JP3519290B2 - Electromagnetic shielding fabric - Google Patents

Electromagnetic shielding fabric

Info

Publication number
JP3519290B2
JP3519290B2 JP31444198A JP31444198A JP3519290B2 JP 3519290 B2 JP3519290 B2 JP 3519290B2 JP 31444198 A JP31444198 A JP 31444198A JP 31444198 A JP31444198 A JP 31444198A JP 3519290 B2 JP3519290 B2 JP 3519290B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
weft
warp
confounding
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31444198A
Other languages
Japanese (ja)
Other versions
JP2000151182A (en
Inventor
隆 秋山
重之 中村
Original Assignee
カネボウ株式会社
カネボウ繊維株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社, カネボウ繊維株式会社 filed Critical カネボウ株式会社
Priority to JP31444198A priority Critical patent/JP3519290B2/en
Publication of JP2000151182A publication Critical patent/JP2000151182A/en
Application granted granted Critical
Publication of JP3519290B2 publication Critical patent/JP3519290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は電磁波シールド性能
を有する糸条が織り込まれた、電磁波シールド織物に関
するものである。 【0002】 【従来の技術】近年、携帯電話やコンピュータ類等の電
子機器がオフィスや家庭等において広範囲に普及してお
り、これら電子機器の筐体は、小型化,生産性向上のた
めにプラスチックが多く用いられるようになっている
が、プラスチックは金属に比べて電磁的に何もないもの
と等しく、筐体内部から照射される電磁波は筐体内外の
電子機器の動作の信頼性を損なうばかりでなく、人体の
諸器官にも障害を与え、使用者・作業員の健康に及ぼす
影響も無視することができないものとなっており、人体
に照射される電磁界の強度の軽減が求められ、この様な
要求に対して様々な電磁波シールド性繊維構造物が開発
されている。 【0003】例えば、1)特表平4−506545号公
報には、『ステンレス鋼繊維と綿などの織物用繊維を用
いた混紡糸を経糸・緯糸に用い、両者を直角に交差せし
めてなる布帛において、混紡糸に直径6〜10μmのス
テンレス鋼繊維を10〜15%含有せしめ、次いで30
〜50texの上記混紡糸を1cm当たり18〜20本
配して織物を製織する』ことが開示され、また2)実公
平2−30879号公報には、『金属細線被覆糸を40
本/インチ以上の密度で経糸及び緯糸に用いて織物を製
織する』ことが開示されている。これらの他には、製織
に特徴を有するシート状物として、3)特開平8−33
5796号公報に『銅線を用いて形成される電磁波シー
ルド用メッシュにおいて、メッシュを構成する銅線の線
径dと、その線間隔aとが、1.16≦(a/d)≦
8.54であることを特徴とする電磁波シールド用メッ
シュ』が開示されている。 【0004】ところが、上記の1)特表平4−5065
45号公報や2)実公平2−30879号公報に記載の
様に金属繊維の使用量(織り込み密度)を規定する方法
や、3)特開平8−335796号公報に記載の様に金
属繊維の径と間隔を規定する方法の場合、その織り方
(特定の綾織など)によっては金属繊維が持つ電磁波遮
蔽性能を十分に活かせないという問題を有していた。 【0005】上記の例の様に、特定の割合で電磁波シー
ルド糸を含有せしめる場合、一定の織りパターンをなす
リピート毎に経緯1本ずつ、もしくは複数のリピート中
に経緯それぞれ1本用い、それ以外は綿,羊毛等の天然
繊維や、ポリエステル,ポリアミド等からなる合成繊維
を用いた交織布となる様に設計されるが、例えば、1:
3の綾織の場合、図20に示される様な織物設計が考え
られる。 【0006】この図20の織物は、リピートのうちの
(経B,緯c)の位置に電磁波シールド性が経糸(1
3)、緯糸(14)として配され、それ以外は電磁波シ
ールド性能を持たない他の糸で構成されている。この場
合、経糸(13)、緯糸(14)の交絡点(15)の浮
き沈み関係は、「沈み」となっている。なお、本明細書
では、経糸が緯糸に対して上を通過する様に配されてい
る状態を「浮き」、緯糸が経糸に対して上を通過する様
に配されている状態を「沈み」と記載する。 【0007】そして、電磁波シールド糸(13),(1
4)上に存在する交絡点であって、且つ上記の交絡点
(15)に隣接する4つの交絡点(16),(17),
(18),(19)も緯糸が経糸に対して上を通過する
「沈み」の状態であるため、経糸(13)には、緯糸
(20),(21)によって押し下げられる力が働き、
それと同時に緯糸(14)には経糸(22),(23)
によって持ち上げられる力が働くため、電磁波シールド
糸(13),(14)の両者が交絡点(15)において
離れる様に作用するのである。 【0008】しかしながら、布帛に電磁波シールド性物
質を含有せしめて電磁波シールド性能を得る場合、電磁
波の漏洩量は、該布帛に含有される各電磁波シールド性
物質間の空隙の合計面積の大小よりも、「各々の空隙の
面積の大小」に比例するため、空隙の合計面積が同じ場
合であれば、大きな空隙が少なく存在する布帛に比べ、
小さな空隙が多く存在する布帛の方がより高い電磁波シ
ールド性能を示すことが知られている。 【0009】従って、図20に示される様に、電磁波シ
ールド糸(13),(14)の交絡点(15)が「沈
み」の状態であり、該交絡点に隣接する電磁波シールド
糸(13),(14)上の4つ全ての交絡点(16)=
(B、b),(17)=(C、c),(18)=(B、
d),(19)=(A,c)も同様に「沈み」の状態で
ある場合、上述の様に電磁波シールド糸(13),(1
4)の交絡点(15)において、空隙が生じるようにな
り、その結果、十分な電磁波シールド性能が発揮できな
くなるのである。 【0010】 【発明が解決しようとする課題】本発明は、以上の問題
点に鑑みなされたものであって、「浮き」と「沈み」に
より多様な織模様を生ずる織物において、最も効果的な
電磁波シールド性能を発揮せしめることを目的とするも
のである。 【0011】 【課題を解決するための手段】上記の目的は、交差する
経糸と緯糸のうち一方が他方に対して「浮き」または
「沈み」の位置関係を有することによって織模様を形成
する、綾織もしくは朱子織からなるものであり、且つ上
記経糸及び緯糸にベース糸及び電磁波シールド糸を用い
てなる織物において、『任意の交絡点Xを形成する経糸
上及び緯糸上にあって且つ上記交絡点Xに隣接する4つ
の交絡点が、交絡点Xの交絡状態(浮きまたは沈み)と
反対となっている箇所の数』を交絡点Xの「交絡強度」
と定義したとき、電磁波シールド糸を、交絡強度が4で
ある点で交絡する様に配置せしめたことを特徴とする電
磁波シールド織物によって達成される。 【0012】本発明の織物の素材において、電磁波シー
ルド糸としては、1)合成繊維フィラメントを金,銀,
銅,ニッケル等でメッキしたもの、2)天然繊維または
合成繊維ステープルを金,銀,銅,ニッケル等でメッキ
し、これを紡績したもの、3)白色金属化合物等の導電
性微粒子を含有するポリマーを紡出したもの、4)ステ
ンレスファイバー、5)金属被覆ガラス繊維、6)炭素
繊維、7)黄銅繊維、8)アルミ繊維等が使用可能であ
る。 【0013】なお、上記電磁波シールド糸100%から
なる織物を製織することも可能であるが、その場合、製
品が高価になる,風合いが悪くなる等の問題を有してい
るため、通常は他の繊維、例えば羊毛,絹等の蛋白質繊
維、綿,麻,レーヨン,テンセル(登録商標)等のセル
ロース系繊維、その他ポリエステル,ポリアミド等を主
成分とする合成繊維等からなる糸条と交織される。本
明では、上記羊毛,綿等の電磁波シールド糸以外の繊維
を「ベース糸」と称するものとする。 【0014】そして、上記の様に、ベース糸と電磁波シ
ールド糸を用いて織物を形成するには、経糸と緯糸の
「浮き/沈み」関係によって形成される織模様のリピー
ト毎に経緯1本ずつの電磁波シールド糸を配置し、その
他をベース糸で形成する方法が一般的に用いられる。た
だし、リピート中に経緯複数本ずつ電磁波シールド糸を
配置したり、複数のリピート中に経緯1本ずつの電磁波
シールド糸を配置したりするこも可能であって、要求さ
れる電磁波シールド性能が高い程、電磁波シールド糸の
配置本数を多くすればよい。 【0015】一例として、図1に示される様な1:3の
綾織の場合、経糸が緯糸の上に位置している状態を「浮
き」、その逆を「沈み」とし、該「浮き」の状態の交絡
点に当たるマス目を黒く塗りつぶすと、図2の様に表さ
れる。この場合、交絡点(A,a),(D,a),
(D,d)及び(A,d)で囲まれる計16の交絡点か
らなる領域が織模様のリピート(1)である。 【0016】ここで、『任意の交絡点Xを形成する経糸
及び緯糸上にあり且つ上記交絡点Xに隣接する4つ交絡
点が、交絡点Xの交絡状態(浮きまたは沈み)と反対と
なっている個数』を交絡点Xの「交絡強度」と定義した
場合、図2における経糸C及び緯糸bが交絡する交絡点
(C,b)を(2)とすると、この(2)は「浮き」の
状態であり、該交絡点(2)を形成する経糸C及び緯糸
b上にあり且つ(2)に隣接する交絡点(3)=(C,
a),(4)=(D,b),(5)=(C,c),
(6)=(B,b)は4つとも全て「沈み」の状態であ
るので、交絡点(2)の交絡強度は4となる。同様に、
全ての交絡点についての交絡強度を求めると、図1・図
2は、図3の様になる。 【0017】したがって、上記リピート(1)内に、経
・緯それぞれ1本ずつ電磁波シールド糸を配置する場
合、交絡強度が4となる位置で交絡せしめるには、全部
で16通りの経糸・緯糸の組み合わせのうち、経糸A−
緯糸d,経糸B−緯糸a,経糸C−緯糸b,経糸D−緯
糸cの計4通りの組み合わせを選択することが可能であ
る。 【0018】このうち、経糸C−緯糸bの位置に電磁波
シールド糸を配置した場合、リピート(1)の模式斜視
図、図4に示す様に、交絡点(3),(5)は緯糸が経
糸の上にある状態、即ち「沈み」であるため、作用・反
作用により、緯糸a,cが持ち上げられる様に力が働く
と同時に、経糸Cは下に押し下げられる様になり、逆に
(4),(6)は「沈み」であることにより、緯糸bが
上に持ち上げられるように作用するので、経糸が緯糸の
上を通過する「浮き」の状態の交絡点(2)において
は、交絡が強固になり、その結果、経糸C,緯糸b間が
密着して空隙が最小限になり、電磁波の漏洩を最大限に
遮断し得る様になるのである。 【0019】しかしながら、緯糸として配置されている
上記の電磁波シールド糸bの位置を1本ずらし、bの位
置の緯糸にはベース糸を、そしてcの位置の緯糸に電磁
波シールド糸を配置し、図5に示す様に交絡強度が2で
ある(C,c)の位置で電磁波シールド糸が交絡する様
にすると、交絡点(C,b)は「浮き」であるものの
(C,d)が「沈み」であるため、(C,c)の位置に
おいて経糸Cには殆ど上下への力が作用せず、また同様
に交絡点(D,c)は「浮き」であるものの(B,c)
が「沈み」であるため、(C,c)の位置において緯糸
cにも殆ど上下への力が作用せず、その結果、交絡点
(C,c)の位置における経糸C及び緯糸cは軽く接触
している状態となり、交絡強度4の位置で電磁波シール
ド糸が交絡する様に配置した例に比べて電磁波シールド
糸間の交絡が弱くなり、ひいては電磁波のシールド性能
が若干劣る様になるのである。 【0020】さらに、図6に示す様に交絡強度が0であ
る(B,c)の位置で電磁波シールド糸が交絡する様に
すると、交絡点(B,b),(B,d)は「沈み」であ
るため、経糸Bは下へ押し下げられる様になり、また交
絡点(A,c),(C,c)は「浮き」であるため、緯
糸cは持ち上げられる様になって、その結果、交絡点
(B,c)の位置における経糸B及び緯糸cはそれぞれ
離れようとする力が働くようになるので、電磁波シール
ド糸間の交絡が弱くなって空隙が広くなり、電磁波のシ
ールド性能が一層劣る様になるのである。 【0021】上記の様な交絡強度が4となる交絡点を有
する織り方としては、3:1の綾織(図7)、2:1の
綾織(図8)、4:1の綾織(図9)、3:1の朱子織
(図10)、4:1の朱子織(図11)等がある。反対
に、交絡強度が4となる交絡点を持たない織り方は、
2:2の綾織(図12)、3:3の綾織(図13)、
3:2の綾織(図14)等であり、これらの場合、本発
明の構成を取ることはできないが、できる限り交絡強度
の高い点で電磁波シールド糸を交絡せしめる様にするこ
とが好ましい。また、平織りの場合は、常に浮きと沈み
が交互に発現し、全ての交絡点において交絡強度が4と
なるので、本発明の様な電磁波シールド糸の配置による
電磁波シールド性能の向上は得られない。ここで、上記
図7〜図14において、(a)は織り組織の模式図、
(b)は交絡強度の分布図である。 【0022】なお、図7においては、3:1の左綾織が
示されているが、左右を逆転せしめた「3:1の右綾
織」、浮き沈みを逆転せしめた「1:3の左綾織」、左
右及び浮き沈みを逆転せしめた「1:3の右綾織」であ
っても作用効果が同一であることは明らかであり、また
図8〜14の織組織の左右及び/または浮き沈みを逆転
せしめて得られるものについても同様である。 【0023】 【発明の実施の形態】以下、実施例に基づいて詳細に説
明する。 【0024】I) ベース糸(7)として、繊維長45
〜90mmの羊毛100%からなる70番手双糸を用
い、 II)また、電磁波シールド糸(8)として、(II−a)
ナイロン6からなる3dのポリアミド繊維を繊維長45
〜51mmに切断してステープルにした後、これを無電
解メッキ法により銀で被覆せしめた銀メッキ繊維20%
と、(II−b)ポリエチレンテレフタレートを主成分と
するポリエステル60%と、(II−c)羊毛20%を混
紡して得た70番手双糸を用い、経81.7本/イン
チ、緯71.4本/インチの布帛を下記実施例1及び比
較例1〜3の計4種類製造した。このとき、織り組織は
1:3の綾織りとし、各電磁波シールド糸間の平均ピッ
チが経1.2mm、緯1.4mmとなるようにした。 【0025】上記の条件に基づき、下記4種類の織物を
製造した。 (実施例1)図15に示す様に、電磁波シールド糸を、
1リピート中に経緯1本づつ交絡強度が4である点で交
絡する様に配置し、これを実施例1とした。 (比較例1)図16に示す様に、電磁波シールド糸を、
1リピート中に経緯1本づつ交絡強度が2である点で交
絡する様に配置し、これを比較例1とした。 (比較例2)図17に示す様に、電磁波シールド糸を、
1リピート中に経緯1本づつ交絡強度が2であり、且つ
比較例1とは異なる点で交絡する様に配置し、これを比
較例2とした。 (比較例3)図18に示す様に、電磁波シールド糸を、
1リピート中に経緯1本づつ交絡強度が0である点で交
絡する様に配置し、これを比較例3とした。 【0026】上記の様にして得た4種類の織物(9)
を、それぞれ経緯150×150mmに裁断し、図19
に示すように、電界・磁界シールドボックス(10),
電磁波生成器(11),減衰率測定器(12)(株式会
社アドバンテスト製:スペクトラムアナライザ,TR1
7301A)からなる電磁シールド特性試験器の、電界
・磁界シールドボックス(10)内に配設し、近傍電
界、遠方電界及び近傍磁界の減衰率についてそれぞれ測
定した。その結果を下記の表1に示す。 【0027】 【表1】 【0028】以上の様に、交絡強度の値が大きいほど、
近傍電界,遠方電界,近傍磁界の全てについての遮蔽効
果が大きく、また交絡強度が4のときに最も遮蔽される
ことが分かった。 【0029】 【発明の効果】本発明の織物は、電磁波シールド糸の交
絡を強固にせしめ、繊維間の各々の空隙の面積を極めて
小さくしているので、高い電磁波シールド性能を発揮せ
しめることが可能となり、衣料や産業資材等の用途で用
いた場合、電子機器等の多い作業場における電磁波障害
を防止し得るようになるという効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shielding fabric in which a yarn having electromagnetic wave shielding performance is woven. 2. Description of the Related Art In recent years, electronic devices such as mobile phones and computers have become widespread in offices and homes, and housings of these electronic devices have been made of plastic in order to reduce the size and improve productivity. However, plastic is equivalent to electromagnetically nothing compared to metal, and electromagnetic waves emitted from the inside of the housing only impair the reliability of operation of electronic devices inside and outside the housing. In addition, it causes damage to various organs of the human body, and the effects on the health of users and workers cannot be ignored, and it is required to reduce the intensity of the electromagnetic field irradiated on the human body. To meet such demands, various electromagnetic wave shielding fiber structures have been developed. For example, 1) Japanese Patent Application Laid-Open No. 4-506545 discloses "a fabric formed by using a blended yarn using a stainless steel fiber and a textile fiber such as cotton for a warp and a weft, and intersecting both at right angles. , The blended yarn contains 10 to 15% of stainless steel fiber having a diameter of 6 to 10 μm,
Woven fabrics by disposing 18 to 20 of the above blended yarns of 1 to 50 tex per cm ”, and 2) Japanese Utility Model Publication No. 2-30879 discloses that“ 40
Weaving a woven fabric with warps and wefts at a density of at least book / inch ”. In addition to these, as a sheet-shaped material having a characteristic of weaving, 3) JP-A-8-33
No. 5,796, “In an electromagnetic wave shielding mesh formed using a copper wire, the wire diameter d of the copper wire constituting the mesh and the line interval a thereof are 1.16 ≦ (a / d) ≦
8.54, a mesh for electromagnetic wave shielding ". However, the above-mentioned 1) Japanese Patent Application Laid-Open No. 4-50665
No. 45 or 2) a method for defining the amount of metal fiber used (weaving density) as described in Japanese Utility Model Publication No. 2-30879, and 3) the use of metal fiber as described in JP-A-8-335796. The method of defining the diameter and the interval has a problem that the electromagnetic wave shielding performance of the metal fiber cannot be sufficiently utilized depending on the weaving method (specific twill weave or the like). In the case where the electromagnetic wave shielding yarn is contained at a specific ratio as in the above example, one process is used for each repeat forming a fixed weave pattern, or one process is used for a plurality of repeats. Is designed to be a cross-woven fabric using natural fibers such as cotton and wool, and synthetic fibers such as polyester and polyamide.
In the case of the twill weave of No. 3, a woven fabric design as shown in FIG. 20 can be considered. The woven fabric of FIG. 20 has a warp (1) at the position of (repeat B, weft c) in the repeat.
3), other yarns having no electromagnetic wave shielding performance are arranged as the weft (14). In this case, the up-and-down relationship of the entanglement point (15) between the warp (13) and the weft (14) is "sink". In this specification, the state where the warp is arranged so as to pass over the weft is “floating”, and the state where the weft is arranged so as to pass over the warp is “sinking”. It is described. [0007] Then, the electromagnetic wave shielding thread (13), (1)
4) Four confounding points (16), (17), and four contiguous points existing above and adjacent to the confounding point (15).
(18) and (19) are also in the “sinking” state in which the weft passes above the warp, so that the warp (13) receives a force depressed by the wefts (20) and (21),
At the same time, the warp (22), (23)
As a result, the electromagnetic wave shielding yarns (13) and (14) act so as to separate at the confounding point (15). However, when an electromagnetic wave shielding material is contained in a fabric to obtain electromagnetic wave shielding performance, the amount of leakage of the electromagnetic wave is larger than the total area of voids between the respective electromagnetic wave shielding materials contained in the fabric. Since it is proportional to "the size of each void area", if the total area of the voids is the same, compared to a fabric having a small number of large voids,
It is known that a fabric having many small voids exhibits higher electromagnetic wave shielding performance. Therefore, as shown in FIG. 20, the entanglement point (15) of the electromagnetic wave shielding yarns (13) and (14) is in a “sinking” state, and the electromagnetic wave shielding yarn (13) adjacent to the entanglement point , (14) all four confounding points (16) =
(B, b), (17) = (C, c), (18) = (B,
Similarly, when d) and (19) = (A, c) are in the “sinking” state, as described above, the electromagnetic shielding yarns (13) and (1)
At the interlacing point (15) in 4), a gap is generated, and as a result, sufficient electromagnetic wave shielding performance cannot be exhibited. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is most effective in fabrics that produce various woven patterns by "floating" and "sinking". The purpose is to exhibit the electromagnetic wave shielding performance. The object of the present invention is to form a woven pattern by having one of the intersecting warp and weft have a "floating" or "sinking" positional relationship with respect to the other. It is made of twill or satin weave, and uses base yarn and electromagnetic shielding yarn for the warp and weft.
In ing Te fabrics, four interlacing points adjacent to "any warps forming the inter-woven points X and and the intertwined points X be on the weft, the entangled state of intertwined point X (float or sink) opposite The number of locations that are marked with "the confounding strength" of the confounding point X
This is achieved by an electromagnetic wave shielding fabric characterized in that the electromagnetic wave shielding yarn is arranged so as to be entangled at a point where the entanglement strength is 4. In the fabric material of the present invention, as the electromagnetic wave shielding yarn, 1) synthetic fiber filaments are made of gold, silver,
2) Natural fiber or synthetic fiber staple plated with gold, silver, copper, nickel, etc. and spun, 3) Polymer containing conductive fine particles such as white metal compound 4) Stainless steel fiber, 5) metal coated glass fiber, 6) carbon fiber, 7) brass fiber, 8) aluminum fiber, etc. can be used. It is also possible to weave a woven fabric made of 100% of the above-mentioned electromagnetic shielding yarn. However, in such a case, there are problems such as a high price of the product and a bad feeling. , Such as protein fibers such as wool and silk; cellulosic fibers such as cotton, hemp, rayon, and Tencel (registered trademark); and synthetic fibers mainly containing polyester, polyamide, and the like. . In the present invention , fibers other than the electromagnetic wave shielding yarn such as the wool and cotton are referred to as "base yarn". In order to form a woven fabric using the base yarn and the electromagnetic wave shielding yarn as described above, one weft is used for each repeat of the woven pattern formed by the "floating / sinking" relationship between the warp and the weft. In general, a method of arranging the electromagnetic wave shielding yarn and forming the other with a base yarn is used. However, it is also possible to arrange electromagnetic wave shielding yarns for each process in a plurality of repeats in a repeat, or to arrange electromagnetic wave shield yarns for each process in a plurality of repeats. In this case, the number of electromagnetic wave shielding yarns may be increased. As an example, in the case of a 1: 3 twill weave as shown in FIG. 1, the state in which the warp is located above the weft is referred to as "floating", and the reverse is referred to as "sinking". When the squares corresponding to the confounding points of the state are painted black, they are represented as shown in FIG. In this case, the confounding points (A, a), (D, a),
A region consisting of a total of 16 confounding points surrounded by (D, d) and (A, d) is a woven pattern repeat (1). Here, "the four entanglement points on the warp and the weft forming an arbitrary entanglement point X and adjacent to the entanglement point X are opposite to the entanglement state (floating or sinking) of the entanglement point X. Is defined as the “entanglement strength” of the entanglement point X, and if the entanglement point (C, b) at which the warp C and the weft b in FIG. And the entanglement point (3) = (C, on the warp C and the weft yarn b forming the entanglement point (2) and adjacent to (2)).
a), (4) = (D, b), (5) = (C, c),
(6) = (B, b) is in the state of “sinking” in all four, so that the confounding intensity of the confounding point (2) is 4. Similarly,
When the confounding strength for all the confounding points is obtained, FIGS. 1 and 2 are as shown in FIG. Therefore, when one electromagnetic wave shielding yarn is placed in each of the repeats (1) for each of the warp and the weft, in order to be entangled at a position where the entanglement strength is 4, a total of 16 types of warp and weft are used. Among the combinations, warp A-
It is possible to select a total of four combinations of weft d, warp B-weft a, warp C-weft b, and warp D-weft c. When the electromagnetic wave shielding yarn is arranged at the position of warp C-weft b, as shown in the schematic perspective view of the repeat (1) and FIG. Since the warp is above the warp, that is, "sink", the action / reaction exerts a force to lift the wefts a and c, and at the same time, the warp C is pushed down, and conversely, (4) (6) and (6) are “sinking”, so that the weft b acts to be lifted up. Therefore, at the “floating” entanglement point (2) where the warp passes over the weft, the entanglement is performed. Is strengthened, and as a result, the space between the warp yarn C and the weft yarn b is brought into close contact with each other to minimize the air gap, so that leakage of electromagnetic waves can be cut off to the maximum. However, the position of the electromagnetic wave shielding yarn b arranged as the weft is shifted by one, the base yarn is arranged at the position of the weft at the position b, and the electromagnetic wave shielding yarn is arranged at the position of the weft at the position c. As shown in FIG. 5, if the electromagnetic wave shielding yarn is entangled at the position (C, c) where the entanglement strength is 2, the entanglement point (C, b) is “floating”, but (C, d) is “ At the position (C, c), almost no vertical force acts on the warp C at the position (C, c). Similarly, although the entanglement point (D, c) is "floating", the warp C is (B, c).
Is "sinking", so that almost no vertical force acts on the weft yarn c at the position (C, c). As a result, the warp yarn C and the weft yarn c at the position of the interlacing point (C, c) are lighter. As a result, the entanglement between the electromagnetic wave shielding yarns is weaker than in the case where the electromagnetic wave shielding yarns are entangled at the position of the confounding strength 4, and the electromagnetic wave shielding performance is slightly inferior. . Furthermore, as shown in FIG. 6, if the electromagnetic wave shielding yarn is entangled at the position (B, c) where the entanglement intensity is 0, the entanglement points (B, b) and (B, d) become " The warp B is pushed down because of "sinking", and the weft c is lifted because the entanglement points (A, c) and (C, c) are "floating". As a result, the warp yarn B and the weft yarn c at the positions of the confounding points (B, c) act to separate each other, so that the confounding between the electromagnetic wave shielding yarns is weakened, the gap is widened, and the electromagnetic wave shielding performance is increased. Is even worse. As the weaving method having the entanglement point where the entanglement strength becomes 4 as described above, a 3: 1 twill weave (FIG. 7), a 2: 1 twill weave (FIG. 8), and a 4: 1 twill weave (FIG. 9) And 3: 1 satin weave (FIG. 10) and 4: 1 satin weave (FIG. 11). Conversely, weaving without a confounding point where the confounding strength is 4,
2: 2 twill weave (FIG. 12), 3: 3 twill weave (FIG. 13),
3: 2 twill weave (FIG. 14) and the like. In these cases, the configuration of the present invention cannot be adopted. However, it is preferable that the electromagnetic wave shielding yarn is entangled at a point where the entanglement strength is as high as possible. Further, in the case of plain weave, floating and sinking always appear alternately, and the entanglement strength becomes 4 at all the entanglement points, so that the electromagnetic wave shielding performance cannot be improved by the arrangement of the electromagnetic wave shielding yarn as in the present invention. . Here, in FIGS. 7 to 14, (a) is a schematic diagram of a weaving structure,
(B) is a distribution diagram of the confounding intensity. In FIG. 7, a 3: 1 left twill weave is shown, but the left and right sides are reversed "3: 1 right twill weave" and the ups and downs are reversed "1: 3 left twill weave". It is clear that the same effect can be obtained even with the "1: 3 right twill weave" in which the left and right and ups and downs are reversed, and the left and right and / or ups and downs of the woven structure shown in FIGS. The same applies to those obtained. Hereinafter, the present invention will be described in detail with reference to examples. I) The base yarn (7) has a fiber length of 45
Using a 70th twin yarn composed of 100% wool of up to 90 mm. II) Also, as an electromagnetic wave shielding yarn (8), (II-a)
A 3d polyamide fiber made of nylon 6 is used for a fiber length of 45.
After cutting into staples by cutting to ~ 51 mm, this was coated with silver by electroless plating to form 20% of silver-plated fibers.
And (II-b) 70% double yarn obtained by blending 60% of a polyester containing polyethylene terephthalate as a main component and (II-c) 20% of wool, using a warp of 81.7 yarns / inch and a weft of 71. A total of four types of cloths of .4 / inch were manufactured in Example 1 and Comparative Examples 1 to 3 below. At this time, the weaving structure was a 1: 3 twill weave, and the average pitch between each electromagnetic wave shielding yarn was 1.2 mm in warp and 1.4 mm in weft. Under the above conditions, the following four types of fabrics were produced. (Example 1) As shown in FIG.
It was arranged so that it was entangled at a point where the entanglement strength was 4 one by one in one repeat. (Comparative Example 1) As shown in FIG.
It was arranged so as to be entangled at a point where the entanglement strength was 2 in each repeat in one repeat. (Comparative Example 2) As shown in FIG.
The arrangement was such that the entanglement strength was 2 at a time in each repeat and was entangled at a point different from that of Comparative Example 1. This was designated as Comparative Example 2. (Comparative Example 3) As shown in FIG.
It was arranged so that it was entangled at a point where the entanglement strength was 0 in each repeat one by one in a repeat. The four types of woven fabrics obtained as described above (9)
Are cut into 150 × 150 mm each, and FIG.
As shown in the figure, the electric and magnetic field shielding box (10),
Electromagnetic wave generator (11), attenuation factor measuring device (12) (manufactured by Advantest Corporation: Spectrum Analyzer, TR1)
The electromagnetic shield characteristic tester 7301A) was disposed in an electric field / magnetic field shield box (10), and the near-field, far-field, and near-field attenuation rates were measured. The results are shown in Table 1 below. [Table 1] As described above, as the value of the confounding strength increases,
It was found that the shielding effect for all of the near electric field, the far electric field, and the near magnetic field was large, and that the shielding effect was greatest when the confounding strength was 4. According to the fabric of the present invention, since the entanglement of the electromagnetic wave shielding yarn is strengthened and the area of each void between the fibers is extremely small, it is possible to exhibit high electromagnetic wave shielding performance. Thus, when used in applications such as clothing and industrial materials, there is an effect that electromagnetic interference can be prevented in a workplace where there are many electronic devices and the like.

【図面の簡単な説明】 【図1】1:3の綾織物を示す説明図である。 【図2】上記図1の織物の「沈み」と「浮き」の関係を
示す説明図である。 【図3】上記図1の織物の各交絡点の交絡強度を示す説
明図である。 【図4】交絡強度が4である位置で電磁波シールド糸が
交絡する織物の模式斜視図である。 【図5】交絡強度が2である位置で電磁波シールド糸が
交絡する織物の模式斜視図である。 【図6】交絡強度が0である位置で電磁波シールド糸が
交絡する織物の模式斜視図である。 【図7】3:1の綾織物を示す説明図である。 【図8】2:1の綾織物を示す説明図である。 【図9】4:1の綾織物を示す説明図である。 【図10】3:1の朱子織物を示す説明図である。 【図11】4:1の朱子織物を示す説明図である。 【図12】2:2の綾織物を示す説明図である。 【図13】3:3の綾織物を示す説明図である。 【図14】3:2の綾織物を示す説明図である。 【図15】実施例1の織物を示す説明図である。 【図16】比較例1の織物を示す説明図である。 【図17】比較例2の織物を示す説明図である。 【図18】比較例3の織物を示す説明図である。 【図19】電磁波減衰率の測定方法を示す説明図であ
る。 【図20】従来の電磁波シールド織物を示す説明図であ
る。 【符号の説明】 1 織模様のリピート(繰り返し単位) 7 ベース糸 8 電磁波シールド糸 9 電磁波シールド性能測定対象織物 10 電界・磁界シールドボックス 11 電磁波生成器 12 減衰率測定器 13 経糸 14 緯糸 15 電磁波シールド糸からなる経糸・緯糸の交絡点
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a 1: 3 twill fabric. FIG. 2 is an explanatory diagram showing a relationship between “sink” and “lift” of the woven fabric of FIG. 1; FIG. 3 is an explanatory diagram showing the entanglement strength at each entanglement point of the woven fabric of FIG. 1; FIG. 4 is a schematic perspective view of a woven fabric in which an electromagnetic wave shielding thread is entangled at a position where the entanglement strength is 4; FIG. 5 is a schematic perspective view of a woven fabric in which an electromagnetic wave shielding thread is entangled at a position where the entanglement strength is 2. FIG. 6 is a schematic perspective view of a woven fabric in which an electromagnetic wave shielding thread is entangled at a position where the entanglement strength is 0. FIG. 7 is an explanatory view showing a 3: 1 twill fabric. FIG. 8 is an explanatory view showing a 2: 1 twill fabric. FIG. 9 is an explanatory view showing a 4: 1 twill fabric. FIG. 10 is an explanatory view showing a 3: 1 satin fabric. FIG. 11 is an explanatory view showing a 4: 1 satin fabric. FIG. 12 is an explanatory view showing a 2: 2 twill fabric. FIG. 13 is an explanatory view showing a 3: 3 twill fabric. FIG. 14 is an explanatory view showing a 3: 2 twill fabric. FIG. 15 is an explanatory view showing a woven fabric of Example 1. FIG. 16 is an explanatory diagram showing a woven fabric of Comparative Example 1. FIG. 17 is an explanatory view showing a woven fabric of Comparative Example 2. FIG. 18 is an explanatory view showing a woven fabric of Comparative Example 3. FIG. 19 is an explanatory diagram showing a method of measuring an electromagnetic wave attenuation rate. FIG. 20 is an explanatory view showing a conventional electromagnetic wave shielding fabric. [Description of Signs] 1 Repeat of woven pattern (repeat unit) 7 Base yarn 8 Electromagnetic wave shield yarn 9 Electromagnetic / shielding performance measurement target fabric 10 Electric / magnetic field shield box 11 Electromagnetic wave generator 12 Attenuation rate measuring device 13 Warp 14 Weft 15 Electromagnetic wave shield Interlacing point of warp and weft consisting of yarn

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−77507(JP,A) 特開 平6−131916(JP,A) 特開 平9−23085(JP,A) 特開 平11−40973(JP,A) 特開2000−119932(JP,A) 特開2000−64150(JP,A) 実開 昭61−146996(JP,U) (58)調査した分野(Int.Cl.7,DB名) H05K 9/00 D03D 15/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-10-77507 (JP, A) JP-A-6-131916 (JP, A) JP-A-9-23085 (JP, A) JP-A-11- 40973 (JP, A) JP-A-2000-191993 (JP, A) JP-A-2000-64150 (JP, A) JP-A-61-146996 (JP, U) (58) Fields investigated (Int. Cl. 7 , (DB name) H05K 9/00 D03D 15/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 交差する経糸と緯糸のうち一方が他方に
対して「浮き」または「沈み」の位置関係を有すること
によって織模様を形成する、綾織もしくは朱子織からな
るものであり、且つ上記経糸及び緯糸にベース糸及び
磁波シールド糸を用いてなる織物において、 『任意の交絡点Xを形成する経糸上及び緯糸上にあって
且つ上記交絡点Xに隣接する4つの交絡点が、交絡点X
の交絡状態(浮きまたは沈み)と反対となっている箇所
の数』を交絡点Xの「交絡強度」と定義したとき、 電磁波シールド糸を、交絡強度が4である点で交絡する
様に配置せしめたことを特徴とする電磁波シールド織
物。
(57) [Claim 1] A twill or a satin, in which one of a crossing warp and a weft has a “floating” or “sinking” positional relationship with respect to the other to form a woven pattern. It is those made from woven, and in ing fabric using a base yarn and conductive <br/> wave shield yarns to the warp and weft, and there on and on weft warp to form "any intertwined point X The four confounding points adjacent to the confounding point X are the confounding points X
The number of locations opposite to the confounding state (floating or sinking) is defined as the "confounding strength" of the confounding point X, and the electromagnetic shielding yarn is arranged so as to be entangled at the point where the confounding strength is 4. An electromagnetic shielding fabric characterized by the following.
JP31444198A 1998-11-05 1998-11-05 Electromagnetic shielding fabric Expired - Lifetime JP3519290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31444198A JP3519290B2 (en) 1998-11-05 1998-11-05 Electromagnetic shielding fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31444198A JP3519290B2 (en) 1998-11-05 1998-11-05 Electromagnetic shielding fabric

Publications (2)

Publication Number Publication Date
JP2000151182A JP2000151182A (en) 2000-05-30
JP3519290B2 true JP3519290B2 (en) 2004-04-12

Family

ID=18053403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31444198A Expired - Lifetime JP3519290B2 (en) 1998-11-05 1998-11-05 Electromagnetic shielding fabric

Country Status (1)

Country Link
JP (1) JP3519290B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792293B2 (en) * 2003-06-30 2011-10-12 株式会社イデアルスター Electron emitting woven fabric and display device using the same
US20060281382A1 (en) * 2005-06-10 2006-12-14 Eleni Karayianni Surface functional electro-textile with functionality modulation capability, methods for making the same, and applications incorporating the same
KR200450688Y1 (en) 2008-07-11 2010-10-22 (주) 배명 Lining for student school uniform
KR101341959B1 (en) 2012-06-13 2013-12-16 지상빈 Woven fabric for shielding electromagnetic wave and preventing static electricity containing metal yarn
US10615581B2 (en) * 2017-04-04 2020-04-07 Federal-Mogul Powertrain, Llc Woven EMI and abrasion resistant sleeve and method of construction thereof
JP6956580B2 (en) * 2017-09-22 2021-11-02 セーレン株式会社 Woven fabric
JP7416632B2 (en) * 2020-01-17 2024-01-17 日本特殊陶業株式会社 Fiber sheets, processed fiber bodies, cable shielding materials, and cables

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027519Y2 (en) * 1985-02-09 1990-02-22
JP2886006B2 (en) * 1992-10-15 1999-04-26 北川工業株式会社 Heat-shrinkable conductive sheet
JPH0923085A (en) * 1995-07-07 1997-01-21 Daido Steel Co Ltd Material for low frequency magnetic shield
JPH1077507A (en) * 1996-09-02 1998-03-24 First Shoji Kk Clothes capable of attenuating electromagnetic wave
JPH1140973A (en) * 1997-07-22 1999-02-12 Kitagawa Ind Co Ltd Wire mesh for electromagnetic shield
JP2000064150A (en) * 1998-08-10 2000-02-29 Toa Boshoku Kk Electromagnetic wave-shielding woven fabric for clothes
JP2000119932A (en) * 1998-10-15 2000-04-25 Teijin Ltd Electromagnetic wave-shielding woven fabric rich in aesthetic property

Also Published As

Publication number Publication date
JP2000151182A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
US7849888B2 (en) Surface functional electro-textile with functionality modulation capability, methods for making the same, and applications incorporating the same
US4557968A (en) Directional electrostatic dissipating fabric and method
US4606968A (en) Electrostatic dissipating fabric
US4684762A (en) Shielding fabric
US6615572B2 (en) Fabrics and dust proof clothes excellent in conductivity and antistatic property
JP2004190194A (en) Electromagnetic wave-shielding combined yarn and electromagnetic wave-shielding woven or knitted fabric
SE439411B (en) APPLICATION OF METALLIZED TEXTILE PAPERS FOR MICROVAGOR SHIELDING
JP3519290B2 (en) Electromagnetic shielding fabric
CN106149162A (en) A kind of Electromagnetically shielding fabrics with electric conductivity periodic structure and preparation method
JP2009185439A (en) Woven fabric and clothing using the same
KR20150047558A (en) Magnetic field-shielding electromagnetic shielding material
KR100943303B1 (en) Manufacturing method of electromagnetic shielding fabric with covered yarn
US6924244B2 (en) Metal coated fiber materials
CN216193056U (en) Copper-silver composite core-spun yarn and polyimide interwoven multi-layer electromagnetic shielding fabric
CN206089958U (en) Electromagnetic shield fabric with electric conductivity period structure
Jagatheesan et al. Development of metallic core-spun yarns and hybrid conductive fabrics for electromagnetic shielding applications
CN101008121A (en) Dust-proof fabric for clothes
EP0624669B1 (en) A compound fabric made up of single or ply yarns of conventional textile fibers interlaced, according to a rectangular pattern, with single or ply yarns at least partially mixed with a carbon filament, possessing shielding properties against electric fields
JPH11302933A (en) Composite spun yarn, and woven and knitted fabric therefrom
KR200391057Y1 (en) knitted fabric for EMI shielding
JP2000064150A (en) Electromagnetic wave-shielding woven fabric for clothes
JPH05283890A (en) Electromagnetic wave shielding material
CN219153877U (en) Radiation-proof fabric
JPH11261290A (en) Bonded fabric in which electromagnetic shielding performance is improved
JP2001226873A (en) Metal coated fiber material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190206

Year of fee payment: 15

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190206

Year of fee payment: 15

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190206

Year of fee payment: 15

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190206

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190206

Year of fee payment: 15

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190206

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term