JP3518194B2 - Flame spray repair method for refractories and flame spray repair material for refractories - Google Patents

Flame spray repair method for refractories and flame spray repair material for refractories

Info

Publication number
JP3518194B2
JP3518194B2 JP24343096A JP24343096A JP3518194B2 JP 3518194 B2 JP3518194 B2 JP 3518194B2 JP 24343096 A JP24343096 A JP 24343096A JP 24343096 A JP24343096 A JP 24343096A JP 3518194 B2 JP3518194 B2 JP 3518194B2
Authority
JP
Japan
Prior art keywords
spray repair
flame
oxide powder
powder
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24343096A
Other languages
Japanese (ja)
Other versions
JPH1089854A (en
Inventor
康雅 福島
悦郎 宇田川
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP24343096A priority Critical patent/JP3518194B2/en
Publication of JPH1089854A publication Critical patent/JPH1089854A/en
Application granted granted Critical
Publication of JP3518194B2 publication Critical patent/JP3518194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00551Refractory coatings, e.g. for tamping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、工業用炉の内壁を
熱間状態で補修する火炎溶射補修方法および該方法に用
いる火炎溶射補修材料に関し、さらに詳しくは、コーク
ス炉、高炉、製鋼窯炉などの熱間状態の内壁に、粉状の
耐火物を、噴射ノズルを用い火炎により溶融し、溶射す
る火炎溶射補修方法および該方法に用いる火炎溶射補修
材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame spray repair method for repairing an inner wall of an industrial furnace in a hot state and a flame spray repair material used in the method, and more specifically, a coke oven, a blast furnace, and a steelmaking kiln furnace. The present invention relates to a flame spray repairing method in which a powdery refractory is melted by a flame using an injection nozzle and sprayed on the inner wall in a hot state, and a flame spray repairing material used in the method.

【0002】[0002]

【従来の技術】工業窯炉、特に鉄鋼設備としてのコーク
ス炉、高炉、製鋼窯炉など築炉構造物の炉内は、乾留石
炭、溶銑、溶鋼、スラグなどの溶融物質を保持し、通常
1,000℃以上の温度に曝され、特にコークスの押し出
し、溶銑、溶鋼の注湯、貯留、排出などを行う際には、
それらの内壁の温度は著しく変化する。
2. Description of the Related Art Industrial kilns, particularly coke ovens as steel equipment, blast furnaces, steelmaking kilns, and other furnaces of furnace-construction structures hold molten substances such as carbonized coal, molten pig iron, molten steel, and slag.
When exposed to temperatures of 1,000 ° C or higher, especially when performing coke extrusion, molten pig iron, molten steel pouring, storage, discharge, etc.
The temperature of their inner walls changes significantly.

【0003】従って、それらの内壁は、単に溶融物が浸
潤して溶損するだけでなく、熱スポーリングによる亀裂
や剥離などの損傷が発生する。このため、それらの種々
の損傷要因に対処するため、設計あるいは築炉段階にお
いては、適切な煉瓦材質を選択する必要があり、一方で
は、一炉代の延命を図る上から、稼働期間の中間段階で
補修することが重要になる。
Therefore, not only the melt infiltrate and melt the inner walls, but also damages such as cracks and peeling due to heat spalling occur. Therefore, in order to deal with these various damage factors, it is necessary to select an appropriate brick material at the design or furnace construction stage, while on the other hand, in order to prolong the life of one furnace It is important to repair in stages.

【0004】この補修技術としては、耐火物損傷部に熱
間状態で補修材料を吹き付ける火炎溶射補修方法が盛ん
に試みられている。火炎溶射補修方法は、修復すべき炉
壁耐火物材質とほぼ同様な組成を有する耐火性酸化物粉
体または易被酸化性粉体あるいはその両者の混合物を火
炎溶射補修材料とするもので、耐火性酸化物粉体は可燃
性ガスの燃焼熱により溶融し、また易被酸化性粉体はそ
れ自体の燃焼により発熱すると共に酸化物となり耐火性
酸化物粉体と共に溶射補修層を形成する。
As this repair technique, a flame spray repair method of spraying a repair material in a hot state on the damaged portion of the refractory has been actively attempted. The flame spray repair method uses a flame spray repair material that is a refractory oxide powder or an easily oxidizable powder having a composition similar to that of the furnace wall refractory material to be restored, or a mixture of both. The heat-resistant oxide powder is melted by the heat of combustion of the combustible gas, and the easily-oxidizable powder is heated by its own combustion to become an oxide and form a thermal spray repair layer together with the refractory oxide powder.

【0005】特に、コークス炉は、改修時以外は炉温を
下げることができず、熱間状態での補修が必須なことか
ら、火炎溶射補修方法が有効である。このような火炎溶
射補修方法は、例えば、特公平2−45110 号公報に示さ
れるように、粉末状の耐火性酸化物を、可燃性物質およ
び可燃性ガスに混合し、支燃性ガス中に供給し、燃焼火
炎の熱により該耐火性酸化物を溶融し、瞬時に炉の内壁
の損傷部に吹き付ける乾式方法である。
In particular, the coke oven is incapable of lowering the oven temperature except during repair, and repair in a hot state is essential, so the flame spray repair method is effective. Such a flame spray repair method is disclosed in, for example, Japanese Patent Publication No. 2-45110, in which powdery refractory oxide is mixed with a combustible substance and a combustible gas, and the mixture is added to a combustion supporting gas. It is a dry method in which the refractory oxide is supplied, melted by the heat of the combustion flame, and instantaneously sprayed on the damaged portion of the inner wall of the furnace.

【0006】このため、溶射された耐火物は、使用に際
して高品質を保ち、従来の湿式吹き付け法、すなわち予
め水分と吹き付け材を混合し泥漿化した材料をタンクか
ら吹き付ける方法で得た耐火物に比べ、耐用性が格段に
高いという特徴を有している。以上述べたように、火炎
溶射補修方法は、炉体の改修時以外にも随時適用可能で
あり、さらに、得られる火炎溶射補修層の耐用性は、湿
式吹き付け法と比較すれば格段に高いという優れた補修
方法であるが、工業窯炉の稼働率向上による生産性の向
上および補修費用の低減のためには、その耐用性を更に
延ばすことが必要とされている。
[0006] Therefore, the sprayed refractory has a high quality during use, and is a refractory obtained by a conventional wet spraying method, that is, a method in which moisture and a spraying material are mixed in advance and a sludge material is sprayed from a tank. In comparison, it has a feature that its durability is extremely high. As described above, the flame spray repair method can be applied at any time other than when the furnace body is repaired, and the durability of the flame spray repair layer obtained is significantly higher than that of the wet spray method. Although it is an excellent repair method, it is necessary to further extend its durability in order to improve productivity and reduce repair costs by improving the operating rate of industrial kilns.

【0007】[0007]

【発明が解決しようとする課題】本発明は、工業窯炉の
火炎溶射補修層の耐用性を大幅に向上可能な耐火物の火
炎溶射補修方法および該方法に用いられる耐火物用火炎
溶射補修材料の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention is directed to a flame spray repair method for a refractory capable of greatly improving the durability of the flame spray repair layer of an industrial kiln, and a flame spray repair material for the refractory used in the method. For the purpose of providing.

【0008】[0008]

【課題を解決するための手段】本発明者らは、コークス
炉、高炉、製鋼窯炉など工業窯炉の炉壁に施工する火炎
溶射補修層の耐用性を向上するために鋭意検討を行った
結果、本発明に至った。以下、前記した火炎溶射補修方
法が必須となっているコークス炉の炉壁を例に挙げて説
明する。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies to improve the durability of a flame spray repair layer applied to the furnace wall of an industrial kiln such as a coke oven, a blast furnace, a steelmaking kiln. As a result, the present invention has been achieved. Hereinafter, the furnace wall of the coke oven, which requires the above-described flame spraying repair method, will be described as an example.

【0009】コークス炉はその構造上、コークスの排出
の際に炭化室内のコークスを片側の側壁から反対側の側
壁まで、押し出し機により数mから十数m押し出すた
め、炉壁とコークス、押し出し機との接触により炭化室
内炉壁に摩耗が生じる。そのため、溶射補修層の耐用性
を向上させる一つの方法として、溶射補修層を緻密化し
て壁面の耐摩耗性を向上させることが考えられる。
Due to the structure of the coke oven, when the coke is discharged, the coke in the carbonization chamber is extruded from a side wall on one side to a side wall on the opposite side by several meters to several tens of meters by an extruder. Wear with the furnace wall of the carbonization chamber occurs due to contact with. Therefore, as one method for improving the durability of the thermal spray repair layer, it is conceivable to densify the thermal spray repair layer to improve the wear resistance of the wall surface.

【0010】溶射補修層を緻密化するには火炎溶射補修
材料を充分溶融すれば良く、その一つの方法として火炎
溶射補修材料の粒径の細粒化が挙げられる。本発明者ら
は、細粒化した火炎溶射補修材料を用いて溶射補修層の
緻密化について研究した結果、火炎溶射補修材料である
耐火性酸化物粉体および易被酸化性粉体の内、前者の耐
火性酸化物粉体の微粉部分の割合が多いと、溶射補修層
内部に気泡が発生し、溶射補修層が緻密化されず、逆に
ポーラスになる現象が生じることを見出した。
To densify the thermal spray repair layer, it is sufficient to sufficiently melt the flame spray repair material, and one of the methods is to reduce the particle size of the flame spray repair material. The present inventors have studied the densification of the thermal spray repair layer using a fine-grained flame spray repair material, among the flame spray repair material fire-resistant oxide powder and easily oxidizable powder, It has been found that when the ratio of the fine powder portion of the former refractory oxide powder is large, air bubbles are generated inside the thermal spray repair layer, the thermal spray repair layer is not densified, and conversely becomes a porous phenomenon.

【0011】この原因は完全には解明されてはいない
が、以下のように推定される。すなわち、耐火性酸化物
粉体が微粉の場合、該粉体は、噴射ノズル先端から火炎
に同伴して飛翔中に完全に溶融し微細な溶融粒子となる
が、これがコークス炉炭化室内壁の補修部位に付着した
ときに補修部位の耐火物に熱を奪われ、瞬時に半凝固状
態となり、結果的には微細な粒子を積み重ねた形状とな
り、この過程で溶射補修層中に雰囲気ガスが取り込まれ
る。
The cause has not been completely clarified, but it is presumed as follows. That is, when the refractory oxide powder is a fine powder, the powder accompanies the flame from the tip of the injection nozzle and is completely melted during flight to form fine molten particles. When it adheres to the part, the refractory in the repaired part takes away heat and instantly becomes a semi-solidified state, resulting in a shape in which fine particles are piled up, and in this process atmospheric gas is taken into the sprayed repair layer. .

【0012】溶射補修層中に取り込まれたガスは、溶射
補修層が凝固していく過程で溶射補修層内を拡散し、ガ
スの集合により気泡が成長するものと推定される。これ
に対して、耐火性酸化物粉体中にある程度粗い粒子が存
在する場合、これらの粒子は噴射ノズル先端から火炎に
同伴して飛翔中に完全には溶融せず、半溶融状態で溶射
補修層へ付着するが、粒径が大きく慣性力が大きいた
め、付着時に火炎溶射補修層の凹凸を埋め、雰囲気ガス
の入り込む余地がなく、気泡の発生、成長が抑制され溶
射補修層が緻密になる。
It is presumed that the gas taken into the thermal spray repair layer diffuses in the thermal spray repair layer during the solidification of the thermal spray repair layer, and bubbles grow due to the gas aggregation. On the other hand, if there are some coarse particles in the refractory oxide powder, these particles will not be completely melted during flight due to entrainment with the flame from the tip of the injection nozzle, but spray repair in a semi-molten state. Although it adheres to the layer, since the particle size is large and the inertial force is large, it fills the irregularities of the flame spray repair layer at the time of adhesion, there is no room for atmospheric gas to enter, bubble generation and growth are suppressed, and the spray repair layer becomes dense. .

【0013】本発明は、耐火性酸化物粉体と易被酸化性
粉体との混合物である火炎溶射補修材料において、前者
の耐火性酸化物粉体の粒子径と火炎溶射補修層の形成状
況との関係に関し新たに見出した上記知見に基づくもの
である
According to the present invention, in the flame spray repair material which is a mixture of the refractory oxide powder and the easily oxidizable powder, the particle size of the former refractory oxide powder and the state of formation of the flame spray repair layer. It is based on the above findings newly found regarding the relationship with .

【0014】すなわちの発明は、耐火性酸化物粉体
と易被酸化性粉体との混合物を、プロパンガスと共に酸
素含有支燃性ガス気流中に噴射して、炉壁面に溶射補修
層を形成する耐火物の火炎溶射補修方法であって、前記
耐火性酸化物粉体として、該粉体の最小粒子径側から下
記式(1) で表される粒子径Dまでの粒子の積算質量分率
が80%以下で、かつ、けい石を90wt%以上含有する耐火
性酸化物粉体を用い、下記式(2) の条件下で火炎溶射す
ることを特徴とする耐火物の火炎溶射補修方法である。
That is, the first invention is to spray a mixture of a refractory oxide powder and an easily oxidizable powder into a stream of oxygen-containing combustion-supporting gas together with propane gas to spray a sprayed repair layer on the wall surface of the furnace. A method for flame spraying repairing a refractory forming a powder, wherein the refractory oxide powder has an integrated mass of particles from a minimum particle size side of the powder to a particle size D represented by the following formula (1). Flame spray repair of refractory, characterized by flame spraying under the condition of the following formula (2) , using a refractory oxide powder having a fraction of 80% or less and containing silica in an amount of 90 wt% or more. Is the way.

【0015】 D(μm )=4.5 ×10-4×(Tf −Tm )×L ………………………(1) ここで、 Tf (℃)=1150×〔プロパンガス流量(Nm3/h) 〕1/4 m (℃)=耐火性酸化物粉体の融点 L(mm)=火炎溶射補修材料の噴射ノズル先端から火炎
溶射補修対象の炉壁までの距離 〔酸素流量(Nm3/h) 〕/〔プロパンガス流量(Nm3/h) 〕=8〜12……(2)
D (μm) = 4.5 × 10 −4 × (T f −T m ) × L ………………………… (1) where T f (° C) = 1150 × [Propane gas flow rate] (Nm 3 / h)] 1/4 T m (° C) = melting point L of refractory oxide powder L (mm) = distance from injection nozzle tip of flame spray repair material to furnace wall of flame spray repair target [oxygen Flow rate (Nm 3 / h)] / [Propane gas flow rate (Nm 3 / h)] = 8 to 12 …… (2)

【0016】またの発明は、プロパンガスと共に酸
素含有支燃性ガス気流中に噴射して、炉壁面に溶射補修
層を形成する耐火物用火炎溶射補修材料であって、当該
火炎溶射補修材料が、耐火性酸化物粉体と易被酸化性粉
体との混合物で、前記耐火性酸化物粉体の粒子径が、最
小粒子径側から下記式(1) で表される粒子径Dまでの粒
子の積算質量分率で80%以下であり、前記耐火性酸化物
粉体が、けい石を90wt%以上含有し、前記火炎溶射補修
材料が、下記式(2) を満足する火炎溶射条件下で使用さ
れることを特徴とする耐火物用火炎溶射補修材料であ
る。
[0016] The second invention is injected into the oxygen-containing combustion-supporting gas stream with propane gas, a flame spray mending material for a refractory forming the sprayed repair layer on the furnace wall, the flame spray mending The material is a mixture of refractory oxide powder and easily oxidizable powder, and the particle diameter of the refractory oxide powder is the particle diameter D represented by the following formula (1) from the minimum particle diameter side. Is 80% or less in the cumulative mass fraction of particles up to, the refractory oxide powder contains silica in an amount of 90 wt% or more, and the flame spraying repair material is flame spraying satisfying the following formula (2). A flame spray repair material for refractory, which is used under conditions.

【0017】 D(μm )=4.5 ×10-4×(Tf −Tm )×L ………………………(1) ここで、 Tf (℃)=1150×〔プロパンガス流量(Nm3/h) 〕1/4 m (℃)=耐火性酸化物粉体の融点 L(mm)=火炎溶射補修材料の噴射ノズル先端から火炎
溶射補修対象の炉壁までの距離 〔酸素流量(Nm3/h) 〕/〔プロパンガス流量(Nm3/h) 〕=8〜12……(2) 前記した第1の発明およびの発明においては、耐火
性酸化物粉体100 重量部に対して、易被酸化性粉体が11
〜67重量部配合されることが好ましい。
D (μm) = 4.5 × 10 −4 × (T f −T m ) × L …………………… (1) where T f (° C.) = 1150 × [Propane gas flow rate] (Nm 3 / h)] 1/4 T m (° C) = melting point L of refractory oxide powder L (mm) = distance from injection nozzle tip of flame spray repair material to furnace wall of flame spray repair target [oxygen Flow rate (Nm 3 / h)] / [Propane gas flow rate (Nm 3 / h)] = 8 to 12 (2) In the first and second inventions described above, the refractory oxide powder 100 11 parts by weight of easily oxidizable powder to parts by weight
It is preferable that the compounding amount is about 67 parts by weight.

【0018】また、前記した第1の発明およびの発
明においては、火炎溶射において可燃性ガスとして可燃
性ガスと不活性ガスの混合ガスを用いることもできる。
In the first and second inventions described above, a mixed gas of a combustible gas and an inert gas may be used as the combustible gas in flame spraying.

【0019】[0019]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の要旨は、耐火性酸化物粉体(以下、酸化
物粉体とも記す)と易被酸化性粉体との混合物である火
炎溶射補修材料の内、前記酸化物粉体として、該粉体の
融点、火炎温度、および火炎溶射補修材料の噴射ノズル
先端から火炎溶射補修対象の炉壁までの距離の3者によ
り規定した粒子径の酸化物粉体を使用し、火炎中での該
粉体の溶融を抑制する耐火物の火炎溶射補修方法、およ
び、前記酸化物粉体と易被酸化性粉体との混合物である
火炎溶射補修材料である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The gist of the present invention is to provide a flame spray repair material which is a mixture of a refractory oxide powder (hereinafter, also referred to as an oxide powder) and an easily oxidizable powder, as the oxide powder, The melting point of the body, the flame temperature, and the distance from the tip of the spray nozzle of the flame spray repair material to the furnace wall of the flame spray repair target, and an oxide powder having a particle size specified by three parties is used. A flame spray repair method for a refractory which suppresses melting of the body, and a flame spray repair material which is a mixture of the oxide powder and an easily oxidizable powder.

【0020】本発明によれば、火炎溶射補修時の火炎
温度Tf 、酸化物粉体の融点Tm、および火炎溶射
補修材料の噴射ノズル先端から火炎溶射補修対象の炉壁
までの距離L、に応じて酸化物粉体中の微粉部分の割合
を低減することで、酸化物粉体の過剰溶融を防止する。
この結果、溶射補修層内での気泡の発生を抑制すること
ができ、溶射補修層の緻密性を向上し、溶射補修層の耐
用性を大幅に延長することが可能となった。
According to the present invention, the flame temperature T f at the time of flame spray repair, the melting point T m of the oxide powder, and the distance L from the spray nozzle tip of the flame spray repair material to the furnace wall to be flame spray repaired, According to the above, the ratio of the fine powder portion in the oxide powder is reduced to prevent excessive melting of the oxide powder.
As a result, it is possible to suppress the generation of bubbles in the thermal spray repair layer, improve the denseness of the thermal spray repair layer, and significantly extend the durability of the thermal spray repair layer.

【0021】第1の発明の骨子は、火炎溶射における可
燃性ガスとしてプロパンガスを使用し、酸化物粉体と易
被酸化性粉体との混合物である火炎溶射補修材料の内、
酸化物粉体として、該粉体の最小粒子径側から下記式
(1) で表される粒子径Dまでの粒子の積算質量分率が80
%以下で、かつ、けい石を90wt%以上含有する耐火性酸
化物粉体を用い、下記式(2) の条件下で火炎溶射する耐
火物の火炎溶射補修方法である。
The gist of the first invention, using a propane gas as a combustible gas in flames spraying, of flame spraying repair material is a mixture of an oxide powder and easily oxidizable powder,
As the oxide powder, the following formula from the minimum particle size side of the powder
The cumulative mass fraction of particles up to the particle size D represented by (1) is 80.
%, And a flame-spraying repair method for a refractory material in which flame-spraying is performed under the condition of the following formula (2) using a refractory oxide powder containing silica in an amount of 90 wt% or more.

【0022】 D(μm )=4.5 ×10-4×(Tf −Tm )×L ………………………(1) 〔酸素流量(Nm3/h) 〕/〔プロパンガス流量(Nm3/h) 〕=8〜12……(2) なお、本第の発明においては、上記式(1) 中、Tm
1650℃と設定することが好ましい。また、上記式(2)
中、酸素流量は支燃性ガス流量に支燃性ガスの酸素分圧
を乗じた値である。
[0022] D (μm) = 4.5 × 10-Four× (Tf-Tm) × L ………………………………(1) (Oxygen flow rate (Nm3/ h)] / [Propane gas flow rate (Nm3/ h)] = 8-12 ……(2) In addition, this book1In the invention of(1)Medium, Tm=
It is preferably set to 1650 ° C. Also, the above formula(2)
Medium, the oxygen flow rate is the oxygen content of the combustion-supporting gas
It is the value multiplied by.

【0023】本第の発明においては、火炎溶射におけ
る支燃性ガス中の酸素の含有率は、90vol %以上である
ことが好ましく、さらには支燃性ガスとして純酸素を用
いることがより好ましい
In the first aspect of the present invention, the oxygen content in the combustion-supporting gas in flame spraying is preferably 90 vol% or more, and more preferably pure oxygen is used as the combustion-supporting gas. .

【0024】またの発明の骨子は、酸化物粉体と易
被酸化性粉体との混合物である耐火物用火炎溶射補修材
料であって、酸化物粉体が、けい石を90wt%以上含有
し、かつ、酸化物粉体の粒子径が、最小粒子径側から下
記式(1) で表される粒子径Dまでの粒子の積算質量分率
で80%以下で、可燃性ガスとしてプロパンガスを使用し
下記式(2) を満足する火炎溶射条件下で使用される耐火
物用火炎溶射補修材料である。
[0024] The gist of the second invention, an oxide powder and a flame spray mending material for a refractory which is a mixture of easily oxidizable powder, oxide powder, 90 wt% of silica stone The above content, and the particle size of the oxide powder is 80% or less in the integrated mass fraction of particles from the minimum particle size side to the particle size D represented by the following formula (1) , and as an inflammable gas A flame spray repair material for a refractory used under a flame spray condition using propane gas and satisfying the following formula (2) .

【0025】 D(μm )=4.5 ×10-4×(Tf −Tm )×L ………………………(1) 〔酸素流量(Nm3/h) 〕/〔プロパンガス流量(Nm3/h) 〕=8〜12……(2) なお、本第の発明においては、上記式(1) 中、Tm
1650℃と設定することが好ましい。また、上記式(2)
中、酸素流量は支燃性ガス流量に支燃性ガスの酸素分圧
を乗じた値である。
[0025] D (μm) = 4.5 × 10-Four× (Tf-Tm) × L ………………………………(1) (Oxygen flow rate (Nm3/ h)] / [Propane gas flow rate (Nm3/ h)] = 8-12 ……(2) In addition, this bookTwoIn the invention of(1)Medium, Tm=
It is preferably set to 1650 ° C. Also, the above formula(2)
Medium, the oxygen flow rate is the oxygen content of the combustion-supporting gas
It is the value multiplied by.

【0026】本第の発明においては、火炎溶射におけ
る支燃性ガス中の酸素の含有率は、90vol %以上である
ことが好ましく、さらには支燃性ガスとして純酸素を用
いることがより好ましい。以上、第1の発明および
の発明の骨子について述べたが、前記した第1の発明
よびの発明においては、前記したようにいずれの発
明においても、火炎溶射において可燃性ガスとして可燃
性ガスと不活性ガスの混合ガスを用いることもできる。
In the second aspect of the invention, the oxygen content in the combustion-supporting gas in flame spraying is preferably 90 vol% or more, and more preferably pure oxygen is used as the combustion-supporting gas. . As described above, the first invention and the second invention
The outline of the invention is described above .
In the second invention, as described above, in any of the inventions, a mixed gas of a combustible gas and an inert gas can be used as the combustible gas in flame spraying.

【0027】なお、上記した第1の発明およびの発
明における式(1) 〜(2) 中の各記号は前記した内容と同
一の内容を示す。また、上記した第1の発明および
の発明における式(1) 、火炎温度Tf は、可燃性ガス
および支燃性ガスの各流量、または、可燃性ガスと不活
性ガスの混合ガスおよび支燃性ガスの各流量から熱収支
により計算される理論燃焼ガス温度である。ただし、式
(2) を満足する範囲では、火炎温度T f は下記式 (3)
より簡易に計算することができる。 f 1150 ×〔プロパンガス流量 (Nm 3 /h) 1/4 …………………… (3)
The symbols in formulas (1) and (2) in the above-mentioned first and second inventions have the same contents as described above. Further, the above-mentioned first invention and second invention
In the formula (1) in the invention, the flame temperature T f is the flow rate of the combustible gas and the combustion supporting gas or a heat balance from the flow rate of the mixed gas and the combustion assisting gas of the combustible gas and the inert gas Is the theoretical combustion gas temperature calculated by However, the formula
Within the range satisfying (2) , the flame temperature T f is calculated by the following equation (3) .
It can be calculated more easily. T f = 1150 × [Propane gas flow rate (Nm 3 / h) ] 1/4 …………………… (3)

【0028】本発明者らは、酸化物粉体と易被酸化性粉
体とからなる火炎溶射補修材料を、可燃性ガスおよび不
活性ガスの混合ガスまたは可燃性ガスと共に支燃性ガス
気流中に噴射し、得られる火炎を炉壁面に吹き付けるこ
とにより、炉壁面に溶射補修層を形成する炉壁の火炎溶
射補修方法において、前記酸化物粉体の粒径を前記した
式(1) で表されるD以上とした場合、溶射補修層内に気
泡の発生が生じないことを見い出した。
The inventors of the present invention have provided a flame spray repair material composed of an oxide powder and an easily oxidizable powder in a stream of a combustion-supporting gas together with a mixed gas of a combustible gas and an inert gas or a combustible gas. In the flame spray repair method of the furnace wall forming a spray repair layer on the furnace wall surface by spraying the obtained flame onto the furnace wall surface, the particle diameter of the oxide powder is expressed by the formula (1) above. It has been found that, when D is not less than D, the generation of bubbles does not occur in the thermal spray repair layer.

【0029】その理由は、以下のとおりと考えられる。
すなわち、種々の実験結果や熱収支の検討結果から、酸
化物粉体をけい石とした時に、火炎溶射補修材料の噴射
ノズル先端から火炎溶射補修対象の炉壁までの距離L
(mm)、火炎溶射時の火炎温度Tf (℃)に対し、けい
石の粒子径Dが、D(μm)≦4.5 ×10-4×(Tf −16
50)×Lの場合、距離Lを飛翔する間にけい石が溶融す
ることを見い出した。
The reason is considered to be as follows.
That is, from various experimental results and heat balance study results, when oxide powder is made of silica, the distance L from the tip of the injection nozzle of the flame spray repair material to the furnace wall of the flame spray repair target
(Mm) and the flame temperature T f (° C.) during flame spraying, the particle diameter D of silica is D (μm) ≦ 4.5 × 10 −4 × (T f −16
In the case of 50) × L, it was found that the silica melts while flying the distance L.

【0030】すなわち、D(μm)≦4.5 ×10-4×(T
f −1650)×Lの粒子径のけい石は、距離Lを飛翔する
間に全て溶融し、基体炉壁に溶融したけい石が到達し、
補修部位の耐火物に熱を奪われて半凝固状態となる。こ
れらの現象が溶射補修材料の積層過程で繰り返されるこ
とにより、溶射補修層では内部に雰囲気ガスが巻き込ま
れ溶射補修層内に気泡が生じる結果、溶射補修層はポー
ラスになる。
That is, D (μm) ≦ 4.5 × 10 −4 × (T
f −1650) × L particle size silica melts all while flying a distance L, and the molten silica reaches the base furnace wall,
Heat is taken by the refractory material in the repaired area, resulting in a semi-solidified state. By repeating these phenomena in the process of laminating the thermal spray repair material, atmospheric gas is trapped inside the thermal spray repair layer and bubbles are generated in the thermal spray repair layer, so that the thermal spray repair layer becomes porous.

【0031】そこで、この現象を防止するために、火炎
内でけい石が過剰に溶融しないような粒度構成、すなわ
ち、最小粒子径側から前記式(1) で表される粒子径Dま
での積算質量分率が80%以下の粒度構成のけい石粉末を
用いることで、前記した距離Lを飛翔する間に溶融する
けい石の割合を規制し、その結果、溶射補修層内に気泡
が生ぜず、溶射補修層が緻密化し、火炎溶射補修層の耐
用性が大幅に向上可能となる(第の発明、第の発
明)。
Therefore, in order to prevent this phenomenon, the particle size is configured so that the silica does not excessively melt in the flame, that is, the total particle size from the minimum particle size side to the particle size D represented by the above formula (1 ). By using silica powder having a particle size composition with a mass fraction of 80% or less, the ratio of silica melt that melts while flying the distance L is regulated, and as a result, bubbles do not occur in the thermal spray repair layer. The sprayed repair layer is densified, and the durability of the flame sprayed repair layer can be significantly improved ( first invention, second invention).

【0032】なお、この場合、酸化物粉体としては、け
い石の含有率は100 %に限定されることなく、酸化物粉
体中にけい石が90wt%以上含有されていれば前記した本
発明の目的が達成できる。逆に、けい石粉末の粒径分布
において、最小粒子径側から前記した式(1) で表される
粒子径Dまでの積算質量分率が80%を超えて微粉が多く
なると、けい石が前記した距離Lを飛翔する間に過剰に
溶融し、溶射補修層内で気泡が生じる。
In this case, as the oxide powder, the content of silica is not limited to 100%, and if the oxide powder contains 90 wt% or more of silica, The object of the invention can be achieved. On the contrary, in the particle size distribution of the silica powder, if the integrated mass fraction from the minimum particle size side to the particle size D represented by the above formula (1) exceeds 80% and the fine powder increases, During the flight of the distance L described above, it is excessively melted and bubbles are generated in the thermal spray repair layer.

【0033】[0033]

【0034】[0034]

【0035】炎温度Tf は、可燃性ガスおよび支燃性
ガスの各流量、または、可燃性ガスと不活性ガスの混合
ガスおよび支燃性ガスの各流量から熱収支により計算さ
れる理論燃焼ガス温度である。ただし、式 (2) を満足す
る範囲では、火炎温度T f は式 (3) により簡易に計算す
ることができる。
The theory flames temperature T f, which is calculated each flow rate of the combustible gas and the combustion supporting gas, or, from the flow rate of the mixed gas and the combustion assisting gas of the combustible gas and the inert gas by the heat balance It is the combustion gas temperature. However, the formula (2) is satisfied.
The flame temperature T f can be easily calculated by the formula (3)
You can

【0036】また、Lは、火炎溶射補修材料の噴射ノズ
ル先端から火炎溶射補修対象の炉壁までの距離である。
前記第1の発明およびの発明において、けい石など
の酸化物粉体の粒子径の上限(最大粒子径)は、酸化物
粉体が溶射可能な範囲であればよいが、好ましくは0.5m
m 以下とすることにより、溶射補修層の緻密性、補修す
べき基体耐火物への接着性が更に向上する。
L is the distance from the tip of the spray nozzle of the flame spray repair material to the furnace wall of the flame spray repair target.
In the first invention and the second invention, the upper limit (maximum particle diameter) of the particle size of the oxide powder such as silica stone may be within a range in which the oxide powder can be sprayed, but preferably 0.5 m
When it is at most m, the denseness of the sprayed repair layer and the adhesion to the substrate refractory to be repaired are further improved.

【0037】本発明において好ましく用いられる耐火性
酸化物粉体(=酸化物粉体)としては、けい石、アルミ
ナ、ムライト、シャモット系、ジルコン、ジルコニア、
スピネル、マグネシアおよびマグクロなどから選ばれる
一種類以上を含有する酸化物粉体が例示される。さら
に、本発明は、耐火性酸化物粉体として、特にけい石を
使用した場合に効果を発揮する。
The refractory oxide powder (= oxide powder) preferably used in the present invention includes silica, alumina, mullite, chamotte, zircon, zirconia,
Examples thereof include oxide powders containing one or more kinds selected from spinel, magnesia, magcro and the like. Further, the present invention is effective as a refractory oxide powder, especially when silica is used.

【0038】これは、溶融状態での粘度が高く、雰囲気
ガスの取り込みが顕著になるためである。易被酸化性粉
体としては、好ましくは、粉状のSiおよびSiMn、CaSi、
FeSi どから選ばれる一種以上を含有する易被酸化性金
属粉体、易被酸化性粉体が例示される。
This is because the viscosity in the molten state is high and the intake of atmospheric gas becomes remarkable. The easily oxidizable powder is preferably powdered Si and SiMn, CaSi,
Fe Si, etc. easily oxidizable metal powder containing one or more kinds selected from an easily oxidizable powder is exemplified.

【0039】本発明においては、火炎溶射補修材料中の
耐火性酸化物粉体および易被酸化性粉体の配合比は、耐
火性酸化物粉体100 重量部に対して、易被酸化性粉体を
11〜67重量部配合することが好ましい。これは、易被酸
化性粉体の配合比が11重量部未満の場合、易被酸化性粉
体の燃焼による発熱が不充分となり、67重量部超えの場
合、易被酸化性粉体の未燃焼率が大きくなり、発熱効果
が低下するため、あるいは未燃焼の易被酸化性粉体が工
業窯炉の稼働中に酸化して膨張し、溶射体の剥離の原因
となるためである。
In the present invention, the compounding ratio of the refractory oxide powder and the easily oxidizable powder in the flame spray repair material is such that 100 parts by weight of the refractory oxide powder is mixed with the easily oxidizable powder. Body
It is preferable to add 11 to 67 parts by weight. This is because when the compounding ratio of the easily oxidizable powder is less than 11 parts by weight, the heat generation due to the combustion of the easily oxidizable powder becomes insufficient, and when the mixing ratio exceeds 67 parts by weight, the oxidizable powder is not sufficiently mixed. This is because the burning rate becomes large and the heat generation effect decreases, or the unburned easily oxidizable powder oxidizes and expands during the operation of the industrial kiln, which causes peeling of the thermal spray material.

【0040】また、本発明においては、流量を大量にか
せげ、しかも火炎温度を上昇できる面から、可燃性ガス
としてプロパンガスを、酸素含有支燃性ガスとして酸素
ガスを用いて火炎温度Tf を高温とすることが好まし
い。さらに、酸化物粉体と易被酸化性粉体とからなる火
炎溶射補修材料を用いた火炎溶射補修方法では、可燃性
ガスを燃焼するための酸素ガスなどの支燃性ガスの他
に、易被酸化性粉体を酸化させるための酸素が必要であ
る。
Further, in the present invention, from the viewpoint that the flow rate can be increased to a large extent and the flame temperature can be raised, propane gas is used as the combustible gas and oxygen gas is used as the oxygen-containing combustion-supporting gas to increase the flame temperature T f . It is preferable that the temperature is high. Furthermore, in a flame spray repair method using a flame spray repair material consisting of an oxide powder and an easily oxidizable powder, in addition to a combustion-supporting gas such as oxygen gas for burning a flammable gas, Oxygen is required to oxidize the oxidizable powder.

【0041】このため、前記した第の発明、第の発
明においては、前記したように、酸素とプロパンガスの
流量比が下記式(2) を満足することが好ましく、このガ
ス流量比の範囲では、火炎温度Tf は下記式(3) により
簡易に計算することができる。 〔酸素流量(Nm3/h) 〕/〔プロパンガス流量(Nm3/h) 〕=8〜12……(2) Tf =1150×〔プロパンガス流量(Nm3/h) 〕1/4 ……………………(3) 上記ガス流量比が8未満の場合、易被酸化性粉体を酸化
させるための酸素が不充分になり、逆に12を超えた場
合、火炎の温度が低下してしまい、酸化物粉体を必要限
度迄溶融することができない。
Therefore, in the above-mentioned first invention and second invention, as described above, it is preferable that the flow ratio of oxygen and propane gas satisfies the following equation (2) . In the range, the flame temperature T f can be easily calculated by the following equation (3) . [Oxygen flow rate (Nm 3 / h)] / [Propane gas flow rate (Nm 3 / h)] = 8 to 12 ... (2 ) T f = 1150 x [Propane gas flow rate (Nm 3 / h)] 1/4 …………………… (3 ) When the gas flow rate ratio is less than 8, the oxygen for oxidizing the oxidizable powder becomes insufficient, and when it exceeds 12, conversely, the temperature of the flame is increased. Is lowered, and the oxide powder cannot be melted to the required limit.

【0042】なお、本発明における粉体の粒度測定法に
関しては常法に従うことでよいが、粉体を篩分けして使
用するため、粒度測定法としては篩分け法が好ましい。
以上述べた本発明によれば、溶射補修層内の気泡の生成
を防止し、溶射補修層の緻密性をも向上し、溶射補修層
の耐用性を大幅に延長することが可能となった。
The method for measuring the particle size of the powder according to the present invention may be according to a conventional method, but since the powder is used after being screened, the screening method is preferred as the particle size measuring method.
According to the present invention described above, it is possible to prevent the generation of bubbles in the thermal spray repair layer, improve the denseness of the thermal spray repair layer, and significantly extend the durability of the thermal spray repair layer.

【0043】[0043]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 〔実施例1〕けい石粉と、金属シリコン粉(平均粒径10
5 μm)とを重量比を変えて混合し火炎溶射補修材料を
調製した。
EXAMPLES The present invention will be specifically described below based on examples. [Example 1] Silica powder and metallic silicon powder (average particle size 10
(5 μm) was mixed at different weight ratios to prepare a flame spray repair material.

【0044】次に、得られた火炎溶射補修材料を用い
て、雰囲気温度を750 ℃に設定した実験炉内に配置した
けい石質の基体煉瓦に火炎溶射して溶射補修層を形成さ
せ、溶射補修層内の気泡の発生の有無を調査した。な
お、可燃性ガスとしては、プロパンガスを、支燃性ガス
としては酸素を用いた。
Next, using the flame spray repair material obtained, flame spraying was performed on the silica-based substrate bricks placed in an experimental furnace in which the atmospheric temperature was set to 750 ° C. to form a spray repair layer, and the spray repair layer was formed. The presence or absence of bubbles in the repair layer was investigated. In addition, propane gas was used as the combustible gas and oxygen was used as the combustion supporting gas.

【0045】溶射条件を表1に示し、また、この溶射条
件でのけい石粉の粒子径Dまでの積算質量分率、けい石
粉の平均粒径、および溶射補修層内の気泡の発生の有無
を表2に一括して示す。なお、火炎温度Tf は前記した
(3) で求めた値であり、けい石粉の融点Tm は1650℃
である。
The thermal spraying conditions are shown in Table 1, and the cumulative mass fraction up to the particle size D of the silica powder under this thermal spraying condition, the average particle size of the silica powder, and the presence or absence of bubbles in the thermal spray repair layer are shown. It is shown collectively in Table 2. The flame temperature T f is the value obtained by the above equation (3) , and the melting point T m of silica powder is 1650 ° C.
Is.

【0046】溶射補修層内の気泡の発生の有無は、目視
および実体顕微鏡による観察により調査した。表2に示
されるように、火炎溶射補修材料の噴射ノズル先端から
基体炉壁までの距離をL(mm)とした時に、耐火性酸化
物粉体(けい石粉)の粒子径において、最小粒子径側か
らD(μm)=4.5 × 10 -4 ×(Tf −Tm )×Lで規定
される粒子径迄の積算質量分率が80%を超えた、微粉の
多い比較例1〜3の場合、溶射補修層内に気泡が発生し
た。
The presence or absence of bubbles in the thermal spray repair layer was examined visually and by observation with a stereoscopic microscope. As shown in Table 2, when the distance from the tip of the spray nozzle for flame spray repair material to the base furnace wall is L (mm), the minimum particle size of the refractory oxide powder (silica powder) From the side to D (μm) = 4.5 × 10 −4 × (T f −T m ) × L, the cumulative mass fraction up to the particle size was more than 80%, and the fine powders of Comparative Examples 1 to 3 were used. In this case, bubbles were generated in the thermal spray repair layer.

【0047】これに対して、前記積算質量分率が80%以
下である本発明例1〜3の場合、溶射補修層内の気泡の
発生を防止することができた。すなわち、本発明によれ
ば、溶射補修層内の発泡が防止され、溶射補修層が緻密
化するばかりでなく、酸化物粉体の微粉を規制したこと
により粉体搬送時の脈動、配管内での閉塞を防止でき
た。
On the other hand, in the case of Examples 1 to 3 of the present invention in which the cumulative mass fraction was 80% or less, the generation of bubbles in the thermal spray repair layer could be prevented. That is, according to the present invention, foaming in the thermal spray repair layer is prevented, the thermal spray repair layer is not only densified, but pulsation during powder transport by regulating fine powder of oxide powder, in the pipe. It was possible to prevent the blockage.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】〔実施例2〕生産量:2400t/d 、門数:92
門のコークス炉で炭化室内の炉壁補修に本発明の技術を
適用した。火炎溶射の条件は実施例1と同様とし、補修
後、再補修が必要になるまでの補修周期を調べた。
[Example 2] Production amount: 2400 t / d, number of gates: 92
The technique of the present invention was applied to the repair of the furnace wall in the carbonization chamber in the coke oven at the gate. The conditions of flame spraying were the same as in Example 1, and the repair cycle after the repair until the repair was required was examined.

【0051】本実炉試験結果を表3に示す。表3に示さ
れるように、溶射補修層内に気泡が発生する条件(比較
例4〜6)の場合、補修周期が6ヶ月であったのに対
し、溶射補修層内に気泡が生じない条件(本発明例4〜
6)の場合、補修周期は1年を記録し、本発明により溶
射補修層の耐用性が大幅に向上可能であることが判っ
た。
The results of the actual furnace test are shown in Table 3. As shown in Table 3, in the case of the condition that bubbles are generated in the thermal spray repair layer (Comparative Examples 4 to 6), the repair cycle is 6 months, whereas the condition that no bubbles are generated in the thermal spray repair layer (Invention Example 4 to
In the case of 6), the repair cycle was recorded as one year, and it was found that the durability of the thermal spray repair layer can be greatly improved by the present invention.

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【発明の効果】本発明によれば、易被酸化性粉体と耐火
性酸化物粉体の混合粉末を用いた火炎溶射補修技術にお
いて、(1) 火炎温度、(2) 火炎溶射補修材料の噴出ノズ
ル先端〜炉壁間距離および(3) 耐火性酸化物粉体の融点
の三者により粒子径を規定した耐火性酸化物粉体を使用
し、火炎中での耐火性酸化物粉体の溶融を規制すること
で、溶射層内での気泡の発生すなわち発泡現象が防止さ
れ、溶射補修層の耐用性が大幅に向上可能となった。
EFFECTS OF THE INVENTION According to the present invention, in the flame spray repair technique using a mixed powder of easily oxidizable powder and refractory oxide powder, (1) flame temperature, (2) flame spray repair material The distance between the tip of the jet nozzle and the furnace wall and (3) the melting point of the refractory oxide powder are used. By controlling the melting, the generation of bubbles in the sprayed layer, that is, the foaming phenomenon was prevented, and the durability of the sprayed repair layer could be greatly improved.

フロントページの続き (56)参考文献 特開 平7−218147(JP,A) 特開 昭63−267886(JP,A) 特開 平8−210783(JP,A) 特開 昭61−275170(JP,A) 特開 昭56−164078(JP,A) 特開 昭63−38564(JP,A) 特開 昭63−190155(JP,A) (58)調査した分野(Int.Cl.7,DB名) F27D 1/16 C04B 35/66 Continuation of the front page (56) Reference JP-A-7-218147 (JP, A) JP-A-63-267886 (JP, A) JP-A-8-210783 (JP, A) JP-A-61-275170 (JP , A) JP 56-164078 (JP, A) JP 63-38564 (JP, A) JP 63-190155 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB) Name) F27D 1/16 C04B 35/66

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐火性酸化物粉体と易被酸化性粉体との
混合物を、プロパンガスと共に酸素含有支燃性ガス気流
中に噴射して、炉壁面に溶射補修層を形成する耐火物の
火炎溶射補修方法であって、前記耐火性酸化物粉体とし
て、該粉体の最小粒子径側から下記式(1) で表される粒
子径Dまでの粒子の積算質量分率が80%以下で、かつ、
けい石を 90wt %以上含有する耐火性酸化物粉体を用い
下記式 (2) の条件下で火炎溶射することを特徴とする耐
火物の火炎溶射補修方法。 記 D(μm )=4.5 × 10 -4 ×(Tf −Tm )×L ………………………(1) ここで f (℃)=1150 ×〔プロパンガス流量 (Nm 3 /h) 1/4 m (℃)=耐火性酸化物粉体の融点 L(mm)=火炎溶射補修材料の噴射ノズル先端から火炎
溶射補修対象の炉壁までの距離〔酸素流量 (Nm 3 /h) 〕/〔プロパンガス流量 (Nm 3 /h) 〕=8〜 12 …… (2)
1. A refractory material in which a mixture of refractory oxide powder and easily oxidizable powder is injected together with propane gas into an oxygen-containing combustion-supporting gas stream to form a thermal spray repair layer on the furnace wall surface. The flame spray repair method of claim 1, wherein as the refractory oxide powder, the cumulative mass fraction of particles from the minimum particle size side of the powder to the particle size D represented by the following formula (1) is 80%. Below , and
Using refractory oxide powder you containing more than 90 wt% of silica stone,
Flame spraying method of repairing a refractory characterized by flame spraying to Rukoto under the conditions of the following formula (2). Serial D (μm) = 4.5 × 10 -4 × (T f -T m) × L ........................... (1) where, T f (℃) = 1150 × [propane gas flow rate (Nm 3 / h) ] 1/4 T m (° C) = melting point of refractory oxide powder L (mm) = distance from the injection nozzle tip of flame spray repair material to the furnace wall of flame spray repair [oxygen flow rate ( Nm 3 / h) ] / [Propane gas flow rate (Nm 3 / h) ] = 8 to 12 ...... (2)
【請求項2】 耐火性酸化物粉体100 重量部に対して、
易被酸化性粉体 11 67 重量部配合されてなる請求項1
記載の耐火物の火炎溶射補修方法
2. With respect to 100 parts by weight of the refractory oxide powder ,
Easily oxidizable powder, which are 11 to 67 parts by weight blended claim 1
Flame spray repair method for the refractory described .
【請求項3】 プロパンガスと共に酸素含有支燃性ガス
気流中に噴射して、炉壁面に溶射補修層を形成する耐火
物用火炎溶射補修材料であって、当該火炎溶射補修材料
が、耐火性酸化物粉体易被酸化性粉体との混合物で、
前記耐火性酸化物粉体の粒子径が、最小粒子径側から下
記式 (1) で表される粒子径Dまでの粒子の積算質量分率
80 %以下であり、前記耐火性酸化物粉体が、けい石を
90wt %以上含有し、前記火炎溶射補修材料が、下記式
(2) を満足する火炎溶射条件下で使用されることを特徴
とする耐火物火炎溶射補修材料 D(μ m )= 4.5 × 10 -4 ×(T f −T m )×L ……………………… (1) ここで、 f (℃)= 1150 ×〔プロパンガス流量 (Nm 3 /h) 1/4 m (℃)=耐火性酸化物粉体の融点 L( mm )=火炎溶射補修材料の噴射ノズル先端から火炎
溶射補修対象の炉壁までの距離 〔酸素流量 (Nm 3 /h) 〕/〔プロパンガス流量 (Nm 3 /h) 〕=8〜 12 …… (2)
3.Oxygen-containing supporting gas together with propane gas
Fire resistance by spraying into the air flow to form a sprayed repair layer on the furnace wall
Flame spray repair material for materials, the flame spray repair material
But,Refractory oxide powderWhenEasily oxidizable powderIn a mixture with
The particle size of the refractory oxide powder is from the minimum particle size side to the bottom.
Ceremony (1) Accumulated mass fraction of particles up to particle size D
so 80 % Or less, and the refractory oxide powder contains silica.
90wt % Or more, the flame spray repair material has the following formula
(2) Characterized by being used under flame spraying conditions that satisfy
ToRefractoryforFlame spray repairmaterial.Record D (μ m ) = 4.5 × Ten -Four × (T f -T m ) × L ……………………………… (1) here, T f (℃) = 1150 × [Propane gas flow rate (Nm 3 / h) ] 1/4 T m (℃) = melting point of refractory oxide powder L ( mm ) = Flame from the spray nozzle tip of flame spray repair material
Distance to furnace wall for thermal spray repair [Oxygen flow rate (Nm 3 / h) ] / [Propane gas flow rate (Nm 3 / h) ] = 8 ~ 12 ...... (2)
【請求項4】火性酸化物粉体100 重量部に対して、
易被酸化性粉体 11 67 重量部配合されてなる請求項3
記載の耐火物用火炎溶射補修材料
Against 4. Resistance to fire resistant oxide powder 100 parts by weight,
Easily oxidizable powder, which are 11 to 67 parts by weight blended claim 3
Flame spray repair material for the refractory described .
JP24343096A 1996-09-13 1996-09-13 Flame spray repair method for refractories and flame spray repair material for refractories Expired - Fee Related JP3518194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24343096A JP3518194B2 (en) 1996-09-13 1996-09-13 Flame spray repair method for refractories and flame spray repair material for refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24343096A JP3518194B2 (en) 1996-09-13 1996-09-13 Flame spray repair method for refractories and flame spray repair material for refractories

Publications (2)

Publication Number Publication Date
JPH1089854A JPH1089854A (en) 1998-04-10
JP3518194B2 true JP3518194B2 (en) 2004-04-12

Family

ID=17103764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24343096A Expired - Fee Related JP3518194B2 (en) 1996-09-13 1996-09-13 Flame spray repair method for refractories and flame spray repair material for refractories

Country Status (1)

Country Link
JP (1) JP3518194B2 (en)

Also Published As

Publication number Publication date
JPH1089854A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
TWI393696B (en) Refractory
US5411997A (en) Mud material used for iron tap hole in blast furnace
Goto et al. Progress and perspective of refractory technology
JP3518194B2 (en) Flame spray repair method for refractories and flame spray repair material for refractories
JP3174179B2 (en) Thermal spray material
JP3551604B2 (en) Flame spraying method
JP2006098029A (en) Thermal spray material for repairing industrial furnace
JPS5848510B2 (en) Hot repair material for fireproof structures
JP4144638B2 (en) Furnace wall repair method
JP3370544B2 (en) Flame spray repair method
JP3911716B2 (en) Thermal spraying repair layer of furnace wall and repair method
JP2827375B2 (en) Coating method for kiln interior
KR100196061B1 (en) Improvements in or relating to ceramic welding
JPS6158867A (en) Flame spray material for furnace wall maintenance
JP3716536B2 (en) Flame spray repair method
JP4960574B2 (en) Refractory used for continuous casting nozzles to prevent alumina adhesion
JPH09132470A (en) Thermal spraying repairing material
JPH08210783A (en) Flame spraying repairing material and flame spraying repairing method
JP3513963B2 (en) Flame spray repair material
JP2885630B2 (en) Flame spray material
JPS63285168A (en) Carbon containing refractories
JPH10194854A (en) Refractory thermal spraying material using metallic powder as heat source
JP3874216B2 (en) Flame spraying material
JPS6053273B2 (en) Flame spraying repair method for a furnace
JPH05330931A (en) Thermal spraying repairing material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees