JP3521088B2 - Molding method of metal powder for powder metallurgy - Google Patents

Molding method of metal powder for powder metallurgy

Info

Publication number
JP3521088B2
JP3521088B2 JP13454892A JP13454892A JP3521088B2 JP 3521088 B2 JP3521088 B2 JP 3521088B2 JP 13454892 A JP13454892 A JP 13454892A JP 13454892 A JP13454892 A JP 13454892A JP 3521088 B2 JP3521088 B2 JP 3521088B2
Authority
JP
Japan
Prior art keywords
powder
die
molding
taper
inner hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13454892A
Other languages
Japanese (ja)
Other versions
JPH05320705A (en
Inventor
好美 菅谷
毅 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP13454892A priority Critical patent/JP3521088B2/en
Publication of JPH05320705A publication Critical patent/JPH05320705A/en
Application granted granted Critical
Publication of JP3521088B2 publication Critical patent/JP3521088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、粉末冶金における粉
末成形用金型のダイスを用いた粉末成形方法に関するも
ので、高密度の成形体を得る場合、硬質な粉末を成形す
る場合、アルミ粉末のように軟質で金型に齧り付きやす
い粉末の成形などに好適に利用できる。 【0002】 【従来の技術】粉末成形用の金型は、成形体の外形に対
応した内孔を持つダイスと、上下のパンチからなり、必
要に応じコアロッドを備えたもので、プレス装置に組み
込まれて粉末成形装置を形成している。ダイキャビティ
に粉末を充填し、金型の各部材を相対的に移動して、上
下のパンチで粉末を圧縮したのち、粉末充填側に押し出
し圧粉体は離型される。 【0003】 【発明が解決しようとする課題】成形体の密度は成形圧
力により決定されるが、高強度を必要とする機械要素で
は高い密度が要求されるものが多く、成形圧力が高いの
に対応して金型強度への配慮も必要である。また、急冷
凝固法により作られた磁性合金粉末の成形のように、硬
質の粉末を高い密度に成形する場合は、更に粉末成形が
困難である。また、粉末成形を繰り返すうちに、粉末圧
縮される部位のダイス内孔が少しずつ摩耗し、ダイス内
孔がいわゆる中膨らみ状態となり、圧粉体の抜き出し抵
抗が増加し、圧粉体に傷が付いたり割れを生じる虞が内
在している。更に、アルミ粉末のように、金型に齧り付
き易い材料の粉末成形では、高密度のものを奇麗な外観
でばらつきを少なく製作するのに困難を伴う。 【0004】この発明は、このような従来の状況を基
に、高い密度の圧粉体をより低い圧力で抜き出し性良く
成形することを目的としてなされた。 【0005】 【課題を解決するための手段】上記の目的を達成するた
め、本発明に用いる粉末成形ダイスは、粉末成形ダイス
の内孔が、成形体抜き出し側の寸法が大である1/50
00〜1/1000のテーパを有している構成にした。
この場合、粉末成形ダイス内孔の端部にテーパが無いも
のも含まれる。 【0006】また、粉末成形方法として粉末冶金用の金
属粉末成形ダイスの内孔が、成形体抜き出し側へ拡大す
る1/5000〜1/1000のテーパを有する粉末成
形ダイスと、前記ダイスの内孔と嵌合する上下パンチを
備えた粉末冶金用の粉末成形装置により、成形ダイスの
キャビティ中に充填された粉末を上下パンチで圧縮成形
する場合に、圧縮過程の大部分、または少なくとも圧縮
の最終段階はダイス内孔の大きい側のパンチで積極的に
押圧することによって、密度の高い粉末冶金用の金属粉
成形することができる。ここで積極的に押圧すると
は、ダイス内孔の大きい側のパンチの押圧力がダイス内
孔の小さい側のパンチの押圧力より大きくなるように押
圧することである。 【0007】本発明は粉末冶金用の金属粉末の成形ダイ
スの内孔が、成形体抜き出し側へ拡大する1/5000
〜1/1000のテーパを有する粉末成形ダイスと、前
記ダイスの内孔と嵌合する上下パンチを備えた粉末冶金
用の粉末成形装置により、成形ダイスのキャビティ中に
充填された粉末を上下パンチで圧縮成形するに当り、粉
末を一旦圧縮したのち、成形ダイス中の圧粉体をダイス
内孔の大きい側の方向へ移動し、既圧粉体を再度圧縮す
ることを特徴とする粉末冶金用の金属粉末の成形方法で
ある。 【0008】 【作用】圧粉体の密度は、粉末をパンチで圧縮したとき
の粉体間の抵抗、粉末の塑性変形抵抗、粉末とダイス内
壁面との摩擦抵抗とに抗して圧縮される加圧力により決
定される。粉末成形ダイスの内孔が、成形体が抜き出さ
れる側の寸法が大のテーパ状であり、充填された粉末を
圧縮する方向を、ダイス内孔の小さい側の方向へ積極的
に押圧すると、テーパを持たないダイスの場合に比べて
高い密度が得られる。これは、粉末とダイス内壁面との
摩擦抵抗が通常の場合とさほど変わらずに、テーパ比の
量だけ圧粉体の横断面積が減少するので、パンチ加圧方
向の圧縮に加え、それと直角方向からも圧縮されること
によるものと考えられる。 【0009】また、ダイキャビティ内の圧粉体を離型す
る場合の抜き出し荷重は、圧粉体とダイス内壁面との摩
擦抵抗であり、ダイス内孔にテーパがあると、圧粉体の
移動に伴い、圧粉体が順次解放されるので、離型抵抗が
小さくなる。テーパは1/5000より小さい(テーパ
角が小)とその効果がなく、1/1000より大きい
(テーパ角が大)場合は、圧粉体にもテーパを生じ、例
えば、歯車のようなものは歯筋精度が悪くなり、焼結体
のサイジングをする際に高圧力を必要とし、硬さの高い
材料では矯正が困難になる。また、テーパ角が大きすぎ
ると、ダイスの内孔が大きい側のパンチとダイスの内孔
との隙間に粉末を噛み混み、金型の摩耗が著しくなる。 【0010】成形ダイスのキャビティ中に充填された粉
末を上下パンチで圧縮する場合に、粉末を一旦圧縮した
のち、成形ダイス中の圧粉体をダイス内孔の大きい側へ
移動し、既圧粉体を再度圧縮すると、圧粉体密度は一層
向上する。すなわち、ダイス内の圧粉体はダイス内壁面
に向かって応力を生じており、圧粉体をダイス内孔の大
きい側へ移動すると、その応力は緩和され、圧粉体とダ
イス壁面との抵抗が緩和された状態で再度圧縮されるか
ら、予備圧粉体の変形が容易になる。 【0011】 【実施例】以下、実施例により発明を説明する。 <参考例1> 内径20mmの内孔を持つ合金工具鋼製のダイスを鋼材
で作られたダイスホルダーに焼きばめした粉末成形ダイ
スと、一対の上下パンチを準備した。 【0012】粉末成形ダイスは、内孔にテーパを付けな
いものと、デーパを1/6000、1/5000、1/
2500、1/1000、及び1/500付したものと
の6種類である。各ダイス内孔面の面粗さRmaxは
0.2μmである。これらの金型を用い、成形潤滑剤を
混合した合金鉄粉を圧力7トン/cm2 で圧粉体高さ2
0mmに圧縮成形し、ダイスから抜き出すときの最大荷
重(抜き出し荷重)、抜き出し後の成形体密度、及び圧
粉体の外径上下寸法差を測定した。その結果を表1に示
す。 【0013】抜き出し荷重は、ダイスのテーパが1/5
000より大きいとき(テーパ角が大のとき)低くなっ
ており、テーパが大きく(テーパ角が大のとき)なるほ
ど低くなる傾向を示す。また、テーパ角が小さい場合
は、抜き出し最中、長い時間にわたって高い荷重が掛か
るのに対して、テーパ角が大きい場合は、抜き出しの初
期だけ荷重が比較的高く、後は低くなる。 【0014】成形体密度もほぼ同様な傾向を示し、テー
パが1/5000より大きいとき高い密度を示す。一
方、外径寸法差は、テーパ が1/2500以下では認
められないが、1/2500を越えると大きくなり、テ
ーパが1/500では0.055mmを示している。 【0015】 【表1】 【0016】<参考例2> 前記のテーパなしの金型と、1/2500のテーパ付き
金型により、アルミ合金粉をそれぞれ成形圧力5トン/
cm2 で圧縮成形して、抜き出し離型するときの最大荷
重を比較した。テーパ付きダイスの方が20%少なかっ
た。 <参考例3> 前記の金型のテーパなしのものと、1/2500のテー
パ付き金型により、合金鉄粉をそれぞれ成形圧力5トン
/cm2 でフローティングダイ方式で圧縮して、高さ5
0mmの成形体を作製し、分解アンモニア中、温度10
50℃で焼結した後のロックウェル表面硬さを比較し
た。測定は試料の高さ方向を等間隔に9か所測定した。
表2のように、テーパのないダイスで成形した試料は、
中間部位の硬さが低く、密度が低いことを示している。
これに比してテーパ付きダイスのものは、硬さの差が少
ないことが判る。 【0017】 【表2】 【0018】<参考例4> 前記の1/2500のテーパ付き金型を用い、合金鉄粉
をそれぞれ成形圧力5トン/cm で圧縮して、高さ
50mmの成形体を作製し、分解アンモニアガス中、温
度1050℃で焼結した後のロックウェル表面硬さを比
較した。粉末成形は、参考例2と同様のフローティング
ダイ方式による両側圧縮したもの(試料1)と、一旦上
下パンチで圧縮した後、ダイス内孔径の大きい側の上パ
ンチで積極的に押圧したもの(試料2)の2種類であ
る。硬さの測定は試料の高さ方向を等間隔に9か所測定
した。 【0019】表3のように、試料2は、硬さのばらつき
が小さく、平均硬さも高いことが判る。 【0020】 【表3】 【0021】<参考例> 参考例3と同様にして、各ダイス毎に粉末成形を連続5
00個成形したときの成形体温度を測定した。テーパな
しダイスのものは60℃であったが、テーパ付きダイス
のものは47℃であり、摩擦抵抗の差が認められた。 <実施例> 前記の1/2500のテーパ付き金型を用い、硬さが7
00HVで粒度が250メッシュ以下の合金鋼粉末に樹
脂を2重量%混合した粉末を、成形圧力を変えて加圧し
て離型した場合と、同様に成形圧力を変えてそれぞれ加
圧してから加圧を解除し、次に、圧粉体をダイス内孔径
の大きい側へ下パンチで押し上げ移動した後、夫々25
トン/cm の圧力で加圧し、離型した場合の各試料
成形体密度を比較した。 【0022】ダイキャビティ中で予備成形体を移動した
後、再圧縮すると、圧力25トン/cm2 で1回圧縮し
た場合の密度に比べて成形体密度が高いことが判る。 【0023】 【表4】 【0024】以上説明したように、成形ダイスとして内
孔にテーパを設けたものを用いる、粉末圧縮時及び圧
粉体抜き出し時の摩擦抵抗が少なく、密度の高い成形体
を能率よく成形できる。特に、ダイスと凝着し易い材料
の成形において効果がある。本発明では、一次圧粉体を
ダイキャビティ内で内孔大側へ移動した後、再圧縮する
ので、圧縮性の悪い粉末の成形において一段と高い成形
密度のものを得ることができる。特に、アモルファス合
金粉末などの成形が容易になる。
BACKGROUND OF THE INVENTION [0001] FIELD OF THE INVENTION This invention relates to powder molding method using the powder molding die dice in the powder metallurgy, the case of obtaining a high-density molded bodies When molding a hard powder, it can be suitably used for molding a powder that is soft and easily sticks to a mold, such as an aluminum powder. 2. Description of the Related Art A powder molding die comprises a die having an inner hole corresponding to the outer shape of a compact, upper and lower punches, and a core rod if necessary. To form a powder molding apparatus. The powder is filled in the die cavity, the respective members of the mold are relatively moved, and the powder is compressed by the upper and lower punches. Then, the green compact is extruded toward the powder filling side and released. [0003] The density of a molded product is determined by the molding pressure. Many mechanical elements requiring high strength require a high density. Consideration must also be given to mold strength. Further, when a hard powder is formed at a high density, such as a magnetic alloy powder formed by a rapid solidification method, it is more difficult to form the powder. In addition, as the powder molding is repeated, the inner hole of the die at the portion where the powder is compressed gradually wears, the inner hole of the die becomes a so-called middle swelling state, the resistance to withdrawing the green compact increases, and the green compact is damaged. There is an inherent danger of sticking and cracking. Further, in powder molding of a material that easily sticks to a mold such as aluminum powder, it is difficult to produce a high-density material with a beautiful appearance and a small variation. [0004] The present invention has been made based on such a conventional situation, with the object of forming a green compact having a high density at a lower pressure with good removability. [0005] [Means for Solving the Problems] To achieve the above object, powder molding dice used in the present invention, the inner hole of the powder molding die, the dimensions of the molded body extraction side is larger 1 / 50
00-1 / 1000 was the configuration that has a taper of.
In this case, a powder molding die having an inner hole that does not have a tapered end is also included. Further , as a powder molding method , a powder molding die having an inner hole of a metal powder molding die for powder metallurgy having a taper of 1/5000 to 1/1000 which expands toward a side from which a compact is extracted, and an inner hole of the die. and fitted by a powder molding apparatus for powder metallurgy having a upper and lower punches, in the case of compression molding the powder filled into the cavity of the molding die at the upper and lower punches, the majority of the compression process or the final stage of at least compression, is by actively pressed with a larger side of the punch die hole, it is possible to form a metal powder for high density powder metallurgy. Here, positively pressing means pressing so that the pressing force of the punch on the side with the larger die inner hole is larger than the pressing force of the punch on the side with the smaller die hole. [0007] The present invention inner hole of the forming die of the metal powder for powder powder metallurgy, expands into moldings withdrawal side 1/5000
The powder filled in the cavity of the forming die is formed by the upper and lower punches by a powder forming apparatus for powder metallurgy having a powder forming die having a taper of about 1 / 1,000 and an upper and lower punch fitted into the inner hole of the die. In the compression molding, after the powder is once compressed, the green compact in the molding die is moved in the direction of the larger side of the inner hole of the die, and the green compact is re-compressed. This is a method for forming a metal powder. The density of the green compact is compressed against the resistance between the powder when the powder is compressed by the punch, the plastic deformation resistance of the powder, and the friction resistance between the powder and the inner wall surface of the die. It is determined by the applied pressure. When the inner hole of the powder molding die has a large tapered shape on the side from which the molded body is extracted, and the direction of compressing the filled powder is positively pressed in the direction of the smaller side of the inner hole of the die, Higher density can be obtained compared to a die having no taper. This is because the cross-sectional area of the green compact is reduced by the amount of the taper ratio without significantly changing the frictional resistance between the powder and the inner wall surface of the die. This is considered to be due to compression. [0009] The withdrawal load when the green compact in the die cavity is released is the frictional resistance between the green compact and the inner wall surface of the die. As a result, the green compact is released sequentially, so that the release resistance is reduced. When the taper is smaller than 1/5000 (small taper angle), there is no effect. When the taper is larger than 1/1000 (large taper angle), the green compact also has a taper. Tooth trace accuracy deteriorates, high pressure is required when sizing the sintered body, and straightening is difficult with a material having high hardness. On the other hand, if the taper angle is too large, the powder is caught and mixed in the gap between the punch and the inner hole of the die on the side where the inner hole of the die is large, and the mold is significantly worn. [0010] When the powder filled in the cavity of the molding die is compressed by the upper and lower punches, the powder is once compressed, and then the green compact in the molding die is moved to the larger side of the die inner hole, and the already compacted powder is pressed. When the body is compressed again, the green compact density is further increased. That is, the green compact in the die generates a stress toward the inner wall surface of the die. When the green body is moved to the larger side of the inner hole of the die, the stress is relieved, and the resistance between the green body and the die wall surface is reduced. Is re-compressed in a state where the pressure is reduced, so that the preliminary compact is easily deformed. Hereinafter, the present invention will be described by way of examples. < Reference Example 1> A powder molding die in which a die made of alloy tool steel having an inner hole with an inner diameter of 20 mm was shrink-fitted in a die holder made of steel, and a pair of upper and lower punches were prepared. [0012] The powder molding dies have a taper in the inner hole and a 1/6000, 1/5000, 1 /
There are six types: 2500, 1/1000, and 1/500. The surface roughness Rmax of the inner surface of each die is 0.2 μm. Using these molds, the alloyed iron powder mixed with a molding lubricant was pressed at a pressure of 7 ton / cm 2 and a compact height of 2 mm.
It was compression-molded to 0 mm, and the maximum load (drawing load) at the time of drawing out from the die, the density of the formed body after drawing, and the difference in outer diameter vertical dimension of the green compact were measured. Table 1 shows the results. The withdrawal load is such that the taper of the die is 1/5.
When it is larger than 000 (when the taper angle is large), it is low, and when the taper is large (when the taper angle is large), it tends to be low. When the taper angle is small, a high load is applied for a long time during the extraction, while when the taper angle is large, the load is relatively high only at the initial stage of the extraction and becomes low thereafter. [0014] The density of the molded article shows almost the same tendency, and when the taper is larger than 1/5000, the density becomes high. On the other hand, the difference in outer diameter is not recognized when the taper is 1/2500 or less, but becomes larger when the taper exceeds 1/2500, and shows 0.055 mm when the taper is 1/500. [Table 1] < Reference Example 2> The aluminum alloy powder was molded at a molding pressure of 5 tons / minute by the above-mentioned mold without taper and the mold with taper of 1/2500.
The maximum load at the time of compression molding with cm 2 and extraction and release was compared. The tapered dies were 20% less. < Reference Example 3> The iron alloy powder was compressed by a floating die method at a molding pressure of 5 ton / cm 2 using a mold having no taper and a mold having a taper of 1/2500.
A molded body of 0 mm was prepared, and decomposed ammonia, temperature 10
Rockwell surface hardness after sintering at 50 ° C. was compared. The measurement was performed at nine locations at equal intervals in the height direction of the sample.
As shown in Table 2, the sample molded with a die without taper is
The hardness of the intermediate portion is low, indicating that the density is low.
It can be seen that the difference in hardness of the tapered die is smaller than that of the tapered die. [Table 2] < Reference Example 4 > Using a mold having a taper of 1/2500 as described above, each of the alloyed iron powders was compressed at a molding pressure of 5 ton / cm 2 to produce a molded body having a height of 50 mm. Rockwell surface hardness after sintering at a temperature of 1050 ° C. in a gas was compared. The powder molding was performed by compressing both sides by the same floating die method as in Reference Example 2 (Sample 1), and by pressing once with the upper and lower punches and then positively pressing with the upper punch with the larger inner diameter of the die (Sample 1). 2). The hardness was measured at nine locations in the height direction of the sample at equal intervals. As shown in Table 3, it can be seen that the hardness of Sample 2 is small and the average hardness is high. [Table 3] <Reference Example 5 > In the same manner as in Reference Example 3, powder molding was continuously performed for each die.
The temperature of the molded body when 00 pieces were molded was measured. The temperature of the die without the taper was 60 ° C., while that of the die with the taper was 47 ° C., indicating a difference in frictional resistance. <Example 1 > Using the above-mentioned 1/2500 tapered mold, the hardness was 7
A powder obtained by mixing 2% by weight of a resin with alloy steel powder having a particle size of 250 mesh or less at 00 HV is pressurized at a different molding pressure and then released, and similarly pressed at a different molding pressure and then pressurized. Is released, and then the green compact is pushed up and moved by the lower punch to the side having the larger inner diameter of the die.
The densities of the respective sample compacts when pressure was applied at a pressure of ton / cm 2 and the mold was released were compared. When the preformed body is moved in the die cavity and then recompressed, it can be seen that the density of the formed body is higher than the density when the preformed body is compressed once at a pressure of 25 ton / cm 2 . [Table 4] [0024] As described above, the use of those having a tapered bore as formed form die during powder compaction and compact withdrawal frictional resistance is small at the time, can be molded well efficiently a dense molded body . In particular, it is effective in molding a material that easily adheres to the die. In the present invention, the primary compact is recompressed after moving to the inner hole large side in the die cavity.
Therefore , a powder having a much higher molding density can be obtained in molding a powder having poor compressibility. In particular, molding of amorphous alloy powder or the like becomes easy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−221302(JP,A) 特開 昭52−62106(JP,A) 特開 平4−168201(JP,A) 特開 昭53−18066(JP,A) 特開 昭57−82007(JP,A) 特開 昭63−5899(JP,A) 実開 平3−47694(JP,U) 特公 昭55−42122(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-2-221302 (JP, A)                 JP-A-52-62106 (JP, A)                 JP-A-4-168201 (JP, A)                 JP-A-53-18066 (JP, A)                 JP-A-57-82007 (JP, A)                 JP-A-63-5899 (JP, A)                 Actual opening Hei 3-47694 (JP, U)                 Tokiko Sho 55-42122 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 粉末冶金用の金属粉末の成形ダイスの内
孔が、成形体抜き出し側へ拡大する1/5000〜1/
1000のテーパを有する粉末成形ダイスと、前記ダイ
スの内孔と嵌合する上下パンチを備えた粉末冶金用の粉
末成形装置により、成形ダイスのキャビティ中に充填さ
れた粉末を上下パンチで圧縮成形するに当り、粉末を一
旦圧縮したのち、成形ダイス中の圧粉体をダイス内孔の
大きい側の方向へ移動し、既圧粉体を再度圧縮すること
を特徴とする粉末冶金用の金属粉末の成形方法。
(57) [Claims 1] An inner hole of a molding die for metal powder for powder metallurgy is enlarged from 1 / 5,000 to 1/1 /
The powder filled in the cavity of the molding die is compression-molded with the upper and lower punches by a powder molding apparatus for powder metallurgy having a powder molding die having a taper of 1000 and an upper and lower punch fitted into the inner hole of the die. Powder
After compression, the green compact in the forming die is
A method for forming a metal powder for powder metallurgy, wherein the method moves in the direction of the larger side and compresses the green compact again .
JP13454892A 1992-05-27 1992-05-27 Molding method of metal powder for powder metallurgy Expired - Fee Related JP3521088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13454892A JP3521088B2 (en) 1992-05-27 1992-05-27 Molding method of metal powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13454892A JP3521088B2 (en) 1992-05-27 1992-05-27 Molding method of metal powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JPH05320705A JPH05320705A (en) 1993-12-03
JP3521088B2 true JP3521088B2 (en) 2004-04-19

Family

ID=15130895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13454892A Expired - Fee Related JP3521088B2 (en) 1992-05-27 1992-05-27 Molding method of metal powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP3521088B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535296B2 (en) * 2008-03-26 2010-09-01 Tdk株式会社 Powder molding method
JP2010093063A (en) * 2008-10-08 2010-04-22 Tdk Corp Metal powder compacting coil component
JP2010118493A (en) * 2008-11-13 2010-05-27 Tdk Corp Metallic dust coil part and method for manufacturing metallic dust core

Also Published As

Publication number Publication date
JPH05320705A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
RU2010676C1 (en) Method of molding multi-layer blanks from various powder materials with vertical arrangement of layers
US2447434A (en) Method of compacting metal powder into complicated shapes
JPH09502767A (en) Method and apparatus for manufacturing pressure-molded article
EP1201338A3 (en) Method of sintering and forging raw material
JP3347451B2 (en) Molding apparatus for green compaction and molding method
US3060560A (en) Method for cold extruding high density articles from ferrous metal powder
JP3521088B2 (en) Molding method of metal powder for powder metallurgy
JP2001252793A (en) Green compact forming method
JPH0254401B2 (en)
US4225546A (en) Method of compacting dry powder into shapes
US3611546A (en) Method of highly-densifying powdered metal
US4390488A (en) Pressing metal powder into shapes
US4996014A (en) Method for manufacture of spike rivits
JP3462378B2 (en) Powder molding method in powder metallurgy
Sutradhar et al. Cold forging of sintered iron-powder preforms
EP0999909B1 (en) Metal powder compression tool
JPS596301A (en) High densification of powder metal parts
US3250838A (en) Techniques for compacting aluminum powder mixtures
JP4999283B2 (en) Iron-based powder for powder metallurgy
JP2001131606A (en) Core rod for powder molding and powder compacting method using the rod
CN216028073U (en) High pressure resistant powder compacting die
JP2002173703A (en) Method for manufacturing sintered compact of metal powder
JP2007113074A (en) Method for compacting green compact, compacting device and sintered part
JP2809288B2 (en) Molding method for long cylindrical green compact
JP2000144210A (en) Forging method of metallic powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees