JP3517968B2 - Insulating web static elimination method and web manufacturing method - Google Patents

Insulating web static elimination method and web manufacturing method

Info

Publication number
JP3517968B2
JP3517968B2 JP19438194A JP19438194A JP3517968B2 JP 3517968 B2 JP3517968 B2 JP 3517968B2 JP 19438194 A JP19438194 A JP 19438194A JP 19438194 A JP19438194 A JP 19438194A JP 3517968 B2 JP3517968 B2 JP 3517968B2
Authority
JP
Japan
Prior art keywords
electrode
insulating web
charge
static elimination
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19438194A
Other languages
Japanese (ja)
Other versions
JPH0864384A (en
Inventor
向岡 季
潤 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP19438194A priority Critical patent/JP3517968B2/en
Publication of JPH0864384A publication Critical patent/JPH0864384A/en
Application granted granted Critical
Publication of JP3517968B2 publication Critical patent/JP3517968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチックフィルム
や織物の絶縁性ウエブの除電方法およびこの除電方法を
用いる絶縁性ウエブの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of neutralizing an insulating web of a plastic film or a woven fabric, and a method of manufacturing an insulating web using this static elimination method.

【0002】[0002]

【従来の技術】ウエブ上の静電荷はウエブの被膜を破損
させるという製品の品質に係わる問題を生じる。たとえ
ば写真産業では写真被膜材を任意帯電ウエブに施した場
合著しく非均質な被膜分布を生じる。また、コンデンサ
用および包装用蒸着フィルムの生産工程では、ベースフ
ィルムの静電気帯電によって蒸着不良や膜ぬけなどが生
じる場合がある。
BACKGROUND OF THE INVENTION Electrostatic charges on a web cause product quality problems that damage the web coating. For example, in the photographic industry, the application of photographic coatings to arbitrarily charged webs results in a significantly non-uniform coating distribution. Further, in the production process of vapor deposition films for capacitors and packaging, vapor deposition defects or film removal may occur due to electrostatic charging of the base film.

【0003】そこで、ウエブの帯電に伴う問題を解決す
るため、従来から、アースされた細いブラシ状の導電物
を除電対象である絶縁性ウエブに接近させ、ブラシ先端
でコロナ放電を発生させて除電する自己放電式除電器
や、針状電極に商用周波数の高電圧や直流高電圧を印加
してコロナ放電を発生させて除電する電圧印加式除電器
が使用されていた。
Therefore, in order to solve the problem associated with the charging of the web, conventionally, a grounded thin brush-shaped conductive material is brought close to the insulating web which is the target of static elimination, and corona discharge is generated at the tip of the brush to eliminate static electricity. A self-discharge type static eliminator, or a voltage application type static eliminator that applies a high voltage of a commercial frequency or a high DC voltage to a needle-shaped electrode to generate corona discharge and eliminate static electricity has been used.

【0004】コロナ放電を利用した従来の除電器の除電
原理は、電極におけるコロナ放電によって正、負のイオ
ンを発生させ、帯電体が持つ静電荷の極性と逆極性のイ
オンを帯電体の電界で引き寄せて、帯電体の静電気を中
和するというものである。
The principle of static elimination of a conventional static eliminator utilizing corona discharge is that positive and negative ions are generated by corona discharge at an electrode, and ions having a polarity opposite to the electrostatic charge of the charged body are generated in the electric field of the charged body. It attracts and neutralizes the static electricity of the charged body.

【0005】しかし、写真フィルムやコンデンサ用フィ
ルムに使用されるポリエステルベース材、ポリプロピレ
ンベース材等は、表面固有抵抗が高いため強度及び極性
が異なる比較的高い電荷密度の表面帯電電荷が互いに接
近するウエブ領域(たとえば、細かいピッチで生じる
正、負の繰り返し両極性パターン)を有する場合があ
る。このような場合、電気力線が上記の極性の異なる表
面帯電部位のなかで閉じてしまうため、帯電体から少し
離れた位置では電界が非常に弱く、必要なイオンを引き
寄せることができない。また、絶縁性ウエブの走行中に
おいて絶縁性ウエブの表面では細かい正負の帯電痕によ
る強い交番電界が存在するため、イオン粒子は強制振動
をさせられウエブ表面に達することができず、上記帯電
部位の電荷を中和することができない。
However, polyester base materials, polypropylene base materials and the like used for photographic films and films for capacitors have high surface resistivity, and therefore, webs in which surface charged charges having relatively high charge densities different in strength and polarity come close to each other. There may be regions (eg, positive and negative repeating bipolar patterns that occur at fine pitches). In such a case, the lines of electric force are closed in the surface-charged parts having different polarities, so that the electric field is very weak at a position slightly away from the charged body, and necessary ions cannot be attracted. Further, since a strong alternating electric field due to fine positive and negative electrification marks exists on the surface of the insulating web during traveling of the insulating web, the ionic particles are forced to vibrate and cannot reach the web surface. The charge cannot be neutralized.

【0006】このような細かい帯電パターンに対する除
電技術として、米国特許第3,730,753号明細書
に記載された方法が知られている。
A method described in US Pat. No. 3,730,753 is known as a static elimination technique for such a fine charging pattern.

【0007】図2はこの除電方法に用いられる装置構成
を示す図である。この除電方法では、まず1つの接地導
電性ローラ21に密着している絶縁性ウエブ20に対し
て、負(または正)の直流電圧24が印加されている第
1組の電極22と23とにより負(または正)電荷を供
給する。次に、絶縁性ウエブ20を接地導電性ローラ2
1に密着させたまま第1組と逆極性の直流電圧が印加さ
れている第2組の電極25と26とにより第1組の場合
と逆極性の電荷を絶縁性ウエブに供給し、第1組の電極
22、23による電荷をほぼ中和する。ただし、残余の
電荷を除去する必要からさらに第3の接地電極28が設
けられている。
FIG. 2 is a diagram showing the structure of an apparatus used in this static elimination method. In this static elimination method, first, the insulating web 20 that is in close contact with one grounded conductive roller 21 is applied to the first set of electrodes 22 and 23 to which a negative (or positive) DC voltage 24 is applied. Supply negative (or positive) charge. Next, the insulating web 20 is grounded to the conductive roller 2
The second set of electrodes 25 and 26, to which a direct current voltage having a polarity opposite to that of the first set is applied while being in close contact with the first set, supplies electric charges having a polarity opposite to that of the first set to the insulating web. The charges due to the pair of electrodes 22 and 23 are almost neutralized. However, the third ground electrode 28 is further provided because it is necessary to remove the remaining charges.

【0008】ところが、この除電方法では、さらに除電
後の絶縁性ウエブ20の均一な帯電を除去するために対
向ローラ31、電位プローブ32および静電電位計33
を用いて絶縁性ウエブ表面の電位を測定し、その結果が
0Vとなるように上記2組の電極への印加電圧を調整し
なければならなかった。
However, in this static elimination method, in order to further remove the uniform charge of the insulating web 20 after static elimination, the facing roller 31, the potential probe 32 and the electrostatic potentiometer 33 are used.
Was used to measure the potential of the surface of the insulating web, and the voltage applied to the above two sets of electrodes had to be adjusted so that the result was 0V.

【0009】これは、第2組の電極25、26が絶縁性
ウエブ20が接地導電性ローラ21に密着した状態で電
荷を供給するためである。この状態では絶縁性ウエブ2
0の表面と接地導電性ローラ21との間の静電容量が大
きいため、第2組の電極25、26から供給される電荷
に過不足があると、この過不足分がそのまま絶縁性ウエ
ブ20の表面に残ってしまうからである。したがって、
第2組の電極25、26から供給される電荷の量は、除
電後の電位を確認しながら厳密に調整しなければならな
かった。
This is because the second set of electrodes 25, 26 supplies electric charges in a state where the insulating web 20 is in close contact with the ground conductive roller 21. In this state, the insulating web 2
Since the electrostatic capacitance between the surface of No. 0 and the grounded conductive roller 21 is large, if there is an excess or deficiency in the charges supplied from the electrodes 25, 26 of the second set, this excess or deficiency will be used as it is. It will remain on the surface of. Therefore,
The amount of charge supplied from the electrodes 25 and 26 of the second set had to be strictly adjusted while confirming the potential after static elimination.

【0010】また、絶縁性ウエブが第1組の電極により
電荷を与えられる前の帯電量によっても、第2組の電極
に印加すべき電圧が異なるという問題もあった。
There is also a problem that the voltage to be applied to the electrodes of the second set is different depending on the charge amount of the insulating web before being charged by the electrodes of the first set.

【0011】このように、上記の従来の絶縁性ウエブの
除電方法は、本質的に、第2組の電極に印加すべき電圧
を調整しなければならない除電原理によっており、除電
後に絶縁性ウエブの帯電状況を測定しなければならなか
った。しかも、さらに接地された第3の電極が必要であ
り、非常に複雑な構成の設備を必要とした。
As described above, the conventional static elimination method for the insulating web is essentially based on the static elimination principle in which the voltage to be applied to the electrodes of the second set must be adjusted. The charging situation had to be measured. Moreover, a third electrode, which is further grounded, is required, and equipment having a very complicated structure is required.

【0012】また、多数の電極を用いるために、除電の
空間的な不均一性が発生しやすいという問題点も避けら
れなかった。
Further, since a large number of electrodes are used, there is an unavoidable problem in that spatial nonuniformity of static elimination tends to occur.

【0013】また、同様の除電方法として、特開昭60
−95899号公報に開示されている方法が知られてい
るが、上記の従来の技術と同様の問題点を有していた。
A similar static elimination method is disclosed in JP-A-60
Although the method disclosed in Japanese Patent Laid-Open No. -95899 is known, it has the same problems as the above-mentioned conventional technique.

【0014】これらの除電方法では、絶縁性ウエブ表面
の細かいピッチの両極性帯電や微小な放電痕を効率良
く、安価な設備で除去することは困難であった。
According to these static elimination methods, it was difficult to remove bipolar charging and fine discharge marks of fine pitch on the surface of the insulating web efficiently and with inexpensive equipment.

【0015】また、かかる除電方法で除電されて製造さ
れた絶縁性ウエブは、除電が必ずしも完全に行なわれて
いないため不均一な帯電が残っていたり、不適切な除電
により発生した放電痕が残っている場合が少なくなかっ
た。したがって、かかる絶縁性ウエブを加工して製造さ
れた各種製品は品質が不均一になりがちであった。ま
た、上記のような複雑な設備を要する除電方法を用いる
ため、ウエブの製造コストが高かった。
In addition, the insulating web produced by removing the static electricity by the static eliminating method does not always completely eliminate the static electricity, so that uneven charging remains or a discharge mark generated by improper static elimination remains. There were a lot of cases. Therefore, the quality of various products manufactured by processing such an insulating web tends to be non-uniform. Further, since the static elimination method that requires the complicated equipment as described above is used, the manufacturing cost of the web is high.

【0016】[0016]

【発明が解決しようとする課題】本発明の第1の目的
は、上記の問題を解決し、絶縁性ウエブ表面の細かいピ
ッチの両極性帯電や微小な放電痕までも効果的に、電極
電圧の厳密な制御などを必要とせず、安価な設備で除去
できる絶縁性ウエブの除電方法を提供することにある。
SUMMARY OF THE INVENTION A first object of the present invention is to solve the above-mentioned problems and to effectively apply even a minute pitch of bipolar charging or a minute discharge mark on the surface of an insulating web to effectively reduce the electrode voltage. An object of the present invention is to provide a method for removing static electricity from an insulating web that does not require strict control and can be removed with inexpensive equipment.

【0017】また、本発明の第2の目的は、絶縁性ウエ
ブ表面の細かいピッチの両極性帯電や微小な放電痕を有
しない無帯電のウエブを、効率良く、安価な設備で製造
する方法を提供することにある。
A second object of the present invention is to provide a method for efficiently producing an uncharged web having neither fine-pitch bipolar charging nor fine discharge marks on the surface of an insulating web with an inexpensive equipment. To provide.

【0018】また、本発明の第3の目的は、絶縁性ウエ
ブ表面の細かいピッチの両極性帯電や微小な放電痕を有
しない無帯電の絶縁性ウエブを加工し、均一な品質のウ
エブを安価に製造する方法を提供することにある。
A third object of the present invention is to process an uncharged insulating web having no fine pitch bipolar charge or minute discharge marks on the surface of the insulating web, and to obtain a uniform quality web at a low cost. To provide a manufacturing method.

【0019】[0019]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の骨子は以下の通りである。
The essence of the present invention for achieving the above object is as follows.

【0020】本発明の絶縁性ウエブの除電方法は、絶縁
性ウエブの被除電部位を充電電極と対向する接地導電性
ローラの部位に密着させ、該充電電極に直流電圧を印加
して該被除電部位表面に電荷を供給し、前記接地導電性
ローラを回転させながら該被除電部位を前記接地導電性
ローラ面より剥離せしめ、前記絶縁性ウエブ面に対して
前記充電電極と同一の側に設けた除電電極により前記被
除電部位の電荷を除去し、前記被除電部位を無帯電にす
ることを特徴としている。
According to the method of eliminating static electricity of an insulating web of the present invention, the portion of the insulating web to be neutralized is brought into close contact with the portion of the grounding conductive roller facing the charging electrode, and a DC voltage is applied to the charging electrode to eliminate the static electricity. A charge is supplied to the surface of the portion, and the portion to be discharged is separated from the surface of the grounding conductive roller while rotating the grounding conductive roller, and is provided on the same side as the charging electrode with respect to the insulating web surface. It is characterized in that the charge-removing electrode removes electric charges from the charge-removed portion, and the charge-removed portion is made uncharged.

【0021】また、本発明の絶縁性ウエブの除電方法の
好ましい態様は、前記充電電極により前記絶縁性ウエブ
の前記被除電部位表面に供給される電荷の電荷密度σ
(μC/m2 )が、 3≦σ<50 の関係を満たすように前記充電電極に直流電圧を印加す
るとともに、前記除電電極と前記接地導電性ローラ面と
を結ぶ最短経路上で測定したときの前記絶縁性ウエブと
前記接地導電性ローラ面との距離d3 (mm)および前
記電荷密度σ(μC/m2 )が、 25/σ≦d3 <100.05×(50-σ)+0.0006×(50-σ)
×(50-σ) の関係を満たすように前記除電電極を配置することを特
徴としている。
In a preferred embodiment of the method for neutralizing an insulating web of the present invention, the charge density σ of the electric charge supplied to the surface of the portion to be neutralized of the insulating web by the charging electrode.
When a direct current voltage is applied to the charging electrode so that (μC / m 2 ) satisfies the relation of 3 ≦ σ <50, and the measurement is performed on the shortest path connecting the static elimination electrode and the grounded conductive roller surface. The distance d 3 (mm) between the insulating web and the grounded conductive roller surface and the charge density σ (μC / m 2 ) are 25 / σ ≦ d 3 <10 0.05 × (50-σ) +0.0006 × (50-σ)
It is characterized in that the static elimination electrodes are arranged so as to satisfy the relationship of × (50-σ).

【0022】また、本発明の絶縁性ウエブの除電方法の
好ましい態様は、前記除電電極に前記充電電極と反対の
極性の直流電圧を印加することを特徴としている。
A preferred embodiment of the method for neutralizing an insulating web of the present invention is characterized in that a DC voltage having a polarity opposite to that of the charging electrode is applied to the neutralizing electrode.

【0023】また、本発明の絶縁性ウエブの除電方法の
好ましい態様は、前記除電電極の前記充電電極の側また
はその反対側に前記除電電極から前記絶縁性ウエブの移
動方向に10mm以上かつ15mm以下だけ離れた位置
に陪設電極を設け、該陪設電極を接地することを特徴と
している。
In a preferred embodiment of the method for removing static electricity from an insulating web according to the present invention, 10 mm or more and 15 mm or less in the moving direction of the insulating web from the static eliminating electrode to the side of the charge electrode of the static eliminating electrode or the opposite side thereof. It is characterized in that the installation electrode is provided at a position separated by only and the installation electrode is grounded.

【0024】また、本発明の絶縁性ウエブの除電方法の
好ましい態様は、前記除電電極を接地することを特徴と
している。
Further, a preferred embodiment of the method for neutralizing the insulating web of the present invention is characterized in that the neutralization electrode is grounded.

【0025】また、本発明の絶縁性ウエブの除電方法の
好ましい態様は、前記除電電極として除電ブラシを使用
し、前記除電電極と前記絶縁性ウエブとの最短距離d2
を0.1mm以上かつ15mm以下とすることを特徴と
している。
In a preferred embodiment of the method for removing static electricity from an insulating web of the present invention, a static elimination brush is used as the static elimination electrode, and the shortest distance d 2 between the static elimination electrode and the insulating web is used.
Is 0.1 mm or more and 15 mm or less.

【0026】また、本発明の絶縁性ウエブの除電方法の
好ましい態様は、前記充電電極と前記絶縁性ウエブとの
最短距離d1 を10mm以上かつ25mm以下とするこ
とを特徴としている。
A preferred embodiment of the method for neutralizing the insulating web of the present invention is characterized in that the shortest distance d 1 between the charging electrode and the insulating web is 10 mm or more and 25 mm or less.

【0027】また、本発明の絶縁性ウエブの除電方法の
好ましい態様は、前記充電電極として針電極列またはワ
イヤ電極を使用することを特徴としている。
A preferred embodiment of the method for neutralizing the insulating web of the present invention is characterized in that a needle electrode array or a wire electrode is used as the charging electrode.

【0028】また、本発明の絶縁性ウエブの製造方法
は、上記の絶縁性ウエブの除電方法により絶縁性ウエブ
を除電し、無帯電のウエブを得ることを特徴としてい
る。
Further, the method for producing an insulating web according to the present invention is characterized in that the insulating web is destaticized by the above-mentioned method for destaticizing the insulating web to obtain an uncharged web.

【0029】また、本発明の絶縁性ウエブの製造方法の
別の態様は、上記の絶縁性ウエブの除電方法により絶縁
性ウエブを除電する工程と、除電後の該絶縁性ウエブを
加工してウエブを得る工程とからなることを特徴として
いる。
Another aspect of the method for producing an insulating web according to the present invention is the step of destaticizing the insulating web by the method for destaticizing the insulating web described above, and processing the insulating web after the destaticization to process the web. And a step of obtaining

【0030】[0030]

【作用】以下、図面を参照しながら本発明の絶縁性ウエ
ブの除電方法の一実施態様について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for neutralizing an insulating web of the present invention will be described in detail below with reference to the drawings.

【0031】図1は、本発明の絶縁性ウエブの除電方法
の一実施態様に用いる装置の構成を模式的に示したもの
である。図1において、正極性の直流電圧源5に接続さ
れた充電電極3が接地導電性ローラ2に対向して配置さ
れている。絶縁性ウエブ1が接地導電性ローラ2に充電
電極3と対向する部位でいったん密着し、すぐにこの部
位から剥離されて図示しない多数のローラにより図の左
方より右方に搬送されている。接地導電性ローラ2はこ
の絶縁性ウエブ1の移動にしたがって、図において時計
回りに回転している。絶縁性ウエブ1が接地導電性ロー
ラ2から剥離させられる部位から絶縁性ウエブ1の移動
方向に距離Lだけ離れ、絶縁性ウエブ1の面から距離d
2 だけ離れた位置に除電電極4が設けられている。この
除電電極4にはスイッチ7が接続されており、除電電極
4を接地したり、負極性の直流電圧源6に接続したりで
きるようになっている。また、除電電極4の充電電極3
側とその反対側に陪設電極8および9が設けられてい
る。
FIG. 1 schematically shows the construction of an apparatus used in one embodiment of the method for neutralizing an insulating web according to the present invention. In FIG. 1, a charging electrode 3 connected to a positive DC voltage source 5 is arranged to face the grounded conductive roller 2. The insulating web 1 is once brought into close contact with the grounded conductive roller 2 at a portion facing the charging electrode 3, is immediately peeled off from this portion, and is conveyed from the left side to the right side in the figure by a large number of rollers (not shown). The grounded conductive roller 2 rotates clockwise in the figure as the insulating web 1 moves. The insulating web 1 is separated from the grounded conductive roller 2 by a distance L in the moving direction of the insulating web 1 from a portion where it is separated from the ground conductive roller 2, and a distance d from the surface of the insulating web 1.
The static elimination electrode 4 is provided at a position separated by 2 . A switch 7 is connected to the static elimination electrode 4 so that the static elimination electrode 4 can be grounded or connected to a negative DC voltage source 6. In addition, the charging electrode 3 of the static elimination electrode 4
Overlaid electrodes 8 and 9 are provided on one side and on the opposite side.

【0032】次に、この装置により絶縁性ウエブ1の表
面を除電する手順について説明する。いま、図の左方に
おいて絶縁性ウエブ1の表面には、図示しない前工程の
加工の結果細かいピッチの両極性帯電や多数の微小な放
電痕による帯電が生じている。こうした帯電の発生した
絶縁性ウエブ1のある部位(被除電部位)が上述の搬送
により接地導電性ローラ2の表面に密着し、さらに接地
導電性ローラ2の回転にともなって充電電極3と対向す
る部位に至る。このときの、絶縁性ウエブ1表面と充電
電極3との距離はd1 である。充電電極3には数KVの
直流電圧源5が接続されており、接地導電性ローラ2と
の間の電位差により充電電極3の近傍に強い電界を発生
させる。そのためコロナ放電が充電電極3の近傍で発生
し、正の電荷が絶縁性ウエブ1の被除電部位に供給され
る。
Next, the procedure for removing the charge on the surface of the insulating web 1 by this apparatus will be described. Now, on the left side of the drawing, the surface of the insulating web 1 is charged with a bipolar charge having a fine pitch and a large number of minute discharge marks as a result of the processing in the previous step (not shown). A part of the charged electrically insulating web 1 (part to be discharged) is brought into close contact with the surface of the ground conductive roller 2 by the above-described conveyance, and further faces the charging electrode 3 as the ground conductive roller 2 rotates. To the part. At this time, the distance between the surface of the insulating web 1 and the charging electrode 3 is d 1 . A DC voltage source 5 of several KV is connected to the charging electrode 3, and a strong electric field is generated in the vicinity of the charging electrode 3 due to the potential difference between the charging electrode 3 and the ground conductive roller 2. Therefore, corona discharge is generated in the vicinity of the charging electrode 3, and positive charges are supplied to the charge-removed portion of the insulating web 1.

【0033】絶縁性ウエブ1は接地導電性ローラ2に密
着しているため、その表面と接地導電性ローラ2との間
の静電容量Cは非常に大きい。したがって、充電電極3
の近傍で発生した大量の正の電荷が絶縁性ウエブ1の表
面に堆積しても、この表面の電位Vはたとえば数10V
程度にしか上昇しない。これは、被除電部位の電荷量を
Qとすると、電位VがV=Q/Cで与えられるためであ
る。充電電極3の電位は数KVであるから、絶縁性ウエ
ブ1の厚さにほとんど関係なく、その表面の電位は無視
できる程度である。したがって、充電電極3の近傍で発
生した電荷はほとんどすべて絶縁性ウエブ1に充電され
る。このように充電電極により絶縁性ウエブ1の被除電
部位に供給される電荷を充電電荷と呼ぶ。
Since the insulating web 1 is in close contact with the grounded conductive roller 2, the electrostatic capacitance C between its surface and the grounded conductive roller 2 is very large. Therefore, the charging electrode 3
Even if a large amount of positive charges generated in the vicinity of is accumulated on the surface of the insulating web 1, the potential V on this surface is, for example, several tens of volts.
Only rises to the extent. This is because the potential V is given by V = Q / C, where Q is the charge amount of the portion to be discharged. Since the electric potential of the charging electrode 3 is several KV, the electric potential of its surface is negligible regardless of the thickness of the insulating web 1. Therefore, almost all the charges generated in the vicinity of the charging electrode 3 are charged in the insulating web 1. The electric charge supplied to the charge-removed portion of the insulating web 1 by the charging electrode in this manner is called a charge.

【0034】このようにして、絶縁性ウエブ1の被除電
部位の表面は大量の正の充電電荷により満たされる。と
ころで、前工程で発生した細かいピッチの両極性帯電や
多数の微小な放電痕による帯電電荷は、充電電極3によ
り与えられた大量の充電電荷よりも少ない。したがっ
て、この段階でこれらの微細な帯電は消滅し、結果とし
て被除電部位の表面はほぼ均一に正の充電電荷のみに満
たされた状態となる。
In this way, the surface of the portion to be discharged of the insulating web 1 is filled with a large amount of positive charge. By the way, the charged electric charges due to the bipolar charging with a fine pitch and a large number of minute discharge marks generated in the previous step are less than the large amount of charged electric charges given by the charging electrode 3. Therefore, at this stage, these minute charges disappear, and as a result, the surface of the portion to be discharged is almost uniformly filled with positive charges.

【0035】したがって、除電を完了するためには、こ
の均一に充電された正の電荷を除去すればよい。本発明
者らの知見によれば、このような電荷を効果的に除去す
るためには、接地導電性ローラ2に密着した状態よりも
このローラから剥離した状態で除電するのがよい。
Therefore, in order to complete the static elimination, it is sufficient to remove the uniformly charged positive charges. According to the knowledge of the present inventors, in order to effectively remove such electric charges, it is better to remove the electric charge in a state of being separated from the grounded conductive roller 2 rather than in a state of being in close contact with the grounded conductive roller 2.

【0036】そのために、つづいて接地導電性ローラ2
を図の時計回り方向に回転させ、絶縁性ウエブ1を接地
導電性ローラ2の表面から剥離させる。このように剥離
すると、絶縁性ウエブ1の被除電部位の表面は接地導電
性ローラ2の表面から離れるために、この表面と接地導
電性ローラ2の間の静電容量は急速に減少する。これ
は、静電容量Cが接地導電性ローラ2と被除電部位の表
面との間の距離に反比例するためである。ところが、充
電電極3によって与えられた正の電荷は依然として被除
電部位に残っている。同じ量の電荷が、より小さい静電
容量を接地導電性ローラ2すなわちアースとの間にもつ
部位に存在しているのであるから、接地導電性ローラ2
の表面から離れるにつれて、絶縁性ウエブ1の被除電部
位の電位は急速に上昇し、簡単に数KVに達する。
To this end, the grounded conductive roller 2 is then continued.
Is rotated in the clockwise direction in the figure to separate the insulating web 1 from the surface of the ground conductive roller 2. When peeled off in this manner, the surface of the portion to be discharged of the insulating web 1 is separated from the surface of the ground conductive roller 2, so that the electrostatic capacitance between this surface and the ground conductive roller 2 is rapidly reduced. This is because the capacitance C is inversely proportional to the distance between the grounded conductive roller 2 and the surface of the portion to be discharged. However, the positive charge provided by the charging electrode 3 still remains at the portion to be discharged. Since the same amount of electric charge exists in the portion having a smaller capacitance between the grounded conductive roller 2 and the ground, the grounded conductive roller 2
As the distance from the surface of the insulating web 1 increases, the potential of the charge-removed portion of the insulating web 1 rises rapidly and easily reaches several KV.

【0037】このように表面電位が数KVに達した状態
で絶縁性ウエブ1の被除電部位は除電電極4に接近す
る。除電電極4は接地されまたは負極性の直流電圧源6
に接続されているため、絶縁性ウエブ1の被除電部位と
除電電極4との間の電位差は非常に大きい。この大きな
電位差により除電電極4の近傍に強い電界が発生してコ
ロナ放電が生じ、ここで負の電荷が大量に発生する。発
生した負の電荷はさきに正に充電された絶縁性ウエブ1
の被除電部位に引き寄せられる。被除電部位の正の電荷
はこの負の電荷により中和され、被除電部位は除電され
る。このように、除電電極の近傍で発生する充電電荷と
逆極性の電荷を除電電荷と呼ぶ。なお、このように被除
電部位に除電電荷が到達するのは、除電電極4と絶縁性
ウエブ1との距離が最短になる位置よりもやや充電電極
3に近い位置からである。
In this manner, the portion to be neutralized of the insulating web 1 approaches the static elimination electrode 4 with the surface potential reaching several KV. The static elimination electrode 4 is grounded or has a negative polarity DC voltage source 6
Therefore, the potential difference between the portion to be neutralized of the insulating web 1 and the static elimination electrode 4 is very large. Due to this large potential difference, a strong electric field is generated in the vicinity of the static elimination electrode 4 and corona discharge is generated, where a large amount of negative charges are generated. The generated negative electric charge is the positively charged insulating web 1
Is attracted to the area to be discharged. The positive charge of the charge-removed portion is neutralized by this negative charge, and the charge-removed portion is discharged. In this way, the charge having the opposite polarity to the charge generated in the vicinity of the charge eliminating electrode is called the charge eliminating charge. It is to be noted that the charge to be discharged reaches the portion to be discharged in this way from a position slightly closer to the charging electrode 3 than a position where the distance between the discharge electrode 4 and the insulating web 1 is the shortest.

【0038】このとき、被除電部位には充電前に存在し
た細かいピッチの両極性帯電はもはや存在せず、被除電
部位の近傍では閉じた電気力線は存在しない。したがっ
て、被除電部位に充電されていた正の充電電荷はほとん
どすべて中和される。すなわち、絶縁性ウエブ1が接地
導電性ローラ2から剥離した状態では、上述の通り静電
容量が非常に小さいため、わずかの正の電荷が残ってい
ても高い電位となる。したがって、除電電極4から供給
される負の電荷を強く引き寄せるため、正の電荷は絶縁
性ウエブ1の被除電部位の表面にほとんど残されない。
逆にわずかでも過剰な負の電荷が供給されれば、被除電
部位の表面電位は負の高い電位となりうる。そうなれ
ば、負の電荷のさらなる供給はたちまち停止されるので
ある。
At this time, the fine-pitch bipolar charges that existed before the charging are no longer present in the portion to be discharged, and there are no closed lines of electric force in the vicinity of the portion to be discharged. Therefore, almost all the positive charge that has been charged in the portion to be discharged is neutralized. That is, in the state where the insulating web 1 is separated from the grounded conductive roller 2, the electrostatic capacity is very small as described above, so that the potential becomes high even if a small amount of positive charge remains. Therefore, since the negative charges supplied from the static elimination electrode 4 are strongly attracted, the positive charges are hardly left on the surface of the static elimination portion of the insulating web 1.
On the contrary, if a slight excess of negative charge is supplied, the surface potential of the charge-removed site can be a high negative potential. If so, the further supply of negative charges is immediately stopped.

【0039】すなわち、原理的に被除電部位の表面電荷
は0の近傍になるまで負の電荷が供給され、それ以上は
供給されることがない。言い換えると、被除電部位が前
工程でどのような帯電を与えられていても、また充電電
極3によりどのような量の正の電荷を充電されていて
も、最終的に帯電量が0の近傍となるように除電電極か
ら負の電荷が供給されるのである。したがって、本発明
の絶縁性ウエブの除電方法によれば、基本的に除電電極
の印加電圧や電流を制御したり調整したりする必要がな
い。
That is, in principle, the surface charge of the portion to be discharged is supplied with a negative charge until it becomes close to 0, and no more is supplied. In other words, no matter what kind of charge is applied to the charge-removed part in the previous step, and what amount of positive charge is charged by the charging electrode 3, finally the charge amount is near 0. Negative charges are supplied from the static elimination electrode so that Therefore, according to the method for neutralizing the insulating web of the present invention, basically it is not necessary to control or adjust the applied voltage or current to the static elimination electrode.

【0040】したがって、本発明において、絶縁性ウエ
ブ1が接地導電性ローラ2から剥離させられた位置にお
いて除電を行なわなければならない。もし、絶縁性ウエ
ブ1の被除電部位が接地導電性ローラ2に密着した状態
で除電すると、被除電部位と接地導電性ローラ2との間
の静電容量が大きいために、除電電極から供給される電
荷量を厳密に調整しなければならない。これは、除電電
極4から供給される負の電荷量がどのような量でも被除
電部位の電位があまり変化しないため、この負の電荷に
過不足があっても被除電部位がその電荷を受け入れてし
まうからである。これはちょうどはじめに被除電部位が
充電電極3により充電されるのに似ている。
Therefore, in the present invention, static electricity must be removed at the position where the insulating web 1 is separated from the ground conductive roller 2. If the charge-removed part of the insulating web 1 is in contact with the grounded conductive roller 2, the charge is removed from the charge-removed electrode because the electrostatic capacitance between the charge-removed part and the grounded conductive roller 2 is large. The amount of electric charge must be strictly adjusted. This is because even if the amount of negative charge supplied from the charge eliminating electrode 4 does not change much, the potential of the charge-removed part does not change so much even if the negative charge has an excess or deficiency. This is because it will end up. This is similar to the case where the portion to be discharged is first charged by the charging electrode 3.

【0041】なお、上記の説明では充電電極を正極性の
直流電圧源に、接地しない場合の除電電極を負極性の直
流電圧源に接続したが、それぞれ逆の極性の電圧源に接
続してもまったく同様の作用を果たす。
In the above description, the charging electrode is connected to the positive DC voltage source and the charge eliminating electrode when not grounded is connected to the negative DC voltage source. Exactly the same effect.

【0042】また、上述のように除電電極4は接地され
ていてもよく、充電電極3と逆極性の直流電圧源6に接
続されていてもよい。除電電極4が接地されている場合
は、除電電極4の近傍で電荷を発生させる源となる電界
は、絶縁性ウエブ1の被除電部位の充電電荷と除電電極
4との間の電位差のみによって発生する。したがって、
絶縁性ウエブ1の充電電荷密度が著しく不安定な場合
は、上記電界の強さも不安定となり、そのために除電電
荷の供給量が不安定となる場合もある。これに対し、除
電電極4に充電電極3と逆極性の直流電圧源6に接続す
ると、直流電圧源6の電圧が十分高ければ上記電界の最
低強度が保証され、除電電荷の供給が安定する。さら
に、陪設電極8、9を除電電極の前後に設け陪設電極
8、9を接地すると、除電電荷を発生させる源となる電
界は除電電極4と陪設電極8、9との間の電位差によっ
ても発生する。したがって、この場合は、除電電荷の供
給は絶縁性ウエブ1の被除電部位の充電状況にほとんど
影響されなくなる。また、陪設電極8、9の形状等によ
って除電電荷発生のために必要な除電電極4への印加電
圧を低減することもできる。したがって、除電の効果の
点では、除電電極には充電電極と逆極性の直流電圧源を
接続するのが好ましく、さらに陪設電極を設けてこれを
接地するのがさらに好ましい。ただし、絶縁性ウエブ1
の充電状況が安定しており除電電荷を十分発生させられ
る場合は、除電電極を接地するのが構造が簡単であり、
しかも追加の電源を要しないため好ましい。
As described above, the static elimination electrode 4 may be grounded or may be connected to the DC voltage source 6 having the opposite polarity to the charging electrode 3. When the static elimination electrode 4 is grounded, the electric field that is a source of generating electric charges in the vicinity of the static elimination electrode 4 is generated only by the potential difference between the static charge on the static elimination target portion of the insulating web 1 and the static elimination electrode 4. To do. Therefore,
When the charged charge density of the insulating web 1 is extremely unstable, the strength of the electric field is also unstable, which may result in an unstable supply amount of the static elimination charges. On the other hand, when the charge eliminating electrode 4 is connected to the DC voltage source 6 having a polarity opposite to that of the charging electrode 3, if the voltage of the DC voltage source 6 is sufficiently high, the minimum strength of the electric field is guaranteed and the supply of the charge eliminating charge is stabilized. Further, when the built-in electrodes 8 and 9 are provided before and after the static elimination electrodes, and the grounded electrodes 8 and 9 are grounded, the electric field that is the source of generating the static charge is a potential difference between the static elimination electrode 4 and the static electrodes 8 and 9. It is also caused by. Therefore, in this case, the supply of the static elimination charges is hardly affected by the charging status of the static elimination target portion of the insulating web 1. Further, the voltage applied to the static elimination electrode 4 necessary for generating static elimination charges can be reduced by the shape of the built-in electrodes 8 and 9. Therefore, in terms of the effect of static elimination, it is preferable to connect a DC voltage source having a polarity opposite to that of the charging electrode to the static elimination electrode, and it is further preferable to provide a ground electrode and ground this. However, insulating web 1
If the charging status of is stable and sufficient charge can be generated, the structure of the static elimination electrode is simple to ground.
Moreover, no additional power source is required, which is preferable.

【0043】以下に、効果的に絶縁性ウエブの除電を行
なうための好ましい条件について詳述する。
Hereinafter, preferable conditions for effectively removing the electric charge from the insulating web will be described in detail.

【0044】本発明の絶縁性ウエブの除電方法の好まし
い態様においては、充電電極により絶縁性ウエブの被除
電部位表面に供給される電荷の充電電荷密度σ(μC/
2)が、 3≦σ<50(式1)の関係を満たすように
充電電極に直流電圧を印加する。この場合、除電電極と
接地導電性ローラ面とを結ぶ最短経路上で測定したとき
の絶縁性ウエブと接地導電性ローラ面との距離d3 (m
m)および充電電荷密度σ(μC/m2 )が、 25/
σ≦d3 <100.05×(50-σ)+0.0006×(50-σ) ×(50-
σ) (式2)の関係を満たすように除電電極を配置す
る。この条件を満たせば効果的に除電できる理由は以下
のとおりである。
In a preferred embodiment of the method of neutralizing the insulating web of the present invention, the charge density σ (μC / μC / of the charge supplied to the surface of the portion to be neutralized of the insulating web by the charging electrode).
A DC voltage is applied to the charging electrode so that m 2 ) satisfies the relationship of 3 ≦ σ <50 (formula 1). In this case, the distance d 3 (m between the insulating web and the grounded conductive roller surface when measured on the shortest path connecting the static elimination electrode and the grounded conductive roller surface.
m) and the charge density σ ( μ C / m 2 ) are 25 /
σ ≦ d 3 <10 0.05 × (50- σ ) +0.0006 × (50- σ ) × (50-
sigma) (placing neutralizing electrode to satisfy the relation of Equation 2). The reason why static electricity can be effectively removed if this condition is satisfied is as follows.

【0045】上述のように充電電極の近傍で発生する充
電電荷はほとんどすべて絶縁性ウエブの被除電部位に供
給される。また、被除電部位における充電電荷密度σは
充電電流密度I0 と絶縁性ウエブ1の移動速度vの関数
としてσ=I0 /vと表わすことができる。したがっ
て、充電電荷密度σが上述の条件を満たすようにする
と、充電電極の接地導電性ローラの軸方向の単位長さ当
たりの充電電流密度I0 (μA/m)と絶縁性ウエブ1
の移動速度v(m/sec)とは、 3≦I0 /v<50(μC/m2 ) (式3) の関係を満たすこととなる。本発明において充電電荷密
度σは、 σ=I0 /v (式4) に基づいて定めるものとする。
As described above, almost all the charged charges generated in the vicinity of the charging electrode are supplied to the portion to be discharged of the insulating web. Further, the charge charge density σ at the portion to be discharged can be expressed as σ = I 0 / v as a function of the charge current density I 0 and the moving speed v of the insulating web 1. Therefore, when the charged charge density σ satisfies the above condition, the charging current density I 0 (μA / m) per unit length in the axial direction of the grounding conductive roller of the charging electrode and the insulating web 1
Moving speed v (m / sec) of 3 satisfies the relation of 3 ≦ I 0 / v <50 (μC / m 2 ) (Equation 3). In the present invention, the charge charge density σ is determined based on σ = I 0 / v (Equation 4).

【0046】本発明者らの知見によると、本発明の絶縁
性ウエブの除電方法により効果的に除電するためには、
充電電荷密度σは基本的に高い方が除電効果が大きい。
すなわち、絶縁性ウエブの被除電部位における前工程に
よる帯電強度が高い場合にも、均一な除電を行なうこと
ができる。一方で、充電電荷密度σが高過ぎると、絶縁
性ウエブを接地導電性ローラから剥離することによる剥
離放電が発生して除電の効果が損なわれる恐れがある。
また、この剥離放電の発生は、充電電荷密度σととも
に、除電電極の位置によっても影響を受ける。したがっ
て、充電電荷密度σと除電電極の位置のパラメータ(上
述の距離d3 )の関係には好適な範囲が存在する。
According to the knowledge of the present inventors, in order to effectively eliminate static electricity by the static elimination method of the insulating web of the present invention,
Basically, the higher the charge density σ, the greater the static elimination effect.
That is, even if the charge strength in the previous step in the portion to be discharged of the insulating web is high, the charge can be uniformly discharged. On the other hand, if the charged charge density σ is too high, peeling discharge may occur due to peeling of the insulating web from the grounded conductive roller, and the effect of static elimination may be impaired.
Further, the occurrence of the peeling discharge is influenced by the position of the charge eliminating electrode as well as the charge charge density σ. Therefore, there is a suitable range for the relationship between the charge density σ and the parameter of the position of the static elimination electrode (the above-mentioned distance d 3 ).

【0047】まず、充電電極密度σの好ましい範囲の下
限は、3(μC/m2 )である。すなわち、充電電荷密
度σとして3(μC/m2 )以上を与えれば、細かいピ
ッチの両極性帯電や放電痕による帯電の影響を十分低減
できる程度に均一に絶縁性ウエブの被除電部位表面を充
電できるため好ましい。
First, the lower limit of the preferable range of the charging electrode density σ is 3 (μC / m 2 ). That is, if the charged charge density σ is 3 (μC / m 2 ) or more, the surface of the insulating web to be discharged is uniformly charged to such an extent that the effects of bipolar charging at a fine pitch and charging due to discharge marks can be sufficiently reduced. It is preferable because it is possible.

【0048】一方、与える充電電荷密度σが50(μC
/m2 )を超えなければ、除電電極を適切な位置に配置
することにより、絶縁性ウエブと接地導電性ローラの間
の剥離放電の発生を防止することができるため好まし
い。この剥離放電は、絶縁性ウエブの被除電部位と接地
導電性ローラとの間の電界に起因する放電現象であり、
このような剥離放電は除電電極により除電される前に被
除電部位の充電電荷を喪失し、しかも空間的に不均一に
発生するために除電電極による除電の効果を損なう。し
たがって、この剥離放電は回避するのが好ましい。
On the other hand, the supplied charge density σ is 50 (μC
/ M 2 ), it is preferable to dispose the static elimination electrode at an appropriate position because it is possible to prevent the occurrence of peeling discharge between the insulating web and the grounded conductive roller. This peeling discharge is a discharge phenomenon caused by an electric field between the portion to be discharged of the insulating web and the grounded conductive roller,
Such peeling discharge loses the charge stored in the charge-removed portion before the charge is removed by the charge-eliminating electrode, and is spatially non-uniform, thus impairing the effect of charge-eliminating by the charge-eliminating electrode. Therefore, it is preferable to avoid this peeling discharge.

【0049】つぎに、剥離放電を防止し得る除電電極の
配置と充電電荷密度σとの関係について説明する。
Next, the relationship between the arrangement of the charge-eliminating electrodes capable of preventing peeling discharge and the charged charge density σ will be described.

【0050】除電電極による除電電荷の供給は、除電電
極4と絶縁性ウエブ1との距離が最短になる位置から除
電電極と接地導電性ローラ面とを結ぶ最短経路および絶
縁性ウエブが交差する位置までの間で主として行なわれ
る。この除電電極と接地導電性ローラ面とを結ぶ最短経
路および絶縁性ウエブが交差する位置での電位Vは、こ
の位置に至った被除電部位と接地導電性ローラの表面と
の間の静電容量Cおよび充電電荷量QからV=Q/Cに
より与えられる。ここで充電電荷量Qは充電電荷密度σ
に比例する量であり、静電容量Cはこの位置の被除電部
位と接地導電性ローラ表面との間との距離に反比例する
量である。この距離は言い換えると、除電電極と接地導
電性ローラ面とを結ぶ最短経路上で測定したときの絶縁
性ウエブと接地導電性ローラ面との距離d3 である。
The charge is supplied by the charge-eliminating electrode from the position where the distance between the charge-eliminating electrode 4 and the insulating web 1 is shortest, to the position where the shortest path connecting the charge-eliminating electrode and the grounded conductive roller surface and the insulating web intersect. It is performed mainly until. The potential V at the position where the shortest path connecting the static elimination electrode and the grounded conductive roller surface and the insulating web intersect is the electrostatic capacitance between the static-eliminated portion reaching this position and the surface of the grounded conductive roller. It is given by V = Q / C from C and the amount of charge Q. Here, the charge charge amount Q is the charge charge density σ
The capacitance C is inversely proportional to the distance between the portion to be discharged at this position and the surface of the grounded conductive roller. In other words, this distance is the distance d 3 between the insulating web and the grounded conductive roller surface when measured on the shortest path connecting the static elimination electrode and the grounded conductive roller surface.

【0051】剥離放電の原因となる電界の源は、絶縁性
ウエブが接地導電性ローラから剥離させられる位置から
除電電極によって除電電荷が絶縁性ウエブに供給されて
充電電荷が中和され始める部位までの充電電荷である。
したがって、除電電極の位置はこの距離d3 によって規
定することができる。
The source of the electric field that causes the peeling discharge is from the position where the insulating web is peeled from the grounded conductive roller to the position where the discharging charge is supplied to the insulating web by the discharging electrode and the charge starts to be neutralized. Is the charging charge of.
Therefore, the position of the static elimination electrode can be defined by this distance d 3 .

【0052】本発明者らの知見によると、上記距離d3
(mm)および充電電荷密度σ(μC/m2 )が、 d3
<100.05×(50-σ)+0.0006×(50-σ) ×(50-σ
) (式5)の関係を満たすように除電電極を配置する
と、剥離放電に寄与する充電電荷が剥離放電を発生させ
る前に除電電極近傍で発生する除電電荷により中和され
る。したがって、式5の条件を満たすと、剥離放電はほ
とんど発生することがない。
According to the knowledge of the present inventors, the above distance d 3
(Mm) and charge density σ ( μ C / m 2 ) are d 3
<10 0.05 × (50- σ ) +0.0006 × (50- σ ) × (50- σ
) When the static elimination electrodes are arranged so as to satisfy the relationship of (Equation 5), the charged charges contributing to the stripping discharge are neutralized by the static elimination charges generated in the vicinity of the static elimination electrode before the stripping discharge is generated. Therefore, when the condition of Expression 5 is satisfied, the peeling discharge hardly occurs.

【0053】ところが、上記距離d3 を極端に小さく
し、除電電極を接地導電性ローラに近接した位置に配置
すると、絶縁性ウエブの被除電部位と接地導電性ローラ
表面との間の静電容量Cが十分小さくならないため、上
述したような本発明の除電方法の作用が十分得られなく
なる可能性がある。このような本発明の除電方法の作用
を損なわず、十分に除電の効果が得られる上記距離d3
の範囲は、 25/σ≦d3 (式6) の範囲である。すなわち、充電電荷密度σが大きい程、
上記距離d3 が小さくても十分な除電効果が得られる。
However, if the distance d 3 is made extremely small and the static elimination electrode is arranged in a position close to the grounded conductive roller, the electrostatic capacitance between the static-eliminated portion of the insulating web and the grounded conductive roller surface. Since C does not become sufficiently small, there is a possibility that the above-described action of the static elimination method of the present invention cannot be sufficiently obtained. The distance d 3 is sufficient to obtain the effect of static elimination without impairing the action of the static elimination method of the present invention.
The range is 25 / σ ≦ d 3 (Equation 6). That is, the larger the charge charge density σ,
Even if the distance d 3 is small, a sufficient charge eliminating effect can be obtained.

【0054】この条件は絶縁性ウエブの種類、厚さ、接
地導電性ローラの半径にほとんど影響されない。
This condition is hardly affected by the type and thickness of the insulating web and the radius of the grounding conductive roller.

【0055】以上をまとめると、充電電極により絶縁性
ウエブの被除電部位表面に供給される電荷の充電電荷密
度σ(μC/m2 )が、3≦σ<50の関係を満たすよ
うに充電電極に直流電圧を印加し、除電電極と接地導電
性ローラ面とを結ぶ最短経路上で測定したときの絶縁性
ウエブと接地導電性ローラ面との距離d3 (mm)およ
び充電電荷密度σ(μC/m2 )が、25/σ≦d3
100.05×(50-σ)+0.0006×(50-σ) ×(50-σ)の関係
を満たすように除電電極を配置することにより、本発明
の絶縁性ウエブの除電方法の作用を生かし、かつ、剥離
放電をほとんど発生させずに絶縁性ウエブを無帯電にす
ることができ、好ましい。なお、上記距離d3 の好まし
い範囲は、充電電荷密度σが3(μC/m2 )のとき
8.3〜4740mm、σが25(μC/m2 )のと
き、上記距離d3 の好ましい範囲は1〜42mm、σが
50(μC/m2 )のとき、上記距離d3 の好ましい範
囲は0.5〜1mm程度となる。したがって、充電電荷
密度σが高い程除電効果は大きいが、上記距離d3 の好
ましい範囲は狭くなる。σが50(μC/m2 )を超え
ると、上記距離d3 の条件が厳しくなり、剥離放電が発
生する可能性が高まる。したがって、剥離放電を発生さ
せずに、安定して除電するためには、充電電荷密度σは
50(μC/m2 )を超えないのが好ましい。
To summarize the above, the charging electrode has a charging charge density σ (μC / m 2 ) which is supplied to the surface of the insulating web to be discharged by the charging electrode so as to satisfy the relation of 3 ≦ σ <50. When a DC voltage is applied to the surface of the grounding conductive roller, the distance d 3 (mm) between the insulating web and the grounding conductive roller surface and the charge density σ ( μ C / m 2 ) is 25 / σ ≦ d 3 <
10 0.05 × (50- σ ) +0.0006 × (50- σ ) × (50- σ ) By arranging the static eliminator electrode so as to satisfy the relationship, the action of the static erasing method of the insulating web of the present invention is utilized, In addition, the insulating web can be made to be non-charged with almost no peeling discharge, which is preferable. The preferred range of the distance d 3 is 8.3 to 4740 mm when the charge density σ is 3 (μC / m 2 ), and the preferred range of the distance d 3 is σ is 25 (μC / m 2 ). Is 1 to 42 mm and σ is 50 (μC / m 2 ), the preferable range of the distance d 3 is about 0.5 to 1 mm. Therefore, the higher the charged charge density σ, the greater the static elimination effect, but the narrower the preferred range of the distance d 3 . When σ exceeds 50 (μC / m 2 ), the condition of the distance d 3 becomes strict and the possibility of peeling discharge increases. Therefore, it is preferable that the charged charge density σ does not exceed 50 (μC / m 2 ) in order to stably remove the electric charge without causing the peeling discharge.

【0056】また、除電電極に直流電圧源を接続する場
合に陪設電極を充電電極側またはその反対側に設けると
きは、陪設電極と除電電極の絶縁性ウエブの移動方向の
間隔を10mm以上かつ15mm以下とするのが好まし
い。本発明者らの知見によれば、この範囲において陪設
電極の除電電極近傍における放電の安定化効果が最も高
い。また、陪設電極は上記の一方の側に設けるだけでも
効果があるが、両方に設けるのがさらに好ましい。
When the direct current voltage source is connected to the static elimination electrode and the auxiliary electrode is provided on the charging electrode side or the opposite side, the distance between the horizontal direction and the insulating web of the static elimination electrode is 10 mm or more. And it is preferable that it is 15 mm or less. According to the knowledge of the present inventors, the effect of stabilizing the discharge in the vicinity of the static elimination electrode of the installed electrode is the highest in this range. Further, it is effective to provide the installed electrodes on one side of the above, but it is more preferred to provide them on both sides.

【0057】また、除電電極を接地する場合は、除電電
極を自己放電式除電器として動作させる。この場合は、
除電電極として細い導電性繊維を用いた除電ブラシを使
用し、除電電極と絶縁性ウエブとの最短距離d2 を0.
1mm以上かつ4mm以下とするのが好ましい。除電ブ
ラシとしては、たとえば、直径7〜15μm程度の炭素
繊維、金属繊維またはプラスチックの繊維に導電性物質
をコーティングしたものなどを100本以上束ねて1束
にして作られたブラシ等が好ましく用いられる。
When the static elimination electrode is grounded, the static elimination electrode is operated as a self-discharge type static eliminator. in this case,
A static elimination brush using thin conductive fibers was used as the static elimination electrode, and the shortest distance d 2 between the static elimination electrode and the insulating web was set to 0.
It is preferable that the distance is 1 mm or more and 4 mm or less. As the static elimination brush, for example, a brush made by bundling 100 or more carbon fibers, metal fibers or plastic fibers having a diameter of about 7 to 15 μm coated with a conductive substance into one bundle is preferably used. .

【0058】除電電極を接地する場合は、除電電極近傍
の電界の源となる電位差は絶縁性ウエブの被除電部位の
充電電荷とアースとの電位差である。上述したように、
この充電電荷の密度は不安定な場合もあり、除電電極に
充電電極と逆極性の直流電圧源を接続する場合に比べて
電位差が小さくなる場合が多い。したがって、確実に除
電電極近傍で除電電荷を発生させるためには除電電極と
絶縁性ウエブの被除電部位との最短距離d2 を15mm
以下とするのが好ましい。特に、充電電荷密度σを25
(μC/m2 )以上とする場合は、剥離放電を起こさな
いための上記距離d3 の好ましい上限値は42mm以下
となるが、この領域においては除電電極の近傍での絶縁
性ウエブの被除電部位の電位が比較的低くなる場合があ
り、除電を確実に行なうためには、上記距離d2 を4m
m以下とするのが好ましい。一方で、あまり両者を接近
させると、ウエブ走行の不安定さによって、除電電極と
絶縁性ウエブが接触する可能性が発生する。除電電極が
絶縁性ウエブに接触すると、除電の効果が絶縁性ウエブ
の被除電部位の内部で不均一になる場合がある。したが
って、好ましくは除電電極は絶縁性ウエブに接触しない
ように配置する。
When the static elimination electrode is grounded, the potential difference which is the source of the electric field in the vicinity of the static elimination electrode is the potential difference between the charged charge of the static elimination target portion of the insulating web and the ground. As mentioned above,
The density of the charged charges may be unstable, and the potential difference is often smaller than that in the case of connecting a DC voltage source having a polarity opposite to that of the charging electrode to the charge eliminating electrode. Therefore, in order to surely generate the charge for removing charge in the vicinity of the charge removing electrode, the shortest distance d 2 between the charge removing electrode and the charge-removed portion of the insulating web is 15 mm.
The following is preferable. In particular, charge charge density σ is 25
When it is (μC / m 2 ) or more, the preferable upper limit value of the distance d 3 for preventing peeling discharge is 42 mm or less, but in this region, the insulating web in the vicinity of the static elimination electrode is subjected to static elimination. The potential of the part may become relatively low. To ensure static elimination, the distance d 2 should be 4 m.
It is preferably m or less. On the other hand, if the two are too close to each other, the static elimination electrode may come into contact with the insulating web due to the instability of the web running. When the static elimination electrode comes into contact with the insulating web, the effect of static elimination may become uneven within the static-eliminated portion of the insulating web. Therefore, the static elimination electrode is preferably arranged so as not to come into contact with the insulating web.

【0059】また、充電電極の位置は絶縁性ウエブとの
最短距離d1 を10mm以上かつ25mm以下とするの
が好ましい。これにより、充電電極の近傍でコロナ放電
を確実に発生させ、かつ、この放電による電荷の発生の
空間的な不均一が絶縁性ウエブの被除電領域への充電に
影響を与えにくくすることができる。すなわち、直流コ
ロナにおいて、コロナ電流密度は、イオン移動度、およ
び電極間の電位差の二乗に比例し、コロナ放電電極との
距離に反比例している。絶縁性ウエブの被除電部位に大
量の充電電荷を与えるために、充電電極は絶縁性ウエブ
の近くに設置した方がよい。しかし、充電電極と絶縁性
ウエブとの距離が短い場合、コロナ放電の空間分布不均
一性の影響が大きくなりやすい。また充電電極と絶縁性
ウエブとの距離が短過ぎると、充電電極から絶縁性ウエ
ブ表面へのストリーマ放電が発生しやすくなる。ストリ
ーマ放電は間欠的な強い放電であり、その進展に伴って
mAオーダのパルス電流が流れ、絶縁性ウエブ表面に樹
枝状または羽状の電荷パターンを与える場合がある。か
かるストリーマ放電は絶縁性ウエブの被除電領域への充
電に好ましくない影響を与える。したがって、実用上十
分に空間的に均一な充電電極近傍のコロナ放電を安定に
発生させるためには、上記条件を満たすのが好ましい。
The position of the charging electrode is preferably such that the shortest distance d 1 from the insulating web is 10 mm or more and 25 mm or less. As a result, corona discharge can be reliably generated in the vicinity of the charging electrode, and the spatial nonuniformity of the generation of charges due to this discharge can be less likely to affect the charging of the charge-removed region of the insulating web. . That is, in the DC corona, the corona current density is proportional to the ion mobility and the square of the potential difference between the electrodes, and is inversely proportional to the distance from the corona discharge electrode. In order to apply a large amount of charge to the portion of the insulating web to be discharged, it is preferable that the charging electrode be installed near the insulating web. However, when the distance between the charging electrode and the insulating web is short, the influence of the non-uniformity of the spatial distribution of corona discharge tends to be large. If the distance between the charging electrode and the insulating web is too short, streamer discharge from the charging electrode to the surface of the insulating web is likely to occur. The streamer discharge is a strong intermittent discharge, and a pulse current of the order of mA flows along with its progress, which may give a dendritic or wing-like charge pattern on the surface of the insulating web. Such streamer discharge has an unfavorable effect on the charging of the charge-removed region of the insulating web. Therefore, in order to stably generate the corona discharge near the charging electrode, which is sufficiently spatially uniform in practical use, it is preferable to satisfy the above condition.

【0060】また、充電電極としては、針電極列または
ワイヤ電極を使用するのが好ましい。これは、上述の通
り充電電極近傍のコロナ放電が空間的に均一であるのが
好ましく、上記のような電極が均一なコロナ放電を発生
させるのに好適なためである。また、本発明者らの知見
によれば、充電電極として針電極列を用いる場合は放電
電極針を1〜10mmの一定ピッチで配列した針状電極
列が好ましく、ワイヤ電極を用いる場合は、直径0.0
5〜0.2mmのコロナワイヤを張り渡したワイヤ電極
を用いるのが好ましい。また、充電電極として細い導電
性繊維を有する除電ブラシを使用すると、ウエブへの充
電電荷の不均一性をもたらす場合がある。
Further, it is preferable to use a needle electrode array or a wire electrode as the charging electrode. This is because, as described above, it is preferable that the corona discharge in the vicinity of the charging electrode is spatially uniform, and the electrode as described above is suitable for generating the uniform corona discharge. Further, according to the knowledge of the present inventors, a needle-shaped electrode array in which discharge electrode needles are arranged at a constant pitch of 1 to 10 mm is preferable when a needle electrode array is used as a charging electrode, and a diameter is used when a wire electrode is used. 0.0
It is preferable to use a wire electrode stretched with a corona wire of 5 to 0.2 mm. Further, when a charge eliminating brush having thin conductive fibers is used as the charging electrode, the charge charged on the web may be non-uniform.

【0061】次に、上記のような本発明の絶縁性ウエブ
の除電方法を用いて、絶縁性ウエブを製造する方法につ
いて説明する。
Next, a method for producing an insulating web by using the above-described method for neutralizing the insulating web of the present invention will be described.

【0062】上述のように、本発明の絶縁性ウエブの除
電方法を用いて無帯電の絶縁性ウエブを製造する場合
は、たとえば、絶縁性ウエブの製造工程中のウエブの搬
送ローラに導電性のものを用い、これを接地し、この近
傍に上述のような充電電極や除電電極を設けることが好
ましく行なわれる。この場合は、絶縁性ウエブの製造工
程の設備を、除電と兼用するため安価な設備で除電が実
現する。ウエブを巻き取る前に除電するのが特に効果的
である。また、前工程において、絶縁性ウエブにコロナ
放電活性化処理などの放電処理を施す場合は、絶縁性ウ
エブの処理面に対向して充電電極および除電電極を設置
するのが好ましい。これにより放電処理に伴う絶縁性ウ
エブの様々な帯電を効果的に除去し、細かいピッチの両
極性帯電や微小な放電痕を有しない無帯電のウエブを製
造することができる。
As described above, when a non-charged insulating web is manufactured by using the method of removing static electricity of the insulating web of the present invention, for example, a conductive roller is used for the web conveying roller during the manufacturing process of the insulating web. It is preferable to use a material that is grounded and that is provided with the charging electrode and the discharging electrode in the vicinity thereof as described above. In this case, since the facility of the insulating web manufacturing process is also used for the static elimination, the static elimination can be realized with the inexpensive facility. It is especially effective to eliminate the static electricity before winding the web. Further, in the previous step, when the insulating web is subjected to a discharge treatment such as a corona discharge activation treatment, it is preferable to install the charging electrode and the static elimination electrode so as to face the treated surface of the insulating web. As a result, it is possible to effectively remove various charges of the insulating web that accompany the discharge treatment, and to manufacture an uncharged web that does not have bipolar charges of fine pitch or minute discharge marks.

【0063】また、このようにして製造したウエブは表
面に帯電がほとんどないため、これに種々の加工をさら
に施す場合に、均一で安定した品質のウエブを製造する
ことができる。このような効果を得られる絶縁性ウエブ
の除電後に施す加工処理としては、スリット、各種絶縁
性もしくは導電性コーティング、金属もしくは誘電体の
蒸着、印刷、積層等の加工が好ましく用いられる。これ
らの加工処理は、いずれも処理の前のウエブが帯電して
いると(特に帯電が不均一であると)上記処理の結果
(品質)が大きな影響を受ける場合が多い。そのため、
上述したような除電方法で効果的に除電されていること
により、完成した製品は均一な品質を有するものとな
る。本発明によれば除電を安価な設備で効果的に行なう
ので、製造コストが低くかつ品質の高いウエブを得るこ
とができる。
Further, since the web thus produced has almost no surface charge, it is possible to produce a web of uniform and stable quality when the web is further subjected to various processes. As a processing treatment to be performed after static elimination of the insulating web which can obtain such an effect, processing such as slitting, various insulating or conductive coatings, vapor deposition of metal or dielectric, printing, lamination and the like are preferably used. In each of these processing treatments, the result (quality) of the above treatment is often greatly affected when the web before the treatment is charged (especially when the charging is uneven). for that reason,
By effectively removing the electricity by the above-described electricity removing method, the finished product has a uniform quality. According to the present invention, since static elimination is effectively performed with inexpensive equipment, it is possible to obtain a web with low manufacturing cost and high quality.

【0064】本発明において、直流電圧とは、正または
負の電位が保たれており、動作中に正から負または負か
ら正へと極性が時間的に入れ替わることのない電圧を指
し、交流成分が含まれているとしても、その交流成分が
周波数0の成分に対して十分小さく、交流成分が放電状
態に影響を及ぼすことのない程度であるものを指す。ま
た、本発明の除電方法において直流電圧の代わりに周波
数が10Hz以下の略矩形波交流電圧を使用しても原理
的に問題はなく、本発明においては直流電圧の一種とし
て扱う。
In the present invention, the DC voltage refers to a voltage in which a positive or negative potential is maintained and the polarity of which does not change temporally from positive to negative or from negative to positive during operation. , The AC component is sufficiently smaller than the frequency 0 component, and the AC component does not affect the discharge state. Further, in the static elimination method of the present invention, there is no problem in principle even if a substantially rectangular wave AC voltage having a frequency of 10 Hz or less is used in place of the DC voltage, and in the present invention, it is treated as a kind of DC voltage.

【0065】本発明において、絶縁性ウエブとは、表面
抵抗率が1013Ω/スクエアに等しいかそれよりも大き
い表面抵抗率を有する材料を意味する。ウエブとしては
プラスチックフィルムや織物、紙などの繊維状物からな
るウエブ、紙など上記条件を満たすあらゆるウエブ状物
が好ましく用いられる。
In the present invention, an insulating web means a material having a surface resistivity equal to or higher than 10 13 Ω / square. As the web, any web-like material satisfying the above conditions, such as a web made of a fibrous material such as a plastic film, a woven fabric or paper, or paper, is preferably used.

【0066】本発明において、接地するとは、大地に接
地する場合に限らず、除電に使用する電極系の共通の電
位に導電性物体を電気的に接続することを指す。また、
充電や除電の放電過程に影響のない程度の直流あるいは
交流のオフセット電圧を有する物体に接続する場合も、
本発明においては接地するものとして扱う。
In the present invention, grounding means not only grounding to the ground but also electrically connecting a conductive object to a common potential of an electrode system used for static elimination. Also,
When connecting to an object that has a DC or AC offset voltage that does not affect the discharging process of charging or discharging,
In the present invention, it is treated as being grounded.

【0067】本発明において、無帯電にするとは、絶縁
性ウエブの帯電電荷密度を実用上無視できる程度に低下
させることを指す。
In the present invention, the term "no charge" means to reduce the charged charge density of the insulating web to a level that can be practically ignored.

【0068】[0068]

【実施例】【Example】

実施例1 図1に示す構成の電極系を有する除電装置を製造し、こ
れを用いて絶縁性ウエブを除電した。
Example 1 A static eliminator having an electrode system having the structure shown in FIG. 1 was manufactured, and the insulating web was neutralized using the static eliminator.

【0069】絶縁性ウエブ1としては、厚さ7μm、幅
200mmのポリプロピレンフィルムを使用した。この
フィルムはコロナ放電処理されており、図3に示す細か
い帯電電荷パターンを持っていた。
As the insulating web 1, a polypropylene film having a thickness of 7 μm and a width of 200 mm was used. This film was corona discharge treated and had the fine charge pattern shown in FIG.

【0070】図1の電極系において、接地導電性ローラ
2として表面にクロムメッキを施した半径100mm、
軸方向の幅220mmの金属ローラを用いた。充電電極
3としては直径0.1mm、長さ240mmのタングス
テンワイヤを使用し、除電電極4として直径7μmの炭
素繊維を100本以上束ねた除電ブラシを使用した。充
電電極3への印加電圧は正極性であり、除電電極4を接
地した。上記定義に基づく距離のパラメータをd1 =1
8mm、d2 =15mm、d3 =41mmとし、ウエブ
の移動速度vを1m/secとした。
In the electrode system of FIG. 1, the ground conductive roller 2 has a radius of 100 mm with its surface plated with chrome,
A metal roller having a width of 220 mm in the axial direction was used. As the charging electrode 3, a tungsten wire having a diameter of 0.1 mm and a length of 240 mm was used, and as the static elimination electrode 4, a static elimination brush in which 100 or more carbon fibers having a diameter of 7 μm were bundled was used. The voltage applied to the charging electrode 3 was positive, and the charge eliminating electrode 4 was grounded. The distance parameter based on the above definition is d 1 = 1
8 mm, d 2 = 15 mm, d 3 = 41 mm, and the moving speed v of the web was 1 m / sec.

【0071】充電電極3に表1に示した4通りの直流電
圧を印加した場合について、除電の効果を被除電部位に
トナーを振り掛けてその付着の様子により調べた。これ
らの直流電圧と充電電極の充電電流および絶縁性ウエブ
の充電電荷密度の関係は表1の通りである。ここで、放
電は絶縁性ウエブの幅200mm全幅のみで発生してお
り、充電電流I1 と充電電流密度I0 との関係はI0
1 /0.2(μA/m)で求められる。また、充電電
荷密度σは式4により求められる。
When four kinds of DC voltage shown in Table 1 were applied to the charging electrode 3, the effect of static elimination was examined by sprinkling the toner on the static elimination target area and the adhesion state. Table 1 shows the relationship between the DC voltage, the charging current of the charging electrode and the charge density of the insulating web. Here, the discharge is generated only in the width of 200 mm of the insulating web, and the relationship between the charging current I 1 and the charging current density I 0 is I 0 =
It is determined by I 1 /0.2 (μA / m). Further, the charge charge density σ is obtained by the equation 4.

【0072】[0072]

【表1】 この結果、上記の4通りの場合のすべてにおいて、除電
前に見られた初期の帯電パターンはまったく認められな
くなり、直径0.5mm程度の小さな帯電痕のみが残っ
た。また、ストリーマ放電も剥離放電も発生しなかっ
た。図4は、このような帯電痕の単位面積当たりの平均
残留数を充電電荷密度σの関数としてプロットしたもの
である。図より明らかなとおり、充電電荷密度が高いほ
ど、除電の効果が大きかった。また、図5は上記の4通
りの場合における充電電極の充電電流と除電電極の電流
との関係を示す。図より明らかな通り、両者は常にほぼ
同じ値であり、これは充電電荷が除電電荷によってほと
んど中和されたことを示す。このようにして除電した絶
縁性ウエブに絵柄を印刷し、積層した。完成した製品は
均質に印刷され積層されており、良好な品質であった。
[Table 1] As a result, in all of the above four cases, the initial charging pattern seen before static elimination was not observed at all, and only small charging marks with a diameter of about 0.5 mm remained. Further, neither streamer discharge nor peeling discharge occurred. FIG. 4 is a plot of the average remaining number of such charging marks per unit area as a function of the charged charge density σ. As is clear from the figure, the higher the charge density, the greater the effect of static elimination. FIG. 5 shows the relationship between the charging current of the charging electrode and the current of the static elimination electrode in the above four cases. As is clear from the figure, both values were almost the same, which means that the charge charge was almost neutralized by the charge removal. A pattern was printed on the insulating web thus neutralized and laminated. The finished product was printed and laminated homogeneously and was of good quality.

【0073】実施例2 充電電極3への印加電圧を正の6.6KVとし、除電電
極4を距離d2 =3mm、距離d3 =2mmとなるよう
に配置した他は実施例1と同じ条件で絶縁性ウエブの除
電を行なった。
Example 2 The same conditions as in Example 1 except that the voltage applied to the charging electrode 3 was positive 6.6 KV, and the static elimination electrode 4 was arranged so that the distance d 2 = 3 mm and the distance d 3 = 2 mm. The insulating web was destaticized.

【0074】この条件では充電電極3への充電電流I1
は8.8μAとなり、充電電流密度I0 は44μA/m
で充電電荷密度σは44μC/m2 となった。
Under this condition, the charging current I 1 to the charging electrode 3 is
Is 8.8 μA, and the charging current density I 0 is 44 μA / m
Thus, the charge density σ became 44 μC / m 2 .

【0075】この場合も実施例1と同様にトナーを用い
て除電効果を調べた。除電後の絶縁性ウエブの被除電部
位にはトナーがほとんど付着しなかった。すなわち、こ
の実施例においては実施例1の場合よりもさらに効果的
に除電できた。また実施例1と同様に剥離放電やストリ
ーマ放電の発生は認められなかった。
In this case as well, the effect of static elimination was examined using toner as in Example 1. The toner hardly adhered to the charge-removed portion of the insulating web after the charge was removed. That is, in this example, the charge could be removed more effectively than in the case of Example 1. Further, as in Example 1, neither peeling discharge nor streamer discharge was observed.

【0076】このようにして除電した絶縁性ウエブに亜
鉛を蒸着した。完成した製品は均質に蒸着され、良好な
品質であった。
Zinc was vapor-deposited on the insulating web thus neutralized. The finished product was homogeneously deposited and of good quality.

【0077】実施例3 除電電極4および陪設電極8、9として針電極除電器
(陪設電極8、9と除電電極4の絶縁性ウエブの移動方
向に沿う方向の間隔は10mm)を使用し、距離d2
16mm、d3 =0.6mmとなるようにこれらを設置
し、除電電極4への印加電圧を負の5.0〜5.5KV
(電圧安定化をせず)とし、充電電極への印加電圧を正
の6.55KVとしたことの他は実施例1の条件で絶縁
性ウエブの除電を行なった。
Example 3 A needle electrode charge eliminator (the distance between the built-in electrodes 8 and 9 and the charge eliminating electrode 4 in the direction along the moving direction of the insulating web is 10 mm) is used as the charge eliminating electrode 4 and the attachment electrodes 8 and 9. , Distance d 2 =
These are installed so that 16 mm and d 3 = 0.6 mm, and the voltage applied to the static elimination electrode 4 is negative 5.0 to 5.5 KV.
(No voltage stabilization) and the voltage applied to the charging electrode was 6.55 KV, and the insulating web was destaticized under the conditions of Example 1.

【0078】この条件では充電電極3への充電電流I1
は8.1μAとなり、充電電流密度I0 は40.5μA
/mで充電電荷密度σは40.5μC/m2 となった。
Under this condition, the charging current I 1 to the charging electrode 3 is
Is 8.1 μA, and the charging current density I 0 is 40.5 μA
/ M, the charged charge density σ was 40.5 μC / m 2 .

【0079】この場合も実施例1と同様にトナーを用い
て除電効果を調べた。除電後の絶縁性ウエブの被除電部
位にはトナーがまったく付着せず、この方法では検出で
きないほど帯電量が小さくなっていた。すなわち、この
実施例においては実施例2の場合よりもさらに効果的に
除電できた。また実施例1と同様に剥離放電やストリー
マ放電の発生は認められなかった。
In this case as well, the charge removal effect was examined using toner as in Example 1. The toner did not adhere to the charge-removed portion of the insulating web after the charge was removed, and the amount of charge was so small that it could not be detected by this method. That is, in this example, the charge could be removed more effectively than in the case of Example 2. Further, as in Example 1, neither peeling discharge nor streamer discharge was observed.

【0080】このようにして除電した絶縁性ウエブにア
ルミニウムを蒸着した。完成した製品はアルミニウムが
均質にコーティングされ、良好な品質であった。
Aluminum was vapor-deposited on the insulating web thus neutralized. The finished product was of good quality with a homogeneous coating of aluminum.

【0081】[0081]

【発明の効果】本発明の絶縁性ウエブの除電方法によれ
ば、絶縁性ウエブの被除電部位を充電電極と対向する接
地導電性ローラの部位に密着させ、この充電電極に直流
電圧を印加して被除電部位表面に電荷を供給し、接地導
電性ローラを回転させながら被除電部位を接地導電性ロ
ーラ面より剥離せしめて前記被除電部位の前記接地導電
性ローラとの電位差を拡大し、この状態において、前記
絶縁性ウエブ面に対して前記充電電極と同一の側に設け
た除電電極により前記被除電部位を除電することによ
り、絶縁性ウエブ表面の細かいピッチの両極性帯電や微
小な放電痕までも効率良く、安価な設備で除去できる。
EFFECTS OF THE INVENTION According to the method for neutralizing the insulating web of the present invention, the portion of the insulating web to be neutralized is brought into close contact with the portion of the grounded conductive roller facing the charging electrode, and a DC voltage is applied to the charging electrode. To supply electric charge to the surface of the portion to be neutralized, and while rotating the grounding conductive roller, separate the portion to be neutralized from the surface of the grounding conductive roller to make the grounding conductive portion of the portion to be neutralized.
The potential difference between the insulating roller and the charge roller, and in this state, the charge-removing electrode provided on the same side as the charging electrode with respect to the insulating web surface is used to remove the charge on the portion to be discharged, thereby finely removing the surface of the insulating web. Bipolar charging of the pitch and even minute discharge marks can be efficiently removed with inexpensive equipment.

【0082】また、本発明の絶縁性ウエブの除電方法の
好ましい態様によれば、充電電極により絶縁性ウエブの
被除電部位表面に供給される電荷の充電電荷密度σに対
して、剥離放電が発生することがなく、しかも除電のた
めに十分な電位を得られる適切な位置に除電電極を設け
て除電するため、剥離放電を発生することなくより強い
帯電を除去することができる。
Further, according to a preferred embodiment of the method for neutralizing the insulating web of the present invention, peeling discharge is generated with respect to the charge charge density σ of the charges supplied to the surface of the portion to be neutralized of the insulating web by the charging electrode. In addition, since the static elimination electrode is provided at an appropriate position where a sufficient potential can be obtained for static elimination, static electricity can be eliminated without causing peeling discharge.

【0083】また、本発明の絶縁性ウエブの除電方法の
好ましい態様によれば、除電電極に充電電極と反対の極
性の直流電圧を印加するため、除電の効果が安定化され
る。また、本発明の絶縁性ウエブの除電方法の好ましい
態様によれば、除電電極の前後に10mm以上かつ15
mm以下だけ離れた位置に陪設電極を設け、この陪設電
極を接地するため、除電電荷をより安定に発生させ、除
電の効果をより安定にすることができる。
Further, according to the preferred embodiment of the method for eliminating static electricity from the insulating web of the present invention, since the DC voltage having the opposite polarity to the charging electrode is applied to the static elimination electrode, the static elimination effect is stabilized. Further, according to a preferable aspect of the method for neutralizing the insulating web of the present invention, a distance of 10 mm or more and 15
Since the built-in electrode is provided at a position separated by not more than mm and the built-in electrode is grounded, it is possible to more stably generate the charge for neutralization and to stabilize the effect of the neutralization.

【0084】また、本発明の絶縁性ウエブの除電方法の
好ましい態様によれば、除電電極を接地するため、高電
圧電源の数を最小限とし、安価な設備で確実に除電する
ことができる。
Further, according to the preferable aspect of the method for eliminating static electricity of the insulating web of the present invention, since the static elimination electrode is grounded, the number of high-voltage power sources can be minimized and the static electricity can be surely eliminated by inexpensive equipment.

【0085】また、本発明の絶縁性ウエブの除電方法の
好ましい態様によれば、除電電極として除電ブラシを使
用し、除電電極と絶縁性ウエブとの最短距離を1mm以
上かつ4mm以下とするため、除電電極に確実に自己放
電を発生させ、除電の効果を安定にすることができる。
Further, according to a preferred embodiment of the method for neutralizing the insulating web of the present invention, the static elimination brush is used as the static elimination electrode, and the shortest distance between the static elimination electrode and the insulating web is 1 mm or more and 4 mm or less. It is possible to surely generate self-discharge in the static elimination electrode and stabilize the static elimination effect.

【0086】また、本発明の絶縁性ウエブの除電方法の
好ましい態様によれば、充電電極と絶縁性ウエブとの最
短距離を10mm以上かつ25mm以下とするため、充
電電極の近傍でストリーマ放電を起こすことなく、除電
の効果を安定にすることができる。
Further, according to a preferable aspect of the method for neutralizing the insulating web of the present invention, since the shortest distance between the charging electrode and the insulating web is 10 mm or more and 25 mm or less, streamer discharge is generated in the vicinity of the charging electrode. It is possible to stabilize the effect of static elimination.

【0087】また、本発明の絶縁性ウエブの除電方法の
好ましい態様によれば、充電電極として針電極列または
ワイヤ電極を使用するため、充電電極の近傍のコロナ放
電を均一なものとし、除電の効果を安定にすることがで
きる。
Further, according to a preferred embodiment of the method for neutralizing the insulating web of the present invention, since the needle electrode row or the wire electrode is used as the charging electrode, the corona discharge in the vicinity of the charging electrode is made uniform and the static elimination is performed. The effect can be stabilized.

【0088】また、本発明の絶縁性ウエブの製造方法に
よれば、上記の絶縁性ウエブの除電方法により絶縁性ウ
エブを除電するため、細かいピッチの両極性帯電や微小
な放電痕を有しない無帯電のウエブを製造することがで
きる。
Further, according to the method for producing an insulating web of the present invention, since the insulating web is neutralized by the above-mentioned method for neutralizing the insulating web, there is no bipolar electrification at a fine pitch or a minute discharge mark. A charged web can be produced.

【0089】また、本発明の絶縁性ウエブの製造方法の
別の態様によれば、上記の絶縁性ウエブの除電方法によ
り絶縁性ウエブを除電し、除電後の絶縁性ウエブを加工
してウエブを得るため、コーティングや印刷などの結果
が均質で、良好な品質のウエブ製品を得ることができ
る。
According to another aspect of the method for producing an insulating web of the present invention, the insulating web is destaticized by the above method for destaticizing the insulating web, and the insulating web after the destaticization is processed to form a web. As a result, it is possible to obtain a web product having a uniform result such as coating and printing and having good quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の絶縁性ウエブの除電方法およびウエブ
の製造方法の一実施態様に用いる装置の電極系などの構
成を模式的に示す図である。
FIG. 1 is a diagram schematically showing a configuration of an electrode system and the like of an apparatus used in one embodiment of a method for neutralizing an insulating web and a method for manufacturing a web according to the present invention.

【図2】従来の絶縁性ウエブの除電方法に用いる装置の
電極系などの構成を模式的に示す図である。
FIG. 2 is a diagram schematically showing a configuration of an electrode system and the like of an apparatus used in a conventional method for removing static electricity from an insulating web.

【図3】本発明の絶縁性ウエブの除電方法の一実施例に
おいて除電対象とした絶縁性ウエブの表面の帯電電荷分
布を模式的に示す図である。
FIG. 3 is a diagram schematically showing a distribution of charged charges on the surface of the insulating web which is the object of static elimination in one example of the method for eliminating static electricity of the insulating web of the present invention.

【図4】本発明の絶縁性ウエブの除電方法の一実施例に
おける除電の効果を示すグラフである。
FIG. 4 is a graph showing the effect of static elimination in an example of the static elimination method for the insulating web of the present invention.

【図5】本発明の絶縁性ウエブの除電方法の一実施例に
おける除電の効果を示すグラフである。
FIG. 5 is a graph showing the effect of static elimination in an example of the method of static elimination of an insulating web according to the present invention.

【符号の説明】[Explanation of symbols]

1:絶縁性ウエブ 2:接地導電性ローラ 3:充電電極 4:除電電極 5:直流電圧源 6:直流電圧源 7:スイッチ 8:陪設電極 9:陪設電極 20:絶縁性ウエブ 21:接地導電性ローラ 22:放電電極 23:放電電極 24:負の直流電圧源 25:放電電極 26:放電電極 27:正の直流電圧源 28:第3の放電電極 31:対向ローラ 32:電位プローブ 33:静電電位計 1: Insulating web 2: Grounded conductive roller 3: Charging electrode 4: Static elimination electrode 5: DC voltage source 6: DC voltage source 7: Switch 8: Installed electrode 9: Installed electrode 20: Insulating web 21: Grounded conductive roller 22: Discharge electrode 23: Discharge electrode 24: Negative DC voltage source 25: Discharge electrode 26: Discharge electrode 27: Positive DC voltage source 28: Third discharge electrode 31: Opposing roller 32: potential probe 33: Electrostatic potentiometer

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性ウエブの被除電部位を充電電極と対
向する接地導電性ローラの部位に密着させ、該充電電極
に直流電圧を印加して該被除電部位表面に電荷を供給
し、前記接地導電性ローラを回転させながら該被除電部
位を前記接地導電性ローラ面より剥離せしめて前記被除
電部位の前記接地導電性ローラとの電位差を拡大し、こ
の状態において、前記絶縁性ウエブ面に対して前記充電
電極と同一の側に設けた除電電極により前記被除電部位
除電することを特徴とする絶縁性ウエブの除電方法。
1. A static elimination portion of an insulating web is brought into close contact with a portion of a grounding conductive roller facing a charging electrode, and a DC voltage is applied to the charging electrode to supply electric charges to the surface of the static elimination portion. While the grounding conductive roller is being rotated, the portion to be discharged is peeled off from the surface of the grounding conductive roller to remove the charge.
Enlarge the potential difference between the electrically conductive part and the grounded conductive roller.
In the state, the method of neutralizing an insulating web, characterized by neutralizing the target neutralization site by neutralizing electrode provided on the same side as the charging electrode to the insulating web surface.
【請求項2】前記充電電極により前記絶縁性ウエブの前
記被除電部位表面に供給される電荷の電荷密度σ(μC
/m2 )が、 3≦σ<50 の関係を満たすように前記充電電極に直流電圧を印加す
るとともに、前記除電電極と前記接地導電性ローラ面と
を結ぶ最短経路上で測定したときの前記絶縁性ウエブと
前記接地導電性ローラ面との距離d3 (mm)および前
記電荷密度σ(μC/m2 )が、 25/σ≦d3 <100.05×(50-σ)+0.0006×(50-σ)
×(50-σ) の関係を満たすように前記除電電極を配置することを特
徴とする請求項1に記載の絶縁性ウエブの除電方法。
2. A charge density σ (μC) of charges supplied to the surface of the portion to be neutralized of the insulating web by the charging electrode.
/ M 2 ) applies a direct current voltage to the charging electrode so as to satisfy the relationship 3 ≦ σ <50, and measures the shortest path connecting the static elimination electrode and the grounded conductive roller surface. The distance d 3 (mm) between the insulating web and the grounded conductive roller surface and the charge density σ (μC / m 2 ) are 25 / σ ≦ d 3 <10 0.05 × (50-σ) + 0.0006 × ( 50-σ)
The method of removing static electricity from an insulating web according to claim 1, wherein the static elimination electrode is arranged so as to satisfy the relationship of x (50-σ).
【請求項3】前記除電電極に前記充電電極と反対の極性
の直流電圧を印加することを特徴とする請求項1または
2に記載の絶縁性ウエブの除電方法。
3. The method for removing static electricity from an insulating web according to claim 1, wherein a DC voltage having a polarity opposite to that of the charging electrode is applied to the static elimination electrode.
【請求項4】前記除電電極の前記充電電極側またはその
反対側に前記除電電極から前記絶縁性ウエブの移動方向
に10mm以上かつ15mm以下だけ離れた位置に陪設
電極を設け、該陪設電極を接地することを特徴とする請
求項3に記載の絶縁性ウエブの除電方法。
4. A charging electrode is provided on the charging electrode side of the discharging electrode or on the opposite side thereof at a position separated from the discharging electrode by 10 mm or more and 15 mm or less in the moving direction of the insulating web. The method of removing static electricity from an insulating web according to claim 3, wherein the static electricity is grounded.
【請求項5】前記除電電極を接地することを特徴とする
請求項1または2のいずれかに記載の絶縁性ウエブの除
電方法。
5. The method of removing static electricity from an insulating web according to claim 1, wherein the static elimination electrode is grounded.
【請求項6】前記除電電極として除電ブラシを使用し、
前記除電電極と前記絶縁性ウエブとの最短距離d2
0.1mm以上かつ15mm以下とすることを特徴とす
る請求項5に記載の絶縁性ウエブの除電方法。
6. A static elimination brush is used as the static elimination electrode,
The static elimination method for an insulating web according to claim 5, wherein the shortest distance d 2 between the static elimination electrode and the insulating web is 0.1 mm or more and 15 mm or less.
【請求項7】前記充電電極と前記絶縁性ウエブとの最短
距離d1 を10mm以上かつ25mm以下とすることを
特徴とする請求項1〜6のいずれかに記載の絶縁性ウエ
ブの除電方法。
7. The method for removing static electricity from an insulating web according to claim 1, wherein the shortest distance d 1 between the charging electrode and the insulating web is set to 10 mm or more and 25 mm or less.
【請求項8】前記充電電極として針電極列またはワイヤ
電極を使用することを特徴とする請求項1〜7のいずれ
かに記載の絶縁性ウエブの除電方法。
8. The method of neutralizing an insulating web according to claim 1, wherein a needle electrode array or a wire electrode is used as the charging electrode.
【請求項9】請求項1〜8のいずれかに記載の絶縁性ウ
エブの除電方法により絶縁性ウエブを除電し、無帯電の
ウエブを得ることを特徴とするウエブの製造方法。
9. A method for producing a web, which comprises removing the charge from the insulating web by the method for removing the charge from the insulating web according to claim 1 to obtain an uncharged web.
【請求項10】請求項1〜8のいずれかに記載の絶縁性
ウエブの除電方法により絶縁性ウエブを除電する工程
と、除電後の該絶縁性ウエブを加工してウエブを得る工
程とからなることを特徴とするウエブの製造方法。
10. A step of destaticizing the insulating web by the method of destaticizing an insulating web according to claim 1, and a step of processing the insulating web after destaticization to obtain a web. A method for producing a web, which is characterized by the following.
JP19438194A 1994-08-18 1994-08-18 Insulating web static elimination method and web manufacturing method Expired - Fee Related JP3517968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19438194A JP3517968B2 (en) 1994-08-18 1994-08-18 Insulating web static elimination method and web manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19438194A JP3517968B2 (en) 1994-08-18 1994-08-18 Insulating web static elimination method and web manufacturing method

Publications (2)

Publication Number Publication Date
JPH0864384A JPH0864384A (en) 1996-03-08
JP3517968B2 true JP3517968B2 (en) 2004-04-12

Family

ID=16323658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19438194A Expired - Fee Related JP3517968B2 (en) 1994-08-18 1994-08-18 Insulating web static elimination method and web manufacturing method

Country Status (1)

Country Link
JP (1) JP3517968B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475572B2 (en) 2000-04-06 2002-11-05 3M Innovative Properties Company Electrostatically assisted coating method with focused web-borne charges
US6368675B1 (en) 2000-04-06 2002-04-09 3M Innovative Properties Company Electrostatically assisted coating method and apparatus with focused electrode field
JP2003068496A (en) * 2001-06-25 2003-03-07 Kasuga Electric Works Ltd Destaticizing method of plastic mold
JP2006196255A (en) * 2005-01-12 2006-07-27 Toray Ind Inc Discharge treatment device of sheet, discharge treatment method thereof and porous polyester film
JP4617899B2 (en) * 2005-01-28 2011-01-26 東レ株式会社 Electrically insulating sheet, method for removing electricity, and method for manufacturing the same
DE112017006247B4 (en) * 2016-12-13 2021-06-17 Mitsubishi Electric Corporation Static discharge device and discharge method for discharging static charge
JP2019169410A (en) 2018-03-26 2019-10-03 コニカミノルタ株式会社 Charging adjustment device and image forming apparatus

Also Published As

Publication number Publication date
JPH0864384A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
US4517143A (en) Method and apparatus for uniformly charging a moving web
US3702258A (en) Web treatment method
KR101270503B1 (en) Coater of electric insulating sheet and method for producing electric insulating sheet with coated film
US3863108A (en) Electrostatic charge controller
JPH08168697A (en) Method and device for deenergizing and dust removal
US6838039B2 (en) Film roll body and method of manufacturing film roll body
JPS59113458A (en) Apparatus for evenly charging moving web
JP3517968B2 (en) Insulating web static elimination method and web manufacturing method
US5494619A (en) Improved electrostatic pinning method
JP2002289394A (en) Method and device for eliminating static charge of insulating sheet
US4412960A (en) Method for processing a strip of polymer material by electrical discharge
US3757163A (en) Web treatment apparatus and methods
JP2006196255A (en) Discharge treatment device of sheet, discharge treatment method thereof and porous polyester film
JP2010531043A (en) Apparatus and method for correcting charge on moving web
JP4871036B2 (en) Static elimination method and static elimination device
WO2017159441A1 (en) Insulating sheet discharging method and insulating sheet discharging apparatus
US3792312A (en) Device for creating electrostatic charge or discharge
JP2001131314A (en) Corona discharge-treating device and production method of sheet
JP3069837B2 (en) How to check static elimination of film etc.
JP3455984B2 (en) Static electricity removal method for charged traveling body
WO2006080283A1 (en) Electric-insulating sheet neutralizing device, neutralizing method and production method
JP2003292650A (en) Corona discharge treatment method, method and apparatus for producing plastic film
US6242051B1 (en) Coating method using electrostatic assist
KR0181552B1 (en) Discharge and vibration damper
JPH0922792A (en) Method and device for controlling charging of film having conductive layer on one side and manufacture of film with one side conductive layer

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

LAPS Cancellation because of no payment of annual fees