JP3527944B2 - Method for producing CuAlO2 thin film by chemical process - Google Patents

Method for producing CuAlO2 thin film by chemical process

Info

Publication number
JP3527944B2
JP3527944B2 JP2000301840A JP2000301840A JP3527944B2 JP 3527944 B2 JP3527944 B2 JP 3527944B2 JP 2000301840 A JP2000301840 A JP 2000301840A JP 2000301840 A JP2000301840 A JP 2000301840A JP 3527944 B2 JP3527944 B2 JP 3527944B2
Authority
JP
Japan
Prior art keywords
thin film
solution
coated
copper acetate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000301840A
Other languages
Japanese (ja)
Other versions
JP2002114515A (en
Inventor
優喜 大橋
康夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000301840A priority Critical patent/JP3527944B2/en
Publication of JP2002114515A publication Critical patent/JP2002114515A/en
Application granted granted Critical
Publication of JP3527944B2 publication Critical patent/JP3527944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CuAlO2 を主
成分とする薄膜を製造する方法に関するものであり、更
に詳しくは、透明(ワイドバンドギャップ)でp型の導
電性を示すCuAlO2 薄膜のケミカルプロセスによる
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film containing CuAlO 2 as a main component, and more specifically to a CuAlO 2 thin film which is transparent (wide band gap) and exhibits p-type conductivity. The present invention relates to a manufacturing method by a chemical process.

【0002】[0002]

【従来の技術】現在、ITO等のn型の透明導電性薄膜
は、フラットパネルディスプレーや太陽電池等の透明電
極として応用されている。それに対して、p型の透明導
電性薄膜は殆ど見あたらない。仮に、高導電性を持つp
型の透明導電性薄膜が開発されれば、透明なp−n接合
体が作製可能となり、透明トランジスタ等の新しいオプ
トエレクトロニクスデバイスの出現が期待できる。
2. Description of the Related Art At present, n-type transparent conductive thin films such as ITO are used as transparent electrodes for flat panel displays and solar cells. On the other hand, p-type transparent conductive thin films are hardly found. Assuming that p has high conductivity
If a transparent conductive thin film of the type is developed, a transparent pn junction can be produced, and the appearance of new optoelectronic devices such as transparent transistors can be expected.

【0003】ゾル−ゲル法に代表されるケミカルプロセ
スによる薄膜作製は、真空容器内でのドライプロセスに
よる薄膜作製に比べ、低コストであり、組成均質性に優
れている。これまで、レーザーアブレーション法でp型
の高導電性を示すCuAlO2 薄膜が作製された例はあ
るが(川副ら,Nature,389(1997)p.
941)、ケミカルプロセスによりCuAlO2 薄膜が
作製されたという報告は見あたらない。
Thin film formation by a chemical process represented by the sol-gel method is lower in cost and superior in composition homogeneity than thin film formation by a dry process in a vacuum container. Up to now, there has been an example in which a CuAlO 2 thin film showing a p-type high conductivity is prepared by a laser ablation method (Kawazoe et al., Nature, 389 (1997) p.
941), there is no report that a CuAlO 2 thin film was produced by a chemical process.

【0004】[0004]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、ケミカルプ
ロセスにより高収率かつ低コストでCuAlO2 薄膜を
作製する方法を確立することを目標として鋭意研究を積
み重ねた結果、酢酸銅1水塩あるいは無水の特定のアル
コール類の溶液にアルミニウムアルコキシド溶液を加え
た出発溶液を用いて、前駆体溶液を調製し、これを基板
上にコーティングして焼成することにより所期の目的を
達成し得ることを見出し、本発明を完成するに至った。
本発明の目的は、これまで極めて困難であったケミカル
プロセスによるCuAlO2 薄膜の作製法を提供するこ
とである。また、本発明は、透明(ワイドバンドギャッ
プ)でp型の導電性を示すCuAlO2 薄膜を化学的プ
ロセスで効率よく、高収率かつ低コストで作製する方法
を提供することを目的とするものである。
Under these circumstances, the present inventors, in view of the above-mentioned prior art, established a method for producing a CuAlO 2 thin film by a chemical process with high yield and low cost. As a result of earnest research, a precursor solution was prepared using a starting solution prepared by adding an aluminum alkoxide solution to a solution of copper acetate monohydrate or an anhydrous specific alcohol, and this was prepared on a substrate. The inventors have found that the intended purpose can be achieved by coating and firing, and have completed the present invention.
An object of the present invention is to provide a method for producing a CuAlO 2 thin film by a chemical process which has been extremely difficult until now. Another object of the present invention is to provide a method for efficiently producing a transparent (wide bandgap) CuAlO 2 thin film exhibiting p-type conductivity by a chemical process at a high yield and a low cost. Is.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段により構成される。 (1)酢酸銅1水塩あるいは無水酢酸銅をアルコール類
に溶解した後、銅に対して0.8〜1.5倍モルのアル
ミニウムを含むアルミニウムアルコキシド溶液を加えて
出発溶液を作製し、次に、この溶液を還流した後、蒸留
してCu 2+ とAl 3+ とからの合計金属イオン濃度が0.
5〜1.5M/Lの前駆体溶液を作製し、更に、この溶
液をディップコーティングあるいはスピンコーティング
して基板上に堆積させ、乾燥する操作をした後、窒素又
はアルゴン雰囲気で焼成を行ってCuAlO2 を主成分
とする薄膜を作製することを特徴とするCuAlO2
膜の製造方法。 (2)酢酸銅1水塩あるいは無水酢酸銅をエタノール及
び2−メトキシエタノールに溶解する前記(1)記載の
方法。 (3)堆積させ、乾燥する操作を繰り返して適当な厚み
を持った膜を積層した後、焼成する前記(1)記載の方
法。 (4)溶液をディップコーティング、又はスピンコーテ
ィングして基板上に堆積する前記(1)記載の方法。 (5)700〜900℃で焼成する前記(1)記載の方
法。
The present invention for solving the above-mentioned problems is constituted by the following technical means. (1) After the copper acetate monohydrate or anhydrous copper acetate was dissolved in an alcohol, adding aluminum alkoxide solution containing 0.8 to 1.5 moles of aluminum to prepare a starting solution to copper, the following The solution was refluxed and then distilled to obtain a total metal ion concentration of Cu 2+ and Al 3+ of 0.
A precursor solution of 5 to 1.5 M / L is prepared, and further, this solution is dip-coated or spin-coated to be deposited on a substrate and dried, and then baked in a nitrogen or argon atmosphere to form CuAlO. A method for producing a CuAlO 2 thin film, which comprises producing a thin film containing 2 as a main component. (2) the dissolving of copper acetate monohydrate or anhydrous copper acetate in ethanol and 2-methoxyethanol (1) The method according. (3) The method according to (1) above, wherein the steps of depositing and drying are repeated to stack films having an appropriate thickness, and then firing. (4) The method according to (1) above, wherein the solution is dip-coated or spin-coated and deposited on the substrate. (5) The method according to (1) above, which comprises firing at 700 to 900 ° C.

【0006】[0006]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明は、ワイドバンドギャップでp型導電
性を示すCuAlO2 薄膜をケミカルプロセスにより作
製する方法に関するものである。本発明に係わる薄膜の
製造方法は、酢酸銅(1水塩あるいは無水)をアルコー
ル類、好適には、エタノール及び2−メトキシエタノー
ルに溶解した後、銅に対して0.8〜1.5倍モルのア
ルミニウムを含むアルミニウムアルコキシド溶液を加え
て出発溶液を作製する。次に、この溶液を還流した後、
蒸留して金属イオン濃度(Cu2++Al3+)が0.5〜
1.5M/Lの前駆体溶液とし、更に、この溶液をディ
ップコーティングあるいはスピンコーティングして基板
上に堆積させ、次に乾燥するという操作を繰り返して適
当な厚みを持った膜を積層した後、窒素又はアルゴン雰
囲気で焼成を行ってCuAlO2 を主成分とする薄膜を
作製する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. The present invention relates to a method for producing a CuAlO 2 thin film having a wide band gap and p-type conductivity by a chemical process. The method for producing a thin film according to the present invention is carried out by dissolving copper acetate (monohydrate or anhydrous) in alcohols, preferably ethanol and 2-methoxyethanol, and then 0.8 to 1.5 times that of copper. An aluminum alkoxide solution containing moles of aluminum is added to make a starting solution. Then, after refluxing this solution,
Distilled to give metal ion concentration (Cu 2+ + Al 3+ ) of 0.5-
After forming a precursor solution of 1.5 M / L, further dip-coating or spin-coating this solution to deposit it on the substrate, and then drying, repeating the operation of laminating a film having an appropriate thickness, Firing is performed in a nitrogen or argon atmosphere to form a thin film containing CuAlO 2 as a main component.

【0007】本発明において、銅成分の出発原料として
は、酢酸銅1水塩(Cu(CH3 COO)2 2 O)あ
るいは無水酢酸銅(Cu(CH3 COO)2 )が使用さ
れる。これをアルコール類、好適には、エタノール及び
2−メトキシエタノールに溶解するが、この場合、好適
には、エタノールの濃度は、0.05〜0.2M/Lが
好ましく、更に、酢酸銅に対して10〜30倍当量程度
の2−メトキシエタノールを加える。次に、この溶液中
に、銅に対して0.5〜1.5倍モル、好ましくは等モ
ルのアルミニウムを含むアルミニウムアルコキシド、例
えば、アルミニウムブトキサイド、アルミニウムイソプ
ロポキシド溶液を加えて出発溶液を調製する。
In the present invention, copper acetate monohydrate (Cu (CH 3 COO) 2 H 2 O) or anhydrous copper acetate (Cu (CH 3 COO) 2 ) is used as the starting material for the copper component. This is dissolved in alcohols, preferably ethanol and 2-methoxyethanol, and in this case, the concentration of ethanol is preferably 0.05 to 0.2 M / L, and more preferably to copper acetate. 10- to 30-fold equivalent of 2-methoxyethanol is added. Next, to this solution, an aluminum alkoxide containing 0.5 to 1.5 times, and preferably an equimolar amount of aluminum with respect to copper, for example, aluminum butoxide, aluminum isopropoxide solution is added, and a starting solution To prepare.

【0008】次に、この溶液を攪拌しながら、80℃前
後で1〜3h還流した後、金属イオン濃度(Cu2++A
3+)が0.5〜1.5M/L、好ましくは0.8M/
L以上になるまで蒸留して前駆体溶液を調製する。この
場合、必要により、Al/Cu比の調整、あるいは導電
率を高める目的でドーパント元素(例えば、Alサイト
を置換するBe、Mg、Ca等)を前駆体溶液中に目的
の濃度に合わせて溶かし込むことができる。次いで、こ
の溶液を基板上にコーティングし、乾燥する。この場
合、基板としては、例えば、好適には、シリカガラス、
アルミナ、ジルコニア、ムライト等の基板が例示される
が、これらに限らず、800℃程度の温度に耐え得る基
板であれば同様に使用することが可能であり、基板の種
類は、特に限定されるものではない。また、コーティン
グ方法としては、好適には、ディップコーティング、ス
ピンコーティング等が例示される。上記コーティング−
乾燥の操作を1回以上、必要により、適宜の回数の操作
を繰り返して適当な厚みを持った膜を堆積させた後、窒
素、アルゴン等の不活性雰囲気で焼成する。焼成条件
は、700〜900℃が好ましい。700℃以下ではC
uAlO2 の生成量が少なく、高い導電性を示さず、ま
た、900℃以上では、透明基板の失透、あるいは基板
と膜との反応のおそれがあるため、800℃付近での焼
成がより好ましい。
Next, this solution was stirred and refluxed at about 80 ° C. for 1 to 3 hours, and then the metal ion concentration (Cu 2+ + A
l 3+ ) is 0.5 to 1.5 M / L, preferably 0.8 M / L
A precursor solution is prepared by distilling until L or more. In this case, if necessary, for the purpose of adjusting the Al / Cu ratio or increasing the conductivity, a dopant element (for example, Be, Mg, Ca, etc. substituting the Al site) is dissolved in the precursor solution according to the desired concentration. Can be crowded. The solution is then coated on the substrate and dried. In this case, as the substrate, for example, preferably, silica glass,
Substrates such as alumina, zirconia, and mullite are exemplified, but the substrate is not limited to these, and any substrate that can withstand a temperature of about 800 ° C. can be similarly used, and the type of substrate is not particularly limited. Not a thing. As the coating method, dip coating, spin coating and the like are preferably exemplified. Above coating-
A drying operation is performed once or more, and if necessary, an appropriate number of times is repeated to deposit a film having an appropriate thickness, followed by firing in an inert atmosphere such as nitrogen or argon. The firing conditions are preferably 700 to 900 ° C. C below 700 ° C
Since the amount of uAlO 2 produced is small, it does not exhibit high conductivity, and at 900 ° C. or higher, there is a risk of devitrification of the transparent substrate or reaction between the substrate and the film, so firing at around 800 ° C. is more preferable. .

【0009】本発明の方法は、特に、以下のような利点
を有する。 (1)本発明により、p型の酸化物導電体として、25
0Ω・cm以下の抵抗率と高透過率(図1)を示すCu
AlO2 薄膜が得られる。 (2)本発明の方法は、ドライプロセスによる薄膜作製
のように、高価な真空装置や原料を必要とせず、また、
収率も100%に近く、非常に低コストなプロセスであ
る。 (3)Al/Cu比の調整、あるいは導電率を高める目
的で添加されるドーパント元素(例えば、Alサイトを
置換するBe、Mg、Ca等)を前駆体溶液中に目的の
濃度に合わせて溶かし込むことにより、目的の化学組成
を持った均質な薄膜を比較的容易に作製することが可能
である。
The method of the present invention has the following advantages. (1) According to the present invention, as a p-type oxide conductor, 25
Cu showing resistivity of 0 Ω · cm or less and high transmittance (Fig. 1)
An AlO 2 thin film is obtained. (2) The method of the present invention does not require expensive vacuum equipment and raw materials unlike the thin film production by the dry process, and
The yield is close to 100%, which is a very low-cost process. (3) Dissolving a dopant element added for the purpose of adjusting the Al / Cu ratio or increasing the conductivity (for example, Be, Mg, Ca, etc. substituting the Al site) in the precursor solution according to the desired concentration. By incorporating it, it is possible to relatively easily prepare a homogeneous thin film having a desired chemical composition.

【0010】[0010]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は、当該実施例によって何ら限定され
るものではない。 実施例 (1)CuAlO2 薄膜の作製方法 0.015モルの酢酸銅1水塩(Cu(CH3 COO)
22 O)を0.2lのエタノール及び0.6モルの2
−メトキシエタノールに溶解した後、1.0モル/lの
Al−tri−sec−butoxide溶液15〜2
2.5mlを加えて出発溶液を作製した。次に、この溶
液を1.5時間還流した後、約1.5時間蒸留して金属
イオン濃度(Cu2++Al3+)が0.8M/Lの前駆体
溶液を調製した。更に、この溶液をシリカガラス基板上
にディップコーティング(8cm/min)した後、大
気中400℃で10分間乾燥した。この操作を10回繰
り返した後、窒素気流中において700〜900℃で1
時間焼成を行ってCuAlO2 を主成分とする薄膜を作
製した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example (1) Method for producing CuAlO 2 thin film 0.015 mol of copper acetate monohydrate (Cu (CH 3 COO))
2 H 2 O) in 0.2 l of ethanol and 0.6 mol of 2
After dissolving in methoxyethanol, 1.0 mol / l Al-tri-sec-butoxide solution 15-2
2.5 ml was added to make a starting solution. Next, this solution was refluxed for 1.5 hours and then distilled for about 1.5 hours to prepare a precursor solution having a metal ion concentration (Cu 2+ + Al 3+ ) of 0.8 M / L. Further, this solution was dip-coated (8 cm / min) on a silica glass substrate, and then dried at 400 ° C. for 10 minutes in the atmosphere. After repeating this operation 10 times, in a nitrogen stream at 700 to 900 ° C.
Firing was performed for a time to form a thin film containing CuAlO 2 as a main component.

【0011】(2)CuAlO2 薄膜の特性 各温度で焼成した試料(膜厚約1ミクロン)の構成結晶
相(粉末X線回折法)及び抵抗率(4探針法)を表1に
示す。Al/Cu原子比が1.0に近いほど抵抗率が低
下した。また、700℃以下ではCuAlO2 の生成量
が少なく、膜は高い導電性を示さなかった。また、90
0℃以上では、粒子の粗大化に伴う気孔の増大により、
僅かに抵抗率が増大した。更に、図1に示すように同薄
膜は高い透過率を示した(Al/Cu比=1.0)。焼
成温度の上昇に伴って透過率が低下しているのは、シリ
カガラスの結晶化による基板ガラスの白濁による。従っ
て、抵抗率に影響がでない程度に低温で、好ましくは、
800℃前後で焼成することが望ましい。
(2) Characteristics of CuAlO 2 thin film Table 1 shows the constituent crystal phases (powder X-ray diffraction method) and the resistivity (4-probe method) of the sample (film thickness: about 1 micron) baked at each temperature. The resistivity decreased as the Al / Cu atomic ratio approached 1.0. At 700 ° C. or lower, the amount of CuAlO 2 produced was small, and the film did not exhibit high conductivity. Also, 90
At 0 ° C or higher, pores increase with the coarsening of particles,
The resistivity increased slightly. Further, as shown in FIG. 1, the thin film showed high transmittance (Al / Cu ratio = 1.0). The decrease in the transmittance with the increase in the firing temperature is due to the cloudiness of the substrate glass due to the crystallization of silica glass. Therefore, at a low temperature that does not affect the resistivity, preferably,
It is desirable to bake at around 800 ° C.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】以上詳述したように、本発明は、透明
(ワイドバンドギャップ)でp型導電性を示すCuAl
2 薄膜をケミカルプロセスにより作製する方法に係る
ものであり、本発明により、1)これまで困難であった
ケミカルプロセスによるCuAlO2 薄膜の作製方法を
実現できる、2)本発明により作製されるCuAlO2
薄膜は、p型の酸化物導電体として高い導電性を示す、
3)従って、本発明により、透明でp型導電性を示すC
uAlO2 薄膜をより低コストで提供することが可能と
なる、4)Al/Cu比の調整、あるいは導電率を高め
る目的で添加されるドーパント元素(例えば、Alサイ
トを置換するBe、Mg、Ca等)を前駆体溶液中に目
的の濃度に合わせて溶かし込むことにより、目的の化学
組成を持った均質な薄膜を比較的容易に作製することが
可能となる、という格別の効果が得られる。
As described above in detail, according to the present invention, CuAl which is transparent (wide band gap) and exhibits p-type conductivity is used.
The present invention relates to a method for producing an O 2 thin film by a chemical process, and according to the present invention, 1) a method for producing a CuAlO 2 thin film by a chemical process, which has been difficult so far, can be realized, and 2) a CuAlO produced by the present invention. 2
The thin film exhibits high conductivity as a p-type oxide conductor,
3) Therefore, according to the present invention, C which is transparent and exhibits p-type conductivity
It is possible to provide a uAlO 2 thin film at a lower cost, 4) a dopant element added for the purpose of adjusting the Al / Cu ratio or increasing the conductivity (eg, Be, Mg, Ca replacing Al sites). And the like) are dissolved in the precursor solution according to the desired concentration, and it is possible to relatively easily prepare a homogeneous thin film having a desired chemical composition, which is a particular effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】各温度で焼成した試料の波長と透過率の関係を
示す。
FIG. 1 shows the relationship between the wavelength and the transmittance of a sample fired at each temperature.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 - 7/00 H01B 13/00 503 H01L 21/205 H01L 31/04 CA(STN)─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields investigated (Int.Cl. 7 , DB name) C01G 1/00-7/00 H01B 13/00 503 H01L 21/205 H01L 31/04 CA (STN)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酢酸銅1水塩あるいは無水酢酸銅をアル
コール類に溶解した後、銅に対して0.8〜1.5倍モ
ルのアルミニウムを含むアルミニウムアルコキシド溶液
を加えて出発溶液を作製し、次に、この溶液を還流した
後、蒸留してCu 2+ とAl 3+ とからの合計金属イオン濃
度が0.5〜1.5M/Lの前駆体溶液を作製し、更
に、この溶液をディップコーティングあるいはスピンコ
ーティングして基板上に堆積させ、乾燥する操作をした
後、窒素又はアルゴン雰囲気で焼成を行ってCuAlO
2 を主成分とする薄膜を作製することを特徴とするCu
AlO2薄膜の製造方法。
The method according to claim 1] copper acetate monohydrate or anhydrous copper acetate was dissolved in an alcohol, aluminum alkoxide solution was added to prepare a starting solution containing 0.8 to 1.5 moles of aluminum to copper Next, after refluxing this solution, it was distilled to prepare a precursor solution having a total metal ion concentration of 0.5 to 1.5 M / L from Cu 2+ and Al 3+, and further preparing this solution. Is dip-coated or spin-coated to be deposited on the substrate, dried, and then baked in a nitrogen or argon atmosphere to form CuAlO.
Cu characterized by producing a thin film containing 2 as a main component
Method for manufacturing AlO 2 thin film.
【請求項2】 酢酸銅1水塩あるいは無水酢酸銅をエタ
ノール及び2−メトキシエタノールに溶解する請求項1
記載の方法。
2. A copper acetate monohydrate or anhydrous copper acetate is dissolved in ethanol and 2-methoxyethanol.
The method described.
【請求項3】 堆積させ、乾燥する操作を繰り返して適
当な厚みを持った膜を積層した後、焼成する請求項1記
載の方法。
3. The method according to claim 1, wherein the steps of depositing and drying are repeated to form a film having an appropriate thickness and then firing.
【請求項4】 溶液をディップコーティング、又はスピ
ンコーティングして基板上に堆積する請求項1記載の方
法。
4. The method according to claim 1, wherein the solution is dip-coated or spin-coated and deposited on the substrate.
【請求項5】 700〜900℃で焼成する請求項1記
載の方法。
5. The method according to claim 1, which is fired at 700 to 900 ° C.
JP2000301840A 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process Expired - Lifetime JP3527944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000301840A JP3527944B2 (en) 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000301840A JP3527944B2 (en) 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process

Publications (2)

Publication Number Publication Date
JP2002114515A JP2002114515A (en) 2002-04-16
JP3527944B2 true JP3527944B2 (en) 2004-05-17

Family

ID=18783300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000301840A Expired - Lifetime JP3527944B2 (en) 2000-10-02 2000-10-02 Method for producing CuAlO2 thin film by chemical process

Country Status (1)

Country Link
JP (1) JP3527944B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324206A (en) * 2002-04-30 2003-11-14 National Institute Of Advanced Industrial & Technology Photovoltaic cell for converting ultraviolet radiation to electric power, and method of manufacturing the same
JP2004311845A (en) * 2003-04-09 2004-11-04 National Institute Of Advanced Industrial & Technology Visible-ray transmitting structure having power generating function
DE10323625B3 (en) * 2003-05-21 2005-01-05 Hahn-Meitner-Institut Berlin Gmbh Process for the preparation of transparent p-type CuAIO2 and its use
CN100494064C (en) * 2006-07-19 2009-06-03 中国科学院合肥物质科学研究院 Method of manufacturing alumine acid cuprous polycrystalline material with delafossite structure and manufacturing material thereof
KR101316237B1 (en) * 2011-12-06 2013-10-08 연세대학교 산학협력단 Manufacturing Method of Solution-processed semiconductor buffer layer And solar cells using it

Also Published As

Publication number Publication date
JP2002114515A (en) 2002-04-16

Similar Documents

Publication Publication Date Title
Lee et al. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method
Crossay et al. Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells
Watthage et al. Enhanced grain size, photoluminescence, and photoconversion efficiency with cadmium addition during the two-step growth of CH3NH3PbI3
Tseng et al. Synthesis of c-axis preferred orientation ZnO: Al transparent conductive thin films using a novel solvent method
JP5469107B2 (en) Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles
CN109273601A (en) A kind of perovskite solar battery and preparation method thereof
CN103360107B (en) A kind of gold-nickel acid lanthanum composite conductive thin film material and preparation method thereof
Gao et al. Cupric oxide film with a record hole mobility of 48.44 cm2/Vs via direct–current reactive magnetron sputtering for perovskite solar cell application
JP3527944B2 (en) Method for producing CuAlO2 thin film by chemical process
CN102503162A (en) Preparation method for Ag-Al co-doped p type ZnO film
Huang et al. Enhancement of All-Inorganic Perovskite Solar Cells by Lead–Cerium Bimetal Strategy
Onwona-Agyeman et al. Preparation and characterization of sputtered aluminum and gallium co-doped ZnO films as conductive substrates in dye-sensitized solar cells
Lee et al. Fabrication of high transmittance and low sheet resistance dual ion doped tin oxide films and their application in dye-sensitized solar cells
He et al. A multifunctional flame retardant enabling efficient and stable formamidine-cesium perovskite solar cells
Krishnakumar et al. Preparation of cadmium stannate films by spray pyrolysis technique
CN102060529B (en) Nano Ag particle-Pb(Zr0.52Ti0.48)O3 filtration type composite ceramic film and preparation method thereof
CN100347336C (en) Preparation of double axial structured CeO2 film from inorganic salt as raw material by liquid phase chemical process
Pramothkumar et al. Perovskite solar cells: investigation of structural, optical and device performance analysis of Al–Sn co-doped ZnO electron transport layer
CN113745410B (en) Based on P type CuNiO 2 Preparation method of perovskite solar cell of thin film
CN106245007B (en) A kind of preparation method being orientated ito thin film
Dash et al. Preparation of ZnO layer for solar cell application
Nath et al. Solvent engineering for two-dimensional perovskite of guanidium lead iodide
Lozano-González et al. Synthesis and Evaluation of the Semiconductor Behavior in Vanadium Indanone Derivatives Thin Films
CN110776000B (en) All-inorganic perovskite nanocrystalline, preparation method thereof and application thereof in semiconductor device
Ma et al. The effect of post-annealing treatment on the characteristics of a dye-sensitized solar cell with an indium zinc tin oxide electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350