冷
間圧延して、厚さが0.3mmのアルミニウム箔地を製
作した
[0033] Table molten aluminum having the composition shown in the first embodiment the following Table 1
Semi-continuous casting was performed at the cooling rate during solidification shown in 2 , the slab was chamfered, homogenized for 5 hours at a temperature of 550 ° C, and immediately after that, hot rolling for finishing was started and finished at 240 ° C. Hot rolling was completed to obtain an aluminum plate having a thickness of 5 mm. After that, cold rolling was performed at a rolling ratio of 86%, and the obtained sheet was subjected to intermediate annealing at a temperature of 375 ° C. for 4 hours. Further, it was cold-rolled to produce an aluminum foil having a thickness of 0.3 mm .

【0034】得られたアルミニウム箔地を、箔圧延して
厚さが6μmのアルミニウム箔を作製し、箔圧延時にお
ける圧延性について評価した。その結果、圧延時におい
て円滑に圧延できた場合を○(良好)、同一圧延条件に
おいて、薄肉化が困難であるか、強度不足により圧延速
度を速くできない又は板厚分布等の平面性制御が困難等
のトラブルが発生する傾向が強かった場合を×(不良)
とした。なお、造塊時に浮遊晶の発生により、圧延用と
してスラブが取れなかったものも×(不良)とした。
The obtained aluminum foil is foil-rolled.
An aluminum foil having a thickness of 6 μm was produced, and rollability during foil rolling was evaluated. As a result, when rolling
The same rolling condition as ○ (good)
If it is difficult to reduce the wall thickness, or if the strength is insufficient, the rolling speed
It is difficult to control the flatness such as plate thickness distribution, etc.
When there was a strong tendency for troubles to occur, x (bad)
And In addition , those in which the slab could not be removed for rolling due to the generation of floating crystals during the ingot making were also marked as x (defective).

【0035】次に、常法に従い、最終焼鈍を行った厚さ
6μmのアルミニウム箔を幅が15mm、有効長さが
100mmの短冊状に形成した試験片を製作した。試験
片をインストロン式の引張試験機により引張強さを測定
し、これをO材の強度とした。O材の強度は、60MP
a未満が劣り、60乃至75MPaが優れ、75MPa
を超えるものが特に優れることを示す。
Next, according to a conventional method, the final annealed thickness
There width aluminum foil 6μm is 15 mm, effective length was fabricated test pieces formed into 100mm rectangular. The tensile strength of the test piece was measured by an Instron type tensile tester, and this was taken as the strength of O material. The strength of O material is 60MP
Less than a is inferior, 60 to 75 MPa is excellent, 75 MPa
It is shown that those exceeding 1.0 are particularly excellent.

【0036】また、厚さが6μmのアルミニウム箔につ
いて、ピンホール検知機により1m 当たりのピンホー
ル数(直径5μm以上のもの)を測定した。ピンホール
は100個/m以下が優れる。
With respect to the aluminum foil having a thickness of 6 μm, the number of pinholes per 1 m 2 (having a diameter of 5 μm or more) was measured by a pinhole detector. 100 or less pinholes / m 2 are excellent.

【0037】なお、下記表2に示す凝固時の冷却速度、
平均粒子間距離及び平均結晶粒径は以下に示す方法より
測定した。凝固時の冷却速度は、造塊後の鋳塊により湯
底側の定常部を採取し、次に長辺面中央部の表皮より1
00mmの位置より小片を採取し、更に電解研磨の後に
交線法と二次枝法にてDASを測定することにより算出
した。詳細には、軽金属学会の研究報告書No.20「ア
ルミニウムのデントライトアームスペーシングと冷却速
度の測定法」に記載の方法にて行い、交線法と二次枝法
との測定値補正は数式1に示される経験式を使用した。
凝固時の冷却速度の算出については、Fe量が0.65
重量%以下の場合は数式2を用い、Fe量が0.65重
量%を超える場合は数式3を用いて算出した
The cooling rate during solidification shown in Table 2 below ,
The average interparticle distance and the average crystal grain size were measured by the following methods . The cooling rate at the time of solidification was 1 from the skin at the center of the long side surface after sampling the steady part on the bottom side of the molten metal by the ingot after ingot making.
It was calculated by collecting a small piece from the position of 00 mm and further measuring the DAS by the intersecting line method and the secondary branch method after electrolytic polishing. Specifically, the method is described in Research Report No. 20 of the Japan Institute of Light Metals, "Dentrite Arm Spacing of Aluminum and Measuring Method of Cooling Rate", and the correction of the measured values of the intersection line method and the secondary branch method is a mathematical formula. The empirical formula shown in 1 was used.
Regarding the calculation of the cooling rate during solidification, the Fe content was 0.65.
Using Equation 2 if: wt%, if the Fe content exceeds 0.65 wt% was calculated using Equation 3.

【0038】[0038]

【数1】dr=1.49×ds dr:交線法によるDAS、ds:二次枝法によるDA
## EQU1 ## dr = 1.49 × ds dr: DAS by the intersecting line method, ds: DA by the secondary branch method
S

【0039】[0039]

【数2】 ds=33.4×C-0.33 C:凝固時の冷却速度[ Formula 2] ds = 33.4 × C −0.33 C: cooling rate during solidification

【0040】[0040]

【数3】ds=77×C-0.42 C:凝固時の冷却速度[ Formula 3] ds = 77 × C −0.42 C: Cooling rate during solidification

【0041】平均粒子間距離は、粒径が0.1乃至0.
8μmの金属間化合物の平均粒子間距離である。この平
均粒子間距離は、透過型電子顕微鏡と画像処理装置を使
用し測定した。即ち、アルミニウム箔地より7.5m
m角の小片を採取し、厚さ0.1mmに研磨後、直径3
mmの円盤状に打ち抜いた。これを温度350℃、時間
5分の条件で転位除去処理を行い、次に、ジェット研磨
により厚さが5μmの観察サンプルを作製した。これら
を倍率10000倍にて析出物の観察をし、総面積が3
512μm2になる視野数の写真を撮影した。また、こ
の観察の際に、フリンジ法により観察点の厚さも測定す
ることにより、観察体積を算出した。更に、この観察体
積と画像処理によりカウントした粒径が0.1乃至0.
8μmの総金属間化合物の数とにより平均粒子間距離を
算出した。
The average interparticle distance is such that the particle diameter is 0.1 to 0.
It is the average interparticle distance of the intermetallic compound of 8 μm. The average interparticle distance was measured using a transmission electron microscope and the image processing apparatus. That is, 7.5m from aluminum foil
Take a small piece of m square, grind it to a thickness of 0.1 mm, and
It was punched into a disc shape of mm. This was subjected to dislocation removal treatment under conditions of a temperature of 350 ° C. and a time of 5 minutes, and was then jet-polished to prepare an observation sample having a thickness of 5 μm. These were observed at a magnification of 10000 times, and the total area was 3
Photographs were taken with a field number of 512 μm 2 . Further, at the time of this observation, the observation volume was calculated by measuring the thickness of the observation point by the fringe method. Further, the particle size counted by this observation volume and image processing is 0.1 to 0.
The average interparticle distance was calculated based on the total number of intermetallic compounds of 8 μm.

【0042】平均結晶粒径は、中間焼鈍を施した部材よ
り小片を採取し、電解研磨後に偏光光学顕微鏡により倍
率100倍で撮影した写真から、交線法を用いて算出し
た。
The average crystal grain size was calculated by using the intersecting line method from a photograph of a small piece taken from a member subjected to intermediate annealing, which was taken by a polarizing optical microscope at a magnification of 100 times after electrolytic polishing.

【0043】上述の方法により評価及び測定した圧延
性、ピンホール数、O材強度、平均粒子間距離及び平均
結晶粒径を下記表2にまとめて示す。
Rolling evaluated and measured by the method described above
Properties, number of pinholes, O material strength, average interparticle distance and average
The crystal grain size is summarized in Table 2 below.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】上記表2に示すように、実施例のNo.1乃
至6は、良好な圧延性を得た。また、ピンホール数及び
O材強度に関しても実施例No.1乃至6は、好ましい値
であり、全体に亘って良好なアルミニウム箔を得ること
ができた。
As shown in Table 2 above, Nos. 1 to 6 of the examples obtained good rolling property. Also, regarding the number of pinholes and the strength of O material, Examples Nos. 1 to 6 were preferable values, and a good aluminum foil could be obtained over the whole.

【0047】一方、比較例No.20は、ピンホール数及
びO材強度は良好であるものの、過剰なFeの添加によ
り圧延性が低下した。比較例No.21は、圧延性は、良
好であったが、Feの添加不足により結晶粒を微細にす
ることができないために、ピンホール数及びO材強度が
実施例に比べて劣った。比較例22及び24は、圧延性
及びO材強度は良好であったが、比較例No.22は過剰
なSiの添加により、比較例No.24は過剰なTiの添
加により、多量のピンホールが発生した。比較例No.2
3は、O材強度は良好なものの、過剰なCuの添加によ
り、圧延性が不良で及びピンホールの発生量が多かっ
た。
On the other hand, in Comparative Example No. 20, although the number of pinholes and the O material strength were good, the rolling property was deteriorated by the addition of excessive Fe. In Comparative Example No. 21, the rolling property was good, but the number of pinholes and the O material strength were inferior to those of the Examples because the crystal grains could not be made fine due to insufficient addition of Fe. Comparative Examples 22 and 24 were good in rollability and O material strength, but Comparative Example No. 22 was added with an excessive amount of Si, and Comparative Example No. 24 was added with an excessive amount of Ti. There has occurred. Comparative example No. 2
In No. 3, although the O material strength was good, the rollability was poor and the amount of pinholes was large due to the addition of excessive Cu.

【0048】比較例26、28、30及び32は、圧延
性及びO材強度は良好であるものの、凝固時の冷却速度
が請求項に規定される範囲よりも速すぎ、平均粒子間距
離が狭くなった。このためにマット面が粗くなり、極め
て多量のピンホールが発生した。比較例25、27、2
9及び31は、凝固時の冷却速度が請求項に規定される
範囲よりも遅すぎ、グラススクリーン内で浮遊晶を生じ
たために、圧延用スラブが製作できなかったものであ
る。
In Comparative Examples 26, 28, 30 and 32, although the rolling property and the O material strength were good, the cooling rate during solidification was too fast than the range specified in the claims, and the average interparticle distance was narrow. became. As a result, the matte surface became rough and an extremely large number of pinholes were generated. Comparative Examples 25, 27, 2
In Nos. 9 and 31, the cooling rate during solidification was too slower than the range specified in the claims and floating crystals were generated in the glass screen, so that the rolling slab could not be manufactured.

【0049】第2実施例 表1及び表2に示す実施例No.1、4及び6と組成及び
凝固時の冷却速度がそれぞれ同じ鋳塊について、面削し
た後、表3に示す均質化処理を施し、その直後に仕上熱
間圧延を開始し表3に示す温度で圧延を終了し、板厚5
mmのアルミニウム板を得た。その後、表3に示す条件
圧延率及び焼鈍温度で冷間圧延及び中間焼鈍を行っ
た。更に、冷間圧延して、厚さ0.3mmのアルミニウ
ム箔地を製作した。得られたアルミニウム箔地を箔圧延
、厚さが6μmのアルミニウム箔を製作した。
Second Example Ingots having the same composition and cooling rate during solidification as those of Examples Nos. 1, 4 and 6 shown in Tables 1 and 2 were each faced and then homogenized as shown in Table 3. Immediately after that, finishing hot rolling was started and rolling was finished at the temperature shown in Table 3 to obtain a sheet thickness of 5
An aluminum plate of mm was obtained. Then, the conditions shown in Table 3
Cold rolling and intermediate annealing were carried out at the rolling ratio and the annealing temperature. Further, it was cold-rolled to produce an aluminum foil having a thickness of 0.3 mm. The aluminum foil obtained was rolled to produce an aluminum foil having a thickness of 6 μm.

【0050】前述の第1実施例と同様の方法で測定及び
評価した圧延性、ピンホール数、O材強度、平均粒子間
距離及び平均結晶粒径を下記表4に示す。
Measurement and measurement were carried out in the same manner as in the first embodiment described above.
Evaluated rollability, number of pinholes, O material strength, average particle size
The distance and the average crystal grain size are shown in Table 4 below.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】表4に示すように、本実施例の実施例No.
7乃至12については、良好な圧延性を得た。また、ピ
ンホール数及びO材強度についても同様に実施例No.7
乃至12については、好ましい値であり、全体に亘って
良好な箔を得ることができた。
As shown in Table 4, Example No. of this example.
For Nos. 7 to 12, good rollability was obtained. In addition, regarding the number of pinholes and the strength of O material, the same results as in Example No.
About 12 to 12, it was a preferable value, and a good foil could be obtained over the whole.

【0054】一方、比較例No.33乃至44は、圧延性
については良好であった。しかしながら、比較例No.3
3乃至44においては、均質化処理温度、仕上熱間圧延
終了温度又は中間焼鈍温度若しくは圧延率が請求項に規
定する範囲から外れているために、平均粒子間距離が広
くなり、マット面が粗くなり、ピンホールが多発した。
On the other hand, Comparative Examples Nos. 33 to 44 were good in rollability. However, Comparative Example No. 3
In Nos. 3 to 44, the homogenization treatment temperature, the finish hot rolling end temperature, the intermediate annealing temperature, or the rolling rate was out of the range specified in the claims, so that the average interparticle distance was wide and the matte surface was rough. And there were many pinholes.

【0055】第3実施例 表1及び表2に示す実施例No.1、4及び6と組成及び
凝固時の冷却速度がそれぞれ同じ鋳塊について、面削し
た後、温度600℃で8時間の均質化処理を行い、その
直後に熱間圧延を開始し下記表5に示す条件で熱間粗圧
延及び熱間仕上圧延を行い、板厚5mmのアルミニウム
板を得た。その後、圧延率86%で冷間圧延を行い、得
た板を温度350℃で6時間の中間焼鈍を行った。更
に、冷間圧延をして、厚さ0.3mmのアルミニウム箔
地を製作した。得られたアルミニウム箔地を箔圧延し
さが6μmのアルミニウム箔を製作した。
Third Example For ingots having the same composition and cooling rate during solidification as those of Examples Nos. 1, 4 and 6 shown in Tables 1 and 2, after chamfering, the temperature was set at 600 ° C. for 8 hours. Homogenization treatment was performed, hot rolling was started immediately after that, and hot rough rolling and hot finish rolling were performed under the conditions shown in Table 5 below to obtain an aluminum plate having a thickness of 5 mm. After that, cold rolling was performed at a rolling ratio of 86%, and the obtained sheet was subjected to intermediate annealing at a temperature of 350 ° C. for 6 hours. Further, cold rolling was carried out to produce an aluminum foil having a thickness of 0.3 mm. Foil rolling the obtained aluminum foil ,
An aluminum foil having a thickness of 6 μm was manufactured.

【0056】前述の第1実施例と同様の方法で測定及び
評価した圧延性、ピンホール数、O材強度、平均粒子間
距離及び平均結晶粒径を下記表6に示す。
Measurement and measurement were carried out in the same manner as in the first embodiment described above.
Evaluated rollability, number of pinholes, O material strength, average particle size
The distance and the average crystal grain size are shown in Table 6 below.

【0057】[0057]

【表5】 [Table 5]

【0058】[0058]

【表6】 [Table 6]

【0059】表6に示すように、本実施例の実施例No.
13乃至15については、良好な圧延性を得た。また、
ピンホール数及びO材強度についても同様に実施例No.
13乃至15については、好ましい値であり、第1実施
例及び第2実施例に示す実施例No.1乃至12と比較し
て化学成分が同一であっても、80MPa以上の高いレ
ベルのO材強度を得ることができ、全体に亘って良好な
箔を得ることができた。
As shown in Table 6, Example No. of this example.
About 13 thru | or 15, the favorable rolling property was acquired. Also,
Regarding the number of pinholes and the strength of O material as well, Example No.
13 to 15 are preferable values, and even if the chemical composition is the same as in Example Nos. 1 to 12 shown in the first and second examples, a high level of O material of 80 MPa or more is obtained. The strength could be obtained, and a good foil could be obtained over the whole.

【0060】一方、比較例No.45については、O材強
度は良好であったが、仕上熱間圧延終了温度が請求項
に規定する範囲よりも低いため、良好なコイル形状が
られず、また箔圧延性及びピンホール特性ってい
比較例 No. 46は、仕上熱間圧延終了温度が請求項
4に規定する範囲よりも高いが、熱間粗圧延を請求項5
に規定する範囲で行っているため、第1実施例及び第2
実施例に示される実施例 No. 1乃至12と同等の特性が
得られた。比較例No.47は、圧延性は良好であった
が、請求項に規定する範囲よりも高い温度で熱間粗圧
延したため、結晶粒成長が促進されて結晶粒が粗大化
し、ピンホール数及びO材強度は、請求項5に規定する
範囲内で熱間粗圧延した実施例 No. 13乃至15よりも
劣り、熱間粗圧延を行っていない実施例 No. 1乃至12
と同等であった。比較例 No. 48及び49は、圧延性は
良好であったが、熱間粗圧延の温度範囲及び圧延率が請
求項5に規定する範囲より低いため、結晶粒の微細化が
不十分となり、ピンホール数及びO材強度は、実施例 N
o. 13乃至15よりも劣り、実施例 No. 1乃至12と同
等であった。比較例 No. 50は、ピンホール数及びO材
強度は実施例 No. 1乃至12と同等であったが、請求項
5に規定する範囲よりも高い圧延率で熱間粗圧延したた
め、結晶粒成長が促進されて結晶粒が粗大化し、圧延性
が実施例 No. 1乃至12よりも劣っていた。
On the other hand, in Comparative Example No. 45, although the O material strength was good, the finish hot rolling finish temperature was in the range of claim 4.
Since it is lower than the range specified in , good coil shape can be obtained.
It is not also foil rolling resistance and pinhole properties inferior Ttei
It was In Comparative Example No. 46, the finish hot rolling finish temperature is claimed.
Hot rough rolling, although higher than the range specified in 4.
Since it is performed within the range specified in 1st Example and 2nd Example
The characteristics equivalent to those of Example Nos. 1 to 12 shown in Examples are
Was obtained. Comparative Example No. 47 had good rolling property , but hot rough pressure at a temperature higher than the range specified in claim 5.
As it is stretched, crystal grain growth is promoted and the crystal grains become coarse.
However, the number of pinholes and O material strength are specified in claim 5.
More than Example Nos. 13 to 15 hot rough rolled within the range
Example Nos. 1 to 12 inferior and not subjected to hot rough rolling
Was equivalent to. Comparative Examples Nos. 48 and 49 have rolling properties
Although it was good, the temperature range and rolling ratio of hot rough rolling were
Since it is lower than the range prescribed in Requirement 5, the refinement of crystal grains
Insufficient, the number of pinholes and O material strength, Example N
o. 13 to 15 inferior to Example Nos. 1 to 12
And so on. Comparative example No. 50 is the number of pinholes and O material
The strength was the same as in Examples No. 1 to 12, but
Hot rough rolling was performed at a rolling rate higher than the range specified in 5.
Therefore, the crystal grain growth is promoted and the crystal grains become coarser, resulting in rollability.
Was inferior to Examples No. 1 to 12.

【0061】[0061]

【発明の効果】以上詳述したように本発明によれば、鋳
造凝固時の冷却速度、均質化処理条件、仕上熱間圧延終
了温度、冷間圧延率及び中間焼鈍条件の制御により平均
粒子間距離の適正化を図ることにより、箔圧延性に優
れ、箔圧延後、ピンホールの発生数が少ないアルミニウ
ム箔地を得ることができる。
As described in detail above, according to the present invention, the average intergranular particles can be controlled by controlling the cooling rate during casting solidification, homogenization treatment conditions, finish hot rolling finish temperature, cold rolling rate and intermediate annealing conditions. By optimizing the distance, it is possible to obtain an aluminum foil material which is excellent in foil rollability and has few pinholes after foil rolling.

【0062】更に、本発明によれば、熱間粗圧延におけ
る温度範囲及び1パス当たりの圧延率並びに仕上熱間圧
延の終了温度を適正化に組み合わせることにより、結晶
粒の微細化が図れ、箔圧延性が優れ、箔圧延後のピンホ
ールの発生数が少ないと共に、O材強度にも優れるアル
ミニウム箔地を得ることができる。
Further, according to the present invention, by finely combining the temperature range in hot rough rolling, the rolling rate per pass, and the finish hot rolling finish temperature, the grain size can be made finer and the foil can be made finer. It is possible to obtain an aluminum foil having excellent rollability, a small number of pinholes generated after foil rolling, and an excellent O material strength.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−257459(JP,A) 特開 昭59−64754(JP,A) 特開 平8−333644(JP,A) 特開 平6−25781(JP,A) 特開 平6−293931(JP,A) 特開 平4−337043(JP,A) 三木功,Al−Fe合金の凝固時にお ける鉄の挙度,軽金属,日本,軽金属学 会,1975年 1月,Vol.25,No. 1,p.1−9 (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 C22F 1/04 - 1/057 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-257459 (JP, A) JP 59-64754 (JP, A) JP 8-333644 (JP, A) JP 6- 25781 (JP, A) JP-A-6-293931 (JP, A) JP-A-4-337043 (JP, A) Isao Miki, iron proportion during solidification of Al-Fe alloy, light metal, Japan, light metal Gakuen, January 1975, Vol. 25, No. 1, p. 1-9 (58) Fields investigated (Int.Cl. 7 , DB name) C22C 21/00-21/18 C22F 1/04-1/057

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe:0.3乃至1.0重量%、Si:
0.15重量%未満を含有し、残部がAl及び不可避的
不純物からな、粒径が0.1乃至0.8μmの金属間
化合物の平均粒子間距離が0.7乃至2.5μmである
と共に、平均結晶粒径が35μm以下であることを特徴
とする薄箔用アルミニウム箔地。
1. Fe: 0.3 to 1.0% by weight, Si:
Containing less than 0.15 wt%, the balance Ri is Do Al and inevitable impurities, the average distance between particles of a particle size of 0.1 to 0.8μm intermetallic compound is 0.7 to 2.5μm together, it means a thin foil for aluminum foil locations, wherein the crystal grain size is 35μm or less.
【請求項2】 Cuの含有量が0.02重量%以下であ
ることを特徴とする請求項1に記載の薄箔用アルミニウ
ム箔地。
2. The aluminum foil material for thin foil according to claim 1, wherein the content of Cu is 0.02% by weight or less.
【請求項3】 Tiの含有量が0.03重量%以下であ
ることを特徴とする請求項1又は2に記載の薄箔用アル
ミニウム箔地。
3. The aluminum foil material for thin foil according to claim 1 , wherein the content of Ti is 0.03% by weight or less.
【請求項4】 Fe:0.3乃至1.0重量%、Si:
0.15重量%未満を含有し、残部がAl及び不可避的
不純物である組成のアルミニウム合金の溶湯を、凝固時
の冷却速度を0.3乃至3.0℃/secで半連続鋳造
し、面削した後、400乃至620℃の温度範囲で均質
化処理を施し、終了温度が200乃至260℃の温度範
囲となるように仕上熱間圧延し、前記仕上熱間圧延終了
後に圧延率50%以上の冷間圧延を行い、300乃至4
50℃で2時間以上の中間焼鈍を施し、更に冷間圧延を
することにより、粒径が0.1乃至0.8μmの金属間
化合物の平均粒子間距離が0.7乃至2.5μmである
と共に、平均結晶粒径が35μm以下であるアルミニウ
ム箔地を製作することを特徴とする薄箔用アルミニウム
箔地の製造方法。
4. Fe: 0.3 to 1.0% by weight, Si:
A molten aluminum alloy containing less than 0.15% by weight and the balance being Al and unavoidable impurities is semi-continuously cast at a cooling rate during solidification of 0.3 to 3.0 ° C./sec. After shaving, homogenization treatment is performed in a temperature range of 400 to 620 ° C., finish hot rolling is performed so that the end temperature is in a temperature range of 200 to 260 ° C., and a rolling ratio is 50% or more after the finish hot rolling is finished. Cold rolling of 300 to 4
By performing intermediate annealing at 50 ° C. for 2 hours or more and further cold rolling, the average interparticle distance of the intermetallic compound having a particle size of 0.1 to 0.8 μm is 0.7 to 2.5 μm. A method for producing an aluminum foil for thin foil, which comprises producing an aluminum foil having an average crystal grain size of 35 μm or less.
【請求項5】 320乃至450℃の温度範囲で、1パ
ス当たり37乃至60%の圧延率で熱間粗圧延を行うこ
とを特徴とする請求項4に記載の薄箔用アルミニウム箔
地の製造方法。
5. The production of an aluminum foil for thin foil according to claim 4, wherein hot rough rolling is performed at a rolling rate of 37 to 60% per pass in a temperature range of 320 to 450 ° C. Method.
【請求項6】 前記アルミニウム合金に添加するCuの
添加量が0.02重量%以下であることを特徴とする請
求項4又は5に記載の薄箔用アルミニウム箔地の製造方
法。
6. The method for producing an aluminum foil for thin foil according to claim 4, wherein the amount of Cu added to the aluminum alloy is 0.02% by weight or less.
【請求項7】 前記アルミニウム合金に添加するTiの
添加量が0.03重量%以下であることを特徴とする請
求項4乃至6のいずれか1項に記載の薄箔用アルミニウ
ム箔地の製造方法。
7. The production of an aluminum foil material for thin foil according to claim 4, wherein the amount of Ti added to the aluminum alloy is 0.03% by weight or less. Method.
JP22501298A 1998-08-07 1998-08-07 Aluminum foil base for thin foil and method for producing the same Expired - Lifetime JP3529273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22501298A JP3529273B2 (en) 1998-08-07 1998-08-07 Aluminum foil base for thin foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22501298A JP3529273B2 (en) 1998-08-07 1998-08-07 Aluminum foil base for thin foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000054046A JP2000054046A (en) 2000-02-22
JP3529273B2 true JP3529273B2 (en) 2004-05-24

Family

ID=16822701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22501298A Expired - Lifetime JP3529273B2 (en) 1998-08-07 1998-08-07 Aluminum foil base for thin foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3529273B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787695B2 (en) * 2000-03-31 2006-06-21 株式会社神戸製鋼所 Aluminum alloy foil and method for producing the same
JP4799903B2 (en) * 2005-05-09 2011-10-26 住友軽金属工業株式会社 Aluminum alloy foil with excellent corrosion resistance and strength and method for producing the same
JP5324911B2 (en) * 2008-12-26 2013-10-23 住友軽金属工業株式会社 Aluminum alloy foil for lithium-ion battery electrode current collector
JP5639398B2 (en) * 2010-07-16 2014-12-10 株式会社神戸製鋼所 Aluminum hard foil for battery current collector
CN103270182B (en) * 2010-12-20 2016-08-10 株式会社Uacj Electrode collector alloy foil and manufacture method thereof
CN113789461B (en) * 2021-11-15 2022-03-29 山东宏桥新型材料有限公司 Battery aluminum alloy foil, preparation method thereof and battery current collector
CN114669622B (en) * 2022-03-22 2023-09-29 浙江永杰铝业有限公司 Preparation method of battery aluminum foil and battery aluminum foil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三木功,Al−Fe合金の凝固時における鉄の挙度,軽金属,日本,軽金属学会,1975年 1月,Vol.25,No.1,p.1−9

Also Published As

Publication number Publication date
JP2000054046A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US8016958B2 (en) High strength aluminum alloy sheet and method of production of same
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
JP3529270B2 (en) Manufacturing method of aluminum foil
US8425698B2 (en) Aluminum alloy sheet and method for manufacturing the same
JP3529273B2 (en) Aluminum foil base for thin foil and method for producing the same
JP3767492B2 (en) Method for producing aluminum flexible foil
JP4398117B2 (en) Structural aluminum alloy plate having microstructure and method for producing the same
JPS61119658A (en) Manufacture of material for aluminum foil
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP3529271B2 (en) Manufacturing method of aluminum foil
JP3529272B2 (en) Aluminum foil base for thin foil and method for producing the same
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP3529268B2 (en) Aluminum foil ground and method of manufacturing the same
JP3529269B2 (en) Aluminum foil ground and method of manufacturing the same
JP3986688B2 (en) Method for producing rolled Al-Mn alloy material having fine recrystallized grain structure
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
JP3765986B2 (en) Aluminum alloy plate for deep drawing and manufacturing method thereof
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JP4591986B2 (en) Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability
JPH0585630B2 (en)
JP7318275B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP2654891B2 (en) Manufacturing method of aluminum foil
JP4250030B2 (en) Aluminum alloy plate for glittering wheel rim and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term