JP3511959B2 - Inlet / outlet symmetric flow meter - Google Patents

Inlet / outlet symmetric flow meter

Info

Publication number
JP3511959B2
JP3511959B2 JP31516399A JP31516399A JP3511959B2 JP 3511959 B2 JP3511959 B2 JP 3511959B2 JP 31516399 A JP31516399 A JP 31516399A JP 31516399 A JP31516399 A JP 31516399A JP 3511959 B2 JP3511959 B2 JP 3511959B2
Authority
JP
Japan
Prior art keywords
inflow
outflow
flow rate
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31516399A
Other languages
Japanese (ja)
Other versions
JP2001133307A (en
Inventor
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31516399A priority Critical patent/JP3511959B2/en
Publication of JP2001133307A publication Critical patent/JP2001133307A/en
Application granted granted Critical
Publication of JP3511959B2 publication Critical patent/JP3511959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液体、気体などの
流量を計測する流量計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate of liquid, gas and the like.

【0002】[0002]

【従来の技術】従来の流量計測装置は、特開平7−27
583号公報に示されるように、流体を計量する流量膜
をピストン状に構成し、このピストン動作を逆回転防止
機構を備えたクランク軸を用いて回転運動に変換すると
とともに、その回転数を検出し、流体の流量を計測して
いた。
2. Description of the Related Art A conventional flow rate measuring device is disclosed in Japanese Patent Laid-Open No. 7-27.
As disclosed in Japanese Patent No. 583, the flow rate membrane for measuring the fluid is formed in a piston shape, and this piston operation is converted into rotational movement using a crankshaft equipped with a reverse rotation prevention mechanism, and at the same time, its rotational speed is detected. However, the flow rate of the fluid was measured.

【0003】[0003]

【発明が解決しようとする課題】このように従来の流量
計測装置では、逆方向に流れる流体の流量を計測するこ
とができないため、流量計測装置の取付け方向が限定さ
れ、また、流体に圧力変動がある場合、流量計測装置に
方向性があるため正確に計測できないという課題があっ
た。
As described above, since the conventional flow rate measuring device cannot measure the flow rate of the fluid flowing in the opposite direction, the mounting direction of the flow rate measuring device is limited, and the pressure fluctuation of the fluid is limited. If so, there is a problem in that the flow rate measuring device cannot be accurately measured because it has directionality.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の流入・流出対称型流量計は、流体の流入孔
と、流体の流入孔と、流量計測部と、流体の流出孔とか
らなり、前記流入孔と前記流量計測部との間に流入側整
流部を、前記流量計測部と前記流出孔との間に流出側整
流部をそれぞれ設け、さらに前記流入側整流部および流
出側整流部は、前記流入孔および流出孔よりも断面積を
大に設定したチャンバと、これらチャンバの流量計測部
側に配置した整流部材とで構成し、流入側・流出側とを
対称となるようにした。
In order to solve the above-mentioned problems, the inflow / outflow symmetric flowmeter of the present invention is provided with a fluid inflow hole.
, Fluid inflow hole, flow rate measuring unit, fluid outflow hole
Between the inflow hole and the flow rate measuring unit.
Align the flow section between the flow measurement section and the outflow hole on the outflow side.
A flow section, and the inflow side rectification section and the flow section.
The outlet side rectifying section has a cross-sectional area larger than that of the inflow hole and the outflow hole.
Large set chambers and flow rate measurement parts of these chambers
It is composed of a rectifying member arranged on the
I made it symmetrical.

【0005】これによって、流入側から流体を流した時
も、流出側から流体を逆流させた時も、流体の流量を計
測することができる。また、流量計測装置の取付け方向
が自由となり、設置性 が向上すると共に、流体に圧力変
動がある場合にも、流量計測装置に方向性がなく対称で
あるため、正確に流量を計測することができる。
As a result, when the fluid flows from the inflow side
Also, when the fluid flows backward from the outflow side, the flow rate of the fluid is measured.
Can be measured. Also, install the flow rate measuring device.
Is free, the installation is improved, and the pressure changes to the fluid.
Even if there is movement, the flow rate measuring device is directional and symmetrical.
Therefore, the flow rate can be accurately measured.

【0006】[0006]

【発明の実施の形態】本発明は、流体の流入孔と、流量
計測部と、流体の流出孔とからなり、前記流入孔と前記
流量計測部との間に流入側整流部を、前記流量計測部と
前記流出孔との間に流出側整流部をそれぞれ設け、さら
に前記流入側整流部および流出側整流部は、前記流入孔
および流出孔よりも断面積を大に設定したチャンバと、
これらチャンバの流量計測部側に配置した整流部材とで
構成した
BEST MODE FOR CARRYING OUT THE INVENTION The present invention comprises a fluid inflow hole, a flow rate measuring portion, and a fluid outflow hole. An inflow side rectifying portion is provided between the inflow hole and the flow rate measuring portion. With the measurement section
An outflow side rectification unit is provided between each of the outflow holes and
The inflow side rectification section and the outflow side rectification section are provided in the inflow hole.
And a chamber with a larger cross-sectional area than the outflow holes,
With the rectifying member arranged on the flow rate measurement side of these chambers
Configured .

【0007】このため、流入側から流体を順流で流した
時も、流出側から流体を逆流で流した時も、流体の流量
を安定して正確に計測することができるとともに、流量
計測装置の取付け方向が限定されるということがなくな
る。しかも、流体に圧力変動がある場合にも、流量計測
装置に方向性がなく対称であるため、順流で流した時
も、逆流で流した時も、正確に計測することができる。
For this reason, the fluid was made to flow forward from the inflow side.
The flow rate of the fluid both when the fluid flows backward from the outlet side
The flow rate can be measured stably and accurately.
There is no need to limit the mounting direction of the measuring device.
It Moreover, flow rate measurement is possible even when there is pressure fluctuation in the fluid.
Since the device has no directionality and is symmetric, when flowing forward
Also, it is possible to accurately measure even when flowing backward.

【0008】加えて、流入側から流体を流した時も、流
出側から流体を逆流させた時も、チャンバで流体が一度
拡大した後、縮小するので、流体が流路内を非常に安定
して流れる。そして、整流部材で流れが整流されるた
め、流体が流路内を非常に安定して流れる。特に、流量
計測部内では安定して流れるので、正確に流体の流量を
計測することができる。
In addition, when the fluid is made to flow from the inflow side,
Even when the fluid flows backward from the outlet side,
Expands and then shrinks, so fluid is very stable in the flow path
Then flow. Then, the flow is rectified by the rectifying member.
Therefore, the fluid flows in the flow channel very stably. Especially the flow rate
The flow rate of the fluid is accurate because it flows stably in the measuring section.
It can be measured.

【0009】整流部材としては、ハニカムおよびメッシ
ュのどちらか一方もしくは両方を用いるようにしている
ため、流体がビーム状に整流され、安定して流れるた
め、正確に流体の流量を正確に計測することができる。
Honeycomb and mesh are used as the flow regulating member.
Either one or both
Therefore, the fluid is rectified into a beam and flows stably.
Therefore, the flow rate of the fluid can be accurately measured.

【0010】また、流量計測部の中央部に、熱式フロー
センサを設けた。このため、流入側から流体を流した時
も、流出側から流体を逆流させた時も、流体が流量計測
部を安定して流れるので、流体の流量を安定に、しかも
正確に計測することができる。また、流体に圧力変動が
あっても、安定に、しかも正確に計測することができ
る。
Further , a thermal type flow is provided at the center of the flow rate measuring section.
A sensor was provided. For this reason, when flowing the fluid from the inflow side
Also, when the fluid flows backward from the outflow side, the fluid flow rate is measured.
Since it flows stably through the section, the flow rate of the fluid is stable, and
Can be measured accurately. Also, pressure fluctuations in the fluid
Even if there is, it can be measured stably and accurately.
It

【0011】また、熱式フローセンサを、前記流量計測
部の壁面に設けた凹部に格納した。このため、流体に直
接曝されないため、前記熱式フローセンサの信頼性が向
上し、流体の流量を安定に、しかも正確に計測すること
ができる。
Further , a thermal type flow sensor is used to measure the flow rate.
It was stored in a recess provided on the wall surface of the part. For this reason,
Since it is not exposed to heat, the reliability of the thermal flow sensor is improved.
To measure the flow rate of the fluid stably and accurately.
You can

【0012】また、流量計測部に一対の超音波振動子を
対向して設け、超音波伝播方向を流体の流れる方向に配
置した。このため、超音波が流体の中を伝播し、流体の
流量を流れの方向に沿って平均化しながら計測するの
で、流体の流れ方向に多少の乱れがあっても、流体の流
量を安定に、しかも正確に計測することができる。
Further , a pair of ultrasonic transducers is installed in the flow rate measuring section.
Installed facing each other, the ultrasonic wave propagation direction is set to the fluid flow direction.
I put it. Therefore, ultrasonic waves propagate in the fluid and
To measure the flow rate while averaging along the flow direction
Therefore, even if there is some disturbance in the fluid flow direction, the fluid flow
The amount can be measured stably and accurately.

【0013】また、流量計測部に複数対の超音波振動子
を対向して設け超音波伝播方向を流体の流れる方向と交
差するようにして配設した。このため、超音波が流体を
横断して幅方向および流れ方向に沿って伝播しながら、
流体の流量を計測するので、流体の幅方向あるいは流れ
方向に多少の乱れがあっても、流体の流量を安定に、し
かも正確に計測することができる。
Further , a plurality of pairs of ultrasonic transducers are provided in the flow rate measuring unit.
Are placed facing each other and the ultrasonic wave propagation direction intersects with the fluid flow direction.
It was arranged so as to be inserted. Because of this, ultrasonic waves
Propagating transversely along the width and flow directions,
Since the flow rate of the fluid is measured,
Even if there is some turbulence in the direction,
Can also be measured accurately.

【0014】また、流入孔と流入側整流部との間に流入
側開閉弁を、流量計測部と流出孔との間に流出側開閉弁
をそれぞれ設けた。このため、流入側・流出側から見た
流路を対称に形成するとともに、計測流量に異常が発生
した場合に、流入側あるいは流出側の開閉弁を閉じるこ
とができ、安全を確保することができる。
In addition, an inflow occurs between the inflow hole and the inflow side rectifying section.
The side opening / closing valve is located between the flow rate measuring unit and the outlet hole.
Are provided respectively. Therefore, as seen from the inflow side / outflow side
Both when the channel is formed symmetrically, when an abnormality occurs in the measurement flow rate, can be closed-off valve on the inflow side or the outflow side, it is possible to ensure safety.

【0015】また、流入側開閉弁と流出側開閉弁の少な
くとも一方を動作可能とした。このため、流入側・流出
側から見た流路を対称に形成するように、流入側および
流出側の両方に開閉弁を設置しても、一方は動作する必
要がないため、低価格とすることができる。
Also, the number of inflow-side opening / closing valves and outflow-side opening / closing valves is small.
At least one can be operated. Therefore, inflow side / outflow
So that the flow path seen from the side is formed symmetrically,
Even if on-off valves are installed on both the outflow side, one must operate.
Since it is unnecessary, the price can be reduced.

【0016】また流量計測部の中央部に、ゲート型開閉
弁を設けた。このため、一つの開閉弁で、流入側・流出
側から見た流路を対称に形成できる。
A gate type opening / closing is provided at the center of the flow rate measuring unit.
A valve was installed. Therefore, one open / close valve can be used for inflow and outflow.
The flow channels viewed from the side can be formed symmetrically.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】(実施例1) 図1は、本発明の実施例1の流入・流出対称型流量計に
おける側面図である。図1において、1は流入孔、2は
流出孔、3は流入側整流部、4は流出側整流部、5は流
量計測部を示す。流入孔1と流出孔2とは、対称形とな
るよう同じ形状、例えば、内径20mm、長さ60mmの円
筒状に構成した。流入側整流部3と流出側整流部4と
は、対称形となるよう同じ形状、例えば、40mm立方体
とした。流量計測部5は、内径20mmあるいは同面積の
矩形状とし、長さ40mm程度とした。このような構成の
流量計測装置において、流量計測部5の中央部に熱線流
速計を設置し、流入孔1から、あるいは流出孔2から気
体、液体等の流体を流し、その流速を計測したところ、
流量計測部の断面にわたって、幅方向および高さ方向
に、同一の流速および流速分布が得られ、流体に対して
対称形となる。従って、1あるいは2のどちら側を流体
の入り口としても、同様に使用することができる。ま
た、供給する流体に、高周波、例えば、数Hz〜数十H
zの圧力変動を与えても、同一の流速および流速分布が
得られる。
(Embodiment 1) FIG. 1 is a side view of an inflow / outflow symmetric flowmeter of Embodiment 1 of the present invention. In FIG. 1, 1 is an inflow hole, 2 is an outflow hole, 3 is an inflow side rectification unit, 4 is an outflow side rectification unit, and 5 is a flow rate measurement unit. The inflow hole 1 and the outflow hole 2 have the same shape so as to be symmetrical, for example, a cylindrical shape having an inner diameter of 20 mm and a length of 60 mm. The inflow side rectifying section 3 and the outflow side rectifying section 4 have the same shape so as to be symmetrical, for example, a 40 mm cube. The flow rate measuring unit 5 has a rectangular shape having an inner diameter of 20 mm or the same area and a length of about 40 mm. In the flow rate measuring device having such a configuration, a hot-wire anemometer is installed at the center of the flow rate measuring unit 5, and a fluid such as gas or liquid is flown from the inflow hole 1 or the outflow hole 2 and the flow velocity is measured. ,
The same flow velocity and flow velocity distribution are obtained in the width direction and the height direction over the cross section of the flow rate measurement unit, and the flow velocity measurement unit is symmetrical with respect to the fluid. Therefore, even if either side 1 or 2 is used as the fluid inlet, it can be used similarly. In addition, the supplied fluid has a high frequency, for example, several Hz to several tens of H.
Even if the pressure fluctuation of z is given, the same flow velocity and flow velocity distribution are obtained.

【0019】このように、流入側から流体を流した時
も、流出側から流体を逆流させた時も、流体の流量を同
じように計測することができるため、流入・流出対称型
流量計測装置の取付け方向が限定されるということがな
くなる。また、流体に圧力変動がある場合にも、流入・
流出対称型流量計測装置に方向性がないため正確に計測
することができる。
In this way, the flow rate of the fluid can be measured in the same way when the fluid is made to flow from the inflow side and when the fluid is made to flow backward from the outflow side. There is no limitation on the mounting direction of the. In addition, even if there is pressure fluctuation in the fluid,
Since the outflow symmetric type flow rate measuring device has no directionality, accurate measurement can be performed.

【0020】なお、流入孔の長さ内径の2〜3倍以上の
長さがあれば、計測した流速は安定すると共に、流量計
測部5の長さは、40mmとしたが、20mm以上の長さで
あれば計測した流速は安定する。
If the length of the inflow hole is at least 2 to 3 times the inner diameter, the measured flow velocity will be stable and the length of the flow rate measuring unit 5 will be 40 mm, but it will be at least 20 mm. If so, the measured flow velocity is stable.

【0021】(実施例2) 図2は、本発明の実施例2の流入・流出対称型流量計に
おける流入側整流部3の断面図である。図2において、
6はチャンバを、7は流入孔1とチャンバ6との間に設
けた整流部材を、8はチャンバ6と流量計測部5との間
に設けた整流部材を示す。流出側整流部4も、対称形と
なるよう構成した(図示せず)。チャンバ6は、流入孔
1の断面積よりも50%以上大きくなるよう構成した。
整流部材7、8はハニカムあるいはメッシュ等で構成
し、若干の圧力損失が発生するように構成した。流入孔
1から出た流体は、整流部材7で圧損を発生した後、流
路が滑らかに拡大するチャンバ6に導入され、流路が滑
らかに縮小する中を圧損を発生する整流部材8を通って
流量計測部5へと導入される。
(Embodiment 2) FIG. 2 is a sectional view of an inflow side rectifying section 3 in an inflow / outflow symmetric flowmeter of Embodiment 2 of the present invention. In FIG.
Reference numeral 6 denotes a chamber, 7 denotes a rectifying member provided between the inflow hole 1 and the chamber 6, and 8 denotes a rectifying member provided between the chamber 6 and the flow rate measuring unit 5. The outflow side rectification unit 4 was also configured to be symmetrical (not shown). The chamber 6 was configured to be larger than the cross-sectional area of the inflow hole 1 by 50% or more.
The rectifying members 7 and 8 are made of a honeycomb, a mesh, or the like so that a slight pressure loss occurs. The fluid discharged from the inflow hole 1 is introduced into the chamber 6 in which the flow passage smoothly expands after the pressure loss is generated in the flow regulating member 7, and passes through the flow regulating member 8 that generates the pressure loss while the flow passage is smoothly contracted. And is introduced into the flow rate measuring unit 5.

【0022】このように流体が滑らかに拡大し、チャン
バで淀み部分が発生し、また縮小する流路を経過し、流
量計測部5へ導入されるので、流入孔1以前の流体にど
のような乱れ成分があっても、流量計測部5の、流入側
あるいは流出側から約10mm程度以降では、流体が非常
に安定して流れるので、正確に流体の流量を計測するこ
とができる。
As described above, since the fluid smoothly expands, a stagnation portion is generated in the chamber, and passes through a contracting flow path and is introduced into the flow rate measuring unit 5, what kind of fluid is present before the inflow hole 1? Even if there is a turbulent component, the fluid flows very stably after about 10 mm from the inflow side or the outflow side of the flow rate measuring unit 5, so that the flow rate of the fluid can be accurately measured.

【0023】(実施例3) 図3は、本発明の実施例3の流入・流出対称型流量計に
おける流入側の整流部材7の断面図である。図3におい
て、9はメッシュ部分を、10はハニカム部分を示す。
メッシュ部分9は、ステンレスメッシュ#50〜#20
0を用いた。また、ハニカム部分10は、一辺が2〜3
mmの六角形アルミハニカムを用いた。ハニカム長さは、
10mm程度とした。なお、整流部材8も7と同様の構成
とした。なお、流出側も対称形となるよう同様の構成と
した。
(Embodiment 3) FIG. 3 is a cross-sectional view of an inflow side rectifying member 7 in an inflow / outflow symmetric flowmeter of Embodiment 3 of the present invention. In FIG. 3, 9 indicates a mesh portion and 10 indicates a honeycomb portion.
The mesh portion 9 is made of stainless steel mesh # 50 to # 20.
0 was used. In addition, the honeycomb portion 10 has a side of 2 to 3
A hexagonal aluminum honeycomb of mm was used. Honeycomb length is
It was about 10 mm. The rectifying member 8 has the same configuration as 7. In addition, the same structure was adopted so that the outflow side was also symmetrical.

【0024】このような構成にしたので、ハニカムによ
り流体がビーム状に整流され、また、メッシュにより流
体の圧力がメッシュの前面全域に渡って均一に印加され
整流される。このため流量計測部5では、流体が安定し
て流れるので、流体の流量を正確に計測することができ
る。なお、本実施例において、メッシュ・ハニカムの順
で構成したが、その逆の構成であっても同様の効果が得
られる。
With such a structure, the fluid is rectified into a beam by the honeycomb, and the pressure of the fluid is uniformly applied and rectified by the mesh over the entire front surface of the mesh. Therefore, in the flow rate measuring unit 5, the fluid flows stably, so that the flow rate of the fluid can be accurately measured. In this embodiment, the mesh and the honeycomb are arranged in this order, but the same effect can be obtained even if the structure is reversed.

【0025】(実施例4) 図4は、本発明の実施例4の流入・流出対称型流量計に
おける流量計測部5の断面図を示す。流量計測部5の流
入側と流出側との対称な位置、すなわち中央部の天井部
分に熱式フローセンサ11を突出させる構成とした。流
量計測部5の中央部では、流入側から流体を流した時
も、流出側から流体を逆流させた時も、流体が十分安定
して流れているため、流体の流量を安定に、しかも正確
に計測することができる。
(Embodiment 4) FIG. 4 shows a sectional view of a flow rate measuring section 5 in an inflow / outflow symmetric flowmeter of Embodiment 4 of the present invention. The thermal flow sensor 11 is configured to project at a symmetrical position between the inflow side and the outflow side of the flow rate measuring unit 5, that is, the central ceiling portion. In the central portion of the flow rate measuring unit 5, the fluid is flowing sufficiently stably both when the fluid is made to flow from the inflow side and when the fluid is made to flow backward from the outflow side, so the flow rate of the fluid is stable and accurate. Can be measured.

【0026】また、流体に圧力変動があっても、安定
に、しかも正確に計測することができる。なお、流量計
測部5の底部に突出させても、同様の効果が得られる。
しかし、この場合には、天井部設置する場合にくらべ、
ゴミ等の付着が若干多くなり易い。また、流量計測部5
の側壁部分に熱式フローセンサを取付けてもよいが、こ
の場合には、対称性が若干悪くなるためか、天井部ある
いは底部の場合に比べ流量計測の再現性は低下する。
Further, even if there is a pressure fluctuation in the fluid, stable and accurate measurement can be performed. The same effect can be obtained even if the flow rate measuring unit 5 is projected to the bottom.
However, in this case, compared to the case where the ceiling is installed,
A little more dust is likely to adhere. In addition, the flow rate measuring unit 5
Although a thermal type flow sensor may be attached to the side wall portion of the above, in this case, the reproducibility of the flow rate measurement is lower than that in the case of the ceiling portion or the bottom portion, probably because the symmetry is slightly deteriorated.

【0027】(実施例5) 図5は、本発明の実施例5の流入・流出対称型流量計に
おける流量計測部5の中央部断面を示す。流量計測部5
の中央部に設けた凹部12に熱式フローセンサ11を突
出させる構成とした。このため、熱式フローセンサ11
は、直接流体に曝されにくくなり、流体の流れが安定し
た。このため、実施例4に比べ、流量計測感度は若干落
ちるが、再現性は非常に向上する。
(Embodiment 5) FIG. 5 shows a cross section of a central portion of a flow rate measuring unit 5 in an inflow / outflow symmetric flowmeter of Embodiment 5 of the present invention. Flow rate measurement unit 5
The thermal flow sensor 11 is configured to protrude into the recess 12 provided in the central portion of the. Therefore, the thermal flow sensor 11
Became difficult to be directly exposed to the fluid, and the fluid flow became stable. Therefore, compared with the fourth embodiment, the flow rate measurement sensitivity is slightly lowered, but the reproducibility is greatly improved.

【0028】(実施例6) 図6は、本発明の実施例6の流入・流出対称型流量計に
おける流量計測部5の中央部断面を示す。流量計測部5
に設けた凹部12に熱式フローセンサ11を突出させ、
上面にメッシュ12で覆う構成とした。このため、熱式
フローセンサ11は、実施例5に比べ、さらに流体に曝
されにくくなり、流体の流れが非常に安定している。こ
のため、実施例5に比べ、流量計測感度は若干落ちる
が、再現性はさらに向上する。
(Sixth Embodiment) FIG. 6 shows a cross section of a central portion of a flow rate measuring section 5 in an inflow / outflow symmetric flowmeter of a sixth embodiment of the present invention. Flow rate measurement unit 5
The thermal flow sensor 11 is projected into the recess 12 provided in
The upper surface was covered with the mesh 12. Therefore, the thermal type flow sensor 11 is more difficult to be exposed to the fluid as compared with the fifth embodiment, and the flow of the fluid is very stable. Therefore, the flow rate measurement sensitivity is slightly lower than that in the fifth embodiment, but the reproducibility is further improved.

【0029】(実施例7) 図7は、本発明の実施例7の流入・流出対称型流量計に
おける流量計測計の側面図を示す。流入側整流部3と流
出側整流部4とに、流入側超音波振動子14と流出側振
動子15とを設けた。16は超音波の伝播方向を示し、
流体の流れる方向と平行となるように構成した。流入側
超音波振動子14の詳細断面を図8に示す。流入側超音
波振動子14は、流入側整流部に設けた凹部に、圧電振
動子17を設けた構成とした。
(Embodiment 7) FIG. 7 shows a side view of a flow meter in an inflow / outflow symmetric type flow meter of Embodiment 7 of the present invention. The inflow-side ultrasonic transducer 14 and the outflow-side transducer 15 are provided in the inflow-side rectification unit 3 and the outflow-side rectification unit 4. 16 indicates the propagation direction of ultrasonic waves,
It was configured to be parallel to the direction of fluid flow. FIG. 8 shows a detailed cross section of the inflow side ultrasonic transducer 14. The inflow-side ultrasonic oscillator 14 has a configuration in which the piezoelectric oscillator 17 is provided in a recess provided in the inflow-side rectifying unit.

【0030】なお、流出側にも同様にして、対称となる
ように構成した。このような配置において、流入側超音
波振動子と流出側超音波振動子との距離をL、流入側の
超音波振動子から超音波を送信し、流出側の超音波振動
子で受信する時の伝播時間をTud、その逆に、流出側の
超音波振動子から超音波を送信し、流入側の超音波振動
子で受信する時の伝播時間をTduとすると、音速をC、
流体の流速をVfとすると、次式が成り立つ。
The outflow side is also configured to be symmetrical. In such an arrangement, when the distance between the inflow-side ultrasonic transducer and the outflow-side ultrasonic transducer is L, ultrasonic waves are transmitted from the inflow-side ultrasonic transducer and received by the outflow-side ultrasonic transducer. Let Tud be the propagation time of Tud, and conversely, let Tdu be the propagation time when ultrasonic waves are transmitted from the ultrasonic transducer on the outflow side and received by the ultrasonic transducer on the inflow side.
When the flow velocity of the fluid is Vf, the following equation holds.

【0031】 Tud=L/(C+Vf)、Tdu=L/(C−Vf) これより、C+Vf=L/Tud、C−Vf=L/Tduが成
り立ち、その結果、2・Vf=(L/Tud)+(L/Td
u)となる。
Tud = L / (C + Vf), Tdu = L / (C−Vf) From this, C + Vf = L / Tud and C−Vf = L / Tdu are established, and as a result, 2 · Vf = (L / Tud ) + (L / Td
u).

【0032】よって、 Vf=(L/2)[(1/Tu
d)−(1/Tdu)] このように、超音波伝播時間、TudおよびTdu、を計測
することにより、流体の流速Vfを計測することができ
る。なお、この流体の流速Vfは、音速Cに依存しない
で求めることができ、流体の温度、すなわち、流体中の
音速が変化しても、計測結果に影響しないことがわか
る。この流体の流速Vfに、あらかじめ決められている
流量計測部5の断面積Sを乗ずることにより流体の流量
を、Qf=S・Vfとして求められる。
Therefore, Vf = (L / 2) [(1 / Tu
d)-(1 / Tdu)] As described above, the flow velocity Vf of the fluid can be measured by measuring the ultrasonic wave propagation time, Tud and Tdu. The flow velocity Vf of the fluid can be obtained without depending on the sound velocity C, and it can be seen that the measurement result is not affected even if the temperature of the fluid, that is, the sound velocity in the fluid changes. The flow rate of the fluid is obtained by multiplying the flow velocity Vf of the fluid by a predetermined cross-sectional area S of the flow rate measuring unit 5 as Qf = S · Vf.

【0033】このように、流入側および流出側を対称に
構成した流量計としので、流体が安定して流れるため、
流量計測部5の高さ方向、すなわち図7の紙面の上下方
向、あるいは流量計測部5の横方向、すなわち図7の紙
面に垂直方向、ともに流速分布が安定しているので、超
音波が伝播する中央部のみを計測しても、再現性よく、
また精度よく流量を計測しりことができる。また、超音
波が流量計測部5内を伝播し流量を計測するため、流れ
方向に流体が若干乱れが発生していても、正確に流量を
計測することができる。なお、この場合流量計測部5は
円形、あるいは矩形断面形状であっても良い。
Since the inflow side and the outflow side are configured symmetrically in this way, the fluid flows stably,
Since the flow velocity distribution is stable both in the height direction of the flow rate measuring unit 5, that is, in the vertical direction of the paper surface of FIG. 7, or in the horizontal direction of the flow rate measuring unit 5, that is, in the direction vertical to the paper surface of FIG. 7, ultrasonic waves propagate. Even if you measure only the central part,
In addition, the flow rate can be accurately measured. Further, since the ultrasonic waves propagate in the flow rate measuring unit 5 to measure the flow rate, the flow rate can be accurately measured even if the fluid is slightly disturbed in the flow direction. In this case, the flow rate measuring unit 5 may have a circular or rectangular sectional shape.

【0034】(実施例8) 図9は、本発明の実施例8の流入・流出対称型流量計に
おける流入側超音波振動子14の詳細断面を示す。18
は、超音波振動子14の前面に設けたメッシュを示す。
このメッシュ構成により、チェンバ内の流体が乱れるこ
となく流れ、流量計測部5を流れる流体の流れが安定し
て流れる。従って、流量計測精度がより一層向上し、再
現性がよくなる。
(Embodiment 8) FIG. 9 shows a detailed cross section of the inflow side ultrasonic transducer 14 in the inflow / outflow symmetric flowmeter of Embodiment 8 of the present invention. 18
Indicates a mesh provided on the front surface of the ultrasonic transducer 14.
With this mesh configuration, the fluid in the chamber flows without being disturbed, and the flow of the fluid flowing through the flow rate measuring unit 5 flows stably. Therefore, the flow rate measurement accuracy is further improved and the reproducibility is improved.

【0035】(実施例9) 図10(a)は、本発明の実施例9の流入・流出対称型
流量計における流量計測部5の断面図を示す。図10
(b)は、図10(a)の流出側から見た図を示す。図
中の記号Hは流量計測部5の高さ、すなわち図1の紙面
の上下方向、を示す。また、記号Wは流量計測部5横方
向、すなわち図1の紙面に垂直な方向を示す。矢印19
およびは20は流体の流れる方向を示し、破線21およ
び22は超音波の伝播する方向を示す。記号Aは、流体
の流れる方向20と、超音波の伝播する方向21との交
差角を示す。23と24および25と26は、流体の流
れる流路を挟んで、それぞれ対向して設けられた圧電振
動子を示す。この構成において、流入側の振動子23と
流出側の振動子24、および、流入側の振動子25と流
出側の振動子26との間に、前記実施例7で示した超音
波の伝播時間と流体の流速との関係式が成り立つ。この
場合、振動子23と24間で得られた流速Vf1、振動子
25と26間で得られた流速Vf2、とから、流体の平均
流速値、Vf0=(Vf1+Vf2)/2を求め、流路の断面
積S(=H・W、高さH、幅W)とを乗じ、流体の流
量、Qf0とした。すなわち、Qf0=Vf0・Sとした。
(Embodiment 9) FIG. 10A shows a sectional view of a flow rate measuring section 5 in an inflow / outflow symmetric flowmeter of Embodiment 9 of the present invention. Figure 10
(B) shows the figure seen from the outflow side of Fig. 10 (a). The symbol H in the drawing indicates the height of the flow rate measuring unit 5, that is, the vertical direction of the paper surface of FIG. The symbol W indicates the lateral direction of the flow rate measuring unit 5, that is, the direction perpendicular to the paper surface of FIG. Arrow 19
And 20 indicate the flow direction of the fluid, and broken lines 21 and 22 indicate the propagation direction of the ultrasonic waves. The symbol A indicates an intersection angle between the fluid flow direction 20 and the ultrasonic wave propagation direction 21. Reference numerals 23 and 24 and 25 and 26 denote piezoelectric vibrators provided so as to be opposed to each other with a fluid flow path interposed therebetween. In this configuration, the ultrasonic wave propagation time shown in the seventh embodiment is provided between the inflow side transducer 23 and the outflow side transducer 24, and between the inflow side transducer 25 and the outflow side transducer 26. And the relational expression of the fluid flow velocity holds. In this case, the average flow velocity value of the fluid, Vf0 = (Vf1 + Vf2) / 2, is calculated from the flow velocity Vf1 obtained between the oscillators 23 and 24 and the flow velocity Vf2 obtained between the oscillators 25 and 26, and the flow path is obtained. The cross-sectional area S (= H · W, height H, width W) of was multiplied by to obtain the fluid flow rate, Qf0. That is, Qf0 = Vf0 · S.

【0036】このように超音波が流量計測部5の幅方向
および流れ方向に伝播して流量を計測するので、幅方向
および流れ方向に多少の乱れがあっても、高精度に流体
の流量を計測することができる。このように、流入側と
流出側、さらには幅方向にも対称に構成したので、流入
側、流出側の方向性のない高精度な流量計を構成するこ
とができる。
Since the ultrasonic waves propagate in the width direction and the flow direction of the flow rate measuring unit 5 to measure the flow rate, the flow rate of the fluid can be accurately measured even if there is some disturbance in the width direction and the flow direction. It can be measured. In this way, since the inflow side and the outflow side are configured symmetrically in the width direction as well, it is possible to configure a highly accurate flowmeter without directivity on the inflow side and the outflow side.

【0037】なお、上記実施例において、2組の振動子
による計測を示したが、どちらか一方の振動子組みだけ
であっても、高精度な計測が実現できる。すなわち、2
組みの配置があるため、流体の流れに対しては対称とな
り、流入側あるいは流出側から、流体を供給しても、同
様に安定して流れる。この結果安定した流量計測結果が
得られる。なお、一方の振動子の組み、例えば、23と
24、あるいは25と26とのみで構成されていても、
幅方向に対しては流れの対称が落ちるが、流入側と流出
側とに対しては、すなわち流れ方向には対称性を保つこ
とができるので、流入側あるいは流出側から、流体を供
給しても、安定して流れるので、安定して計測すること
ができる。
In the above embodiment, the measurement with two sets of vibrators is shown. However, highly accurate measurement can be realized with only one of the sets of vibrators. Ie 2
Because of the arrangement of the pairs, the fluid is symmetrical with respect to the flow of the fluid, and even if the fluid is supplied from the inflow side or the outflow side, the fluid similarly flows. As a result, a stable flow rate measurement result can be obtained. In addition, even if it is configured only with one of the pairs of transducers, for example, 23 and 24, or 25 and 26,
Although the flow symmetry decreases in the width direction, it is possible to maintain symmetry with respect to the inflow side and the outflow side, that is, in the flow direction, so that the fluid is supplied from the inflow side or the outflow side. Also, since it flows stably, it is possible to measure stably.

【0038】また、圧電振動子23、24および25、
26の前面にメッシュを設けることにより、流路の凹部
により流体が乱されなくなるので、流体の流れが更に安
定して流れ、流量計測精度がより一層向上する。
Further, the piezoelectric vibrators 23, 24 and 25,
By providing the mesh on the front surface of 26, the fluid is not disturbed by the concave portion of the flow path, so that the fluid flow is more stable and the flow rate measurement accuracy is further improved.

【0039】また、流量計測部5の流路を偏平な矩形断
面(高さH、幅W)としたので、流体の流れが偏平流路
の高さ方向;Hのみに規制されるため、偏平流路の幅方
向;Wの流速分布が小さくなる。従って、小流量から大
流量にわたって、より対称性が向上し、流体の流れが安
定し、正確に計測することができる。
Further, since the flow path of the flow rate measuring section 5 has a flat rectangular cross section (height H, width W), the flow of the fluid is restricted only in the height direction of the flat flow path; The flow velocity distribution in the width direction of the flow path; W becomes smaller. Therefore, from a small flow rate to a large flow rate, the symmetry is improved, the fluid flow is stabilized, and accurate measurement can be performed.

【0040】(実施例10) 図11は、本発明の実施例10の流入・流出対称型流量
計における流量計測装置の側面図を示す。27および2
8は流入孔1および流出孔2に設けた流入側および流出
側の開閉弁を示す。このように流入側、流出側に対称と
なるように開閉弁を設けたので、流入側から、あるいは
流出側から流体を供給しても同様の形状の開閉弁27あ
るいは28を、流体が通過する。このため、たとえ流体
に乱れ発生したとしても、同様の影響を流量計測部5を
流れる流れに与えることになるので、流入側から流体を
供給した時も、あるいは、流出側から流体を供給した時
も、同様に流量を安定して計測することができる。すな
わち、対称な流入・流出対称型流量計測装置を実現する
ことができる。
(Embodiment 10) FIG. 11 is a side view of a flow rate measuring device in an inflow / outflow symmetric flowmeter of Embodiment 10 of the present invention. 27 and 2
Reference numeral 8 denotes inflow and outflow opening / closing valves provided in the inflow hole 1 and the outflow hole 2. Since the on-off valves are provided symmetrically on the inflow side and the outflow side in this way, even if the fluid is supplied from the inflow side or the outflow side, the fluid passes through the on-off valves 27 or 28 having the same shape. . For this reason, even if turbulence occurs in the fluid, the same effect is exerted on the flow flowing through the flow rate measuring unit 5. Therefore, even when the fluid is supplied from the inflow side or when the fluid is supplied from the outflow side. Also, similarly, the flow rate can be stably measured. That is, it is possible to realize a symmetrical inflow / outflow symmetrical flow rate measuring device.

【0041】この構成により、計測流量に異常が発生し
た場合に、流入側あるいは流出側の開閉弁を、あるいは
両方の開閉弁を閉じることができ、安全を確保すること
ができる。この構成で、流入側、流出側の区別のない、
どちら側からもガスの供給できる、安全性の高い、いわ
ゆるマイコンガスメータを実現できる。
With this configuration, when an abnormality occurs in the measured flow rate, the inflow side or outflow side open / close valve or both open / close valves can be closed, and safety can be ensured. With this configuration, there is no distinction between the inflow side and the outflow side,
It is possible to realize a highly safe so-called microcomputer gas meter that can supply gas from either side.

【0042】なお、上記実施例において、流入側開閉弁
あるいは流出側開閉弁の内、どちらか一方の開閉弁が動
作可能であれば、上記の安全性の高いマイコンメータを
実現できる。この場合、動作しない開閉弁は、形状のみ
あれば良いので、低価格で構成することができる。
In the above embodiment, if one of the inflow-side opening / closing valve and the outflow-side opening / closing valve can operate, the above highly safe microcomputer meter can be realized. In this case, since the on-off valve that does not operate may have only the shape, it can be constructed at a low cost.

【0043】(実施例11) 図12は、本発明の実施例11の流入・流出対称型流量
計測装置における流量計測装置の側面図を示す。29
は、実施例9(図10)に示した流量計測部5の中央部
である対称な位置に設けた左右対称に構成されるゲート
型開閉弁、いわゆるギロチン型弁を示す。流入側の超音
波振動子23と、流出側の超音波振動子26との中間位
置に相当する。ゲート型開閉弁29は、比較的容易に口
径を大きくすることができるので、この目的には最適で
ある。口径を大きくすることにより、伝播する超音波を
乱すことがない。また、流体の流れをも乱すことがな
い。
(Embodiment 11) FIG. 12 is a side view of a flow rate measuring device in an inflow / outflow symmetric type flow amount measuring device according to an eleventh embodiment of the present invention. 29
Shows a so-called guillotine type gate type on-off valve which is symmetrically provided at a symmetrical position which is the central portion of the flow rate measuring unit 5 shown in Example 9 (FIG. 10). It corresponds to an intermediate position between the ultrasonic transducer 23 on the inflow side and the ultrasonic transducer 26 on the outflow side. The gate-type on-off valve 29 is suitable for this purpose because it can relatively easily increase its diameter. By increasing the aperture, the propagating ultrasonic waves are not disturbed. Further, it does not disturb the flow of fluid.

【0044】このように中央部にゲート型開閉弁を構成
することにより、一つの開閉弁で、対称性を確保すると
ともに、いわゆるマイコンメータを、簡単な構成で実現
することができる。
By constructing the gate type on-off valve in the central portion in this way, it is possible to secure symmetry with one on-off valve and to realize a so-called microcomputer meter with a simple configuration.

【0045】(実施例12) 図13は、本発明の実施例12の流入・流出対称型流量
計測装置における流入・流出対称型流量計の正面図を示
す。30は流入・流出対称型流量計の外装部を、31は
流入側表示部を、321は流出側表示部を示す。流入・
流出対称型流量計を配管等に設置した後に、流入側およ
び流出側を確認し、流入側には流入側表示部31を、流
出側には流出側表示部32を取付ける。
(Embodiment 12) FIG. 13 shows a front view of an inflow / outflow symmetric flowmeter in an inflow / outflow symmetric flowmeter of Embodiment 12 of the present invention. Reference numeral 30 denotes an exterior part of the symmetrical inflow / outflow type flow meter, 31 an inflow side display part, and 321 an outflow side display part. Inflow
After the outflow symmetric type flow meter is installed in a pipe or the like, the inflow side and the outflow side are confirmed, and the inflow side display unit 31 is attached to the inflow side and the outflow side display unit 32 is attached to the outflow side.

【0046】この構成により、外部から見た場合に、配
管のどちら側が流体の、流入側もしくは流出側かが、一
目瞭然となり、逆取付けなどの問題がなくなる。また、
このような表示部を、内部に有するマイコン等を用い、
設置時に、自動的に流体の流入側あるいは流出側を判別
し、自動的にLCD等に表示することも可能となる。そ
してこの場合には、更に、人手を介することなく実施で
きるので、利便性および信頼性が向上する。
With this structure, it is possible to see at a glance which side of the pipe is the fluid inflow side or outflow side when viewed from the outside, and problems such as reverse mounting are eliminated. Also,
Such a display unit, using a microcomputer or the like inside,
At the time of installation, it is possible to automatically identify the inflow side or outflow side of the fluid and automatically display it on the LCD or the like. Further, in this case, since it can be carried out without human intervention, convenience and reliability are improved.

【0047】[0047]

【発明の効果】以上の説明から明らかなように本発明の
流量計測装置によれば次の効果が得られる。
As is apparent from the above description, the following effects can be obtained by the flow rate measuring device of the present invention.

【0048】(1)流体の流入孔と、流量計測部と、流
体の流出孔とを流れに沿って対称となるよう配置したの
で、流入側から流体を順流で流した時も、流出側から流
体を逆流で流した時も、流体の流量を安定して正確に計
測することができる。また、流量計測装置の取付け方向
が限定されるということがなくなる。また、流体に圧力
変動がある場合にも、流量計測装置に方向性がなく対称
であるため、順流で流した時も、逆流で流した時も、正
確に計測することができる。
(1) Since the fluid inflow hole, the flow rate measuring portion, and the fluid outflow hole are arranged symmetrically along the flow, even when the fluid is made to flow forward from the inflow side, Even when the fluid is caused to flow backward, the flow rate of the fluid can be stably and accurately measured. Further, the mounting direction of the flow rate measuring device is not limited. Further, even when there is a pressure fluctuation in the fluid, since the flow rate measuring device has no directionality and is symmetric, it is possible to accurately measure the flow rate when flowing forward and when flowing backward.

【0049】(2)整流部をチャンバと整流部材とで構
成したので、流入側から流体を流した時も、流出側から
流体を逆流させた時も、前記チャンバ部で流体が一度拡
大した後、縮小するので、流体が流路内を非常に安定し
て流れる。また、整流部材で流れが整流されるため、流
体が流路内を非常に安定して流れる。特に、流量計測部
内では安定して流れるので、正確に流体の流量を計測す
ることができる。
(2) Since the rectifying section is composed of the chamber and the rectifying member, after the fluid once expanded in the chamber section, both when the fluid was made to flow from the inflow side and when the fluid was made to flow backward from the outflow side. , So that the fluid flows in the flow path very stably. Moreover, since the flow is rectified by the rectifying member, the fluid flows in the flow channel very stably. In particular, the flow rate can be accurately measured because the flow rate is stable in the flow rate measurement unit.

【0050】(3)整流部材を、ハニカムおよびメッシ
ュを用いて構成したので、流体がビーム状に整流された
り、あるいは流体の圧力がメッシュの前面全域に渡って
均一に印加され、整流されるので、流体の流量を正確に
計測することができる。
(3) Since the rectifying member is composed of the honeycomb and the mesh, the fluid is rectified into a beam shape, or the pressure of the fluid is uniformly applied and rectified over the entire front surface of the mesh. The flow rate of fluid can be measured accurately.

【0051】(4)流量計測部の中央部の上流側・下流
側の対称な位置に、熱式フローセンサを設けたので、流
入側から流体を流した時も、流出側から流体を逆流させ
た時も、流体が流量計測部を安定して流れるので、流体
の流量を正確に計測することができる。また、流体に圧
力変動があっても、安定して、しかも正確に計測するこ
とができる。
(4) Since the thermal type flow sensors are provided at symmetrical positions on the upstream side and the downstream side of the central portion of the flow rate measuring section, even when the fluid flows from the inflow side, the fluid flows backward from the outflow side. Even when the fluid flows, the fluid stably flows through the flow rate measuring unit, so that the fluid flow rate can be accurately measured. Further, even if there is a pressure fluctuation in the fluid, stable and accurate measurement can be performed.

【0052】(5)熱式フローセンサを、流量計測部の
壁面に設けた凹部に格納する構成としたので、流体に直
接曝されないため、熱式フローセンサの信頼性が向上
し、流体の流量を安定して、しかも正確に計測すること
ができる。
(5) Since the thermal type flow sensor is stored in the concave portion provided on the wall surface of the flow rate measuring section, the thermal type flow sensor is not directly exposed to the fluid, the reliability of the thermal type flow sensor is improved, and the flow rate of the fluid is increased. Can be measured stably and accurately.

【0053】(6)熱式フローセンサを格納した凹部の
流量計測部に接する面に流体の乱れ防止網を配設したの
で、流体が前記熱式フローセンサに乱されないで、安定
して流れしかも正確に計測することができる。
(6) Since the fluid turbulence prevention mesh is arranged on the surface of the concave portion accommodating the thermal type flow sensor in contact with the flow rate measuring portion, the fluid flows stably without being disturbed by the thermal type flow sensor. Can be measured accurately.

【0054】(7)流量計測部に、一対の超音波振動子
を対向して設け、その超音波伝播方向を、流体の流れる
方向に配設したので、超音波が流体の中を伝播し、流体
の流量を流れの方向に沿って平均化しながら計測するこ
とができ、流体の流れ方向に多少の乱れがあっても、流
体の流量を安定して、しかも正確に計測することができ
る。
(7) Since a pair of ultrasonic transducers are provided in the flow rate measuring unit so as to face each other and the ultrasonic wave propagation direction is arranged in the fluid flow direction, the ultrasonic wave propagates in the fluid, The flow rate of the fluid can be measured while being averaged along the flow direction, and even if there is some disturbance in the flow direction of the fluid, the flow rate of the fluid can be stably and accurately measured.

【0055】(8)流量計測部に、複数対の超音波振動
子を対向して設け、その超音波伝播方向を、流体の流れ
る方向と交差して配設したので、超音波が流体を横断し
て幅方向に、また、流れ方向に沿って伝播しながら、流
体の流量を計測することができ、流体の幅方向あるいは
流れ方向に多少の乱れがあっても、流体の流量を安定し
て、しかも正確に計測することができる。
(8) Since a plurality of pairs of ultrasonic transducers are provided in the flow rate measuring unit so as to face each other and the ultrasonic wave propagation direction thereof is arranged to intersect the flow direction of the fluid, the ultrasonic wave traverses the fluid. The flow rate of the fluid can be measured while propagating in the width direction and along the flow direction. Even if there is some disturbance in the width direction or the flow direction of the fluid, the flow rate of the fluid can be stabilized. Moreover, it is possible to measure accurately.

【0056】(9)流入孔と流入側整流部との間に、流
入側開閉弁を設け、かつ、流出側整流部と流出孔との間
に、流出側開閉弁とを設けたので、流入側・流出側から
見た流路を対称に形成するとともに、計測流量に異常が
発生した場合に、流入側あるいは流出側の開閉弁を閉じ
ることができ、安全性を確保することができる。
(9 ) Flow between the inflow hole and the inflow side rectifying section
Provided with an inlet side on-off valve and between the outflow side rectifying section and the outflow hole
Since the on-off valve on the outflow side is provided on the
The flow path seen is formed symmetrically, and the measured flow rate is abnormal.
If it occurs, close the on / off valve on the inflow or outflow side.
It is possible to secure safety.

【0057】(10)流入側開閉弁と流出側開閉弁の
内、少なくとも一方の弁体を動作可能とする構成とした
ので、流入側・流出側から見た流路を対称に形成するよ
うに流入開閉弁側および流出側開閉弁を配設しても、一
方は動作する必要がないため低価格とすることができ
る。
(10) Inflow side opening / closing valve and outflow side opening / closing valve
Among them, at least one of the valve bodies is configured to be operable
Therefore, the flow paths viewed from the inflow side and the outflow side should be formed symmetrically.
Even if the inflow on-off valve side and the outflow-side on-off valve are installed,
People don't have to work so it can be cheaper
It

【0058】(11)量計測部の中央部に、ゲート型開
閉弁を設ける構成としたので、一つの開閉弁で、流入側
・流出側から見た流路を対称に形成でき、構成が簡単と
なる。
(11) Open the gate type at the center of the quantity measuring unit.
Since it is configured to have a closed valve, only one on-off valve
・ Since the flow path viewed from the outflow side can be formed symmetrically, the structure is simple.
Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の流入・流出対称型流量計の
側面図
FIG. 1 is a side view of an inflow / outflow symmetric flowmeter according to a first embodiment of the present invention.

【図2】本発明の実施例2の流入・流出対称型流量計に
おける整流部3の断面図
FIG. 2 is a cross-sectional view of a rectification unit 3 in an inflow / outflow symmetrical flow meter according to a second embodiment of the present invention.

【図3】本発明の実施例3流入・流出対称型流量計にお
けるの整流部材7の断面図
FIG. 3 is a cross-sectional view of a rectifying member 7 in an inflow / outflow symmetrical flow meter according to a third embodiment of the present invention.

【図4】本発明の実施例4の流入・流出対称型流量計に
おける流量計測部5の断面図
FIG. 4 is a sectional view of a flow rate measuring unit 5 in an inflow / outflow symmetrical flow meter according to a fourth embodiment of the present invention.

【図5】本発明の実施例5の流入・流出対称型流量計に
おける流量計測部5の中央断面図
FIG. 5 is a central sectional view of a flow rate measuring unit 5 in an inflow / outflow symmetric flowmeter according to a fifth embodiment of the present invention.

【図6】本発明の実施例6の流入・流出対称型流量計に
おける流量計測部5の中央断面図
FIG. 6 is a central cross-sectional view of a flow rate measuring unit 5 in an inflow / outflow symmetrical flow meter according to a sixth embodiment of the present invention.

【図7】本発明の実施例7の流入・流出対称型流量計の
側面図
FIG. 7 is a side view of an inflow / outflow symmetrical flow meter according to a seventh embodiment of the present invention.

【図8】同流量計の流入側超音波振動子の断面図FIG. 8 is a sectional view of an ultrasonic transducer on the inflow side of the flow meter.

【図9】本発明の実施例8の流入・流出対称型流量計に
おける流入側超音波振動子の断面図
FIG. 9 is a cross-sectional view of an inflow side ultrasonic transducer in an inflow / outflow symmetric flowmeter of Example 8 of the present invention.

【図10】(a)本発明の実施例9の流入・流出対称型
流量計における流量計測部5の中央断面図 (b)同計測部5の側面図
FIG. 10 (a) is a central sectional view of a flow rate measuring unit 5 in an inflow / outflow symmetric flowmeter according to a ninth embodiment of the present invention (b) is a side view of the same measuring unit 5;

【図11】本発明の実施例10の流入・流出対称型流量
計の側面図
FIG. 11 is a side view of an inflow / outflow symmetric flowmeter according to a tenth embodiment of the present invention.

【図12】本発明の実施例11の流入・流出対称型流量
計の側面図
FIG. 12 is a side view of an inflow / outflow symmetrical flow meter according to an eleventh embodiment of the present invention.

【図13】本発明の実施例12の流入・流出対称型流量
計の側面図
FIG. 13 is a side view of an inflow / outflow symmetrical flow meter according to a twelfth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 流入孔 2 流出孔 3 流入側整流部 4 流出側整流部 5 流量計測部 6 チャンバ 7、8 整流部材 9、18 メッシュ 10 ハニカム 11 熱式フローセンサ 14 流入側超音波振動子 15 流出側超音波振動子 17 流入側圧電振動子 23、25 流入側圧電振動子 24、26 流出側圧電振動子 27、28 開閉弁 29 ゲート型開閉弁 30 外装部 31、32 表示部 1 inflow hole 2 Outflow hole 3 Inflow side rectifier 4 Outflow side rectifier 5 Flow rate measurement unit 6 chambers 7, 8 Straightening member 9, 18 mesh 10 Honeycomb 11 Thermal flow sensor 14 Inflow side ultrasonic transducer 15 Outflow side ultrasonic transducer 17 Inflow side piezoelectric vibrator 23, 25 Inflow side piezoelectric vibrator 24, 26 Outflow side piezoelectric vibrator 27, 28 open / close valve 29 gate type on-off valve 30 Exterior 31, 32 Display

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01F 1/68 G01F 1/00 G01F 1/66 101 G01F 3/22 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) G01F 1/68 G01F 1/00 G01F 1/66 101 G01F 3/22

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】流体の流入孔と、流量計測部と、流体の流
出孔とからなり、前記流入孔と前記流量計測部との間に
流入側整流部を、前記流量計測部と前記流出孔との間に
流出側整流部をそれぞれ設け、さらに前記流入側整流部
および流出側整流部は、前記流入孔および流出孔よりも
断面積を大に設定したチャンバと、これらチャンバの流
量計測部側に配置した整流部材とで構成した流入・流出
対称型流量計。
1. A fluid inflow hole, a flow rate measuring portion, and a fluid outflow hole, which are provided between the inflow hole and the flow rate measuring portion.
An inflow side rectifying unit is provided between the flow rate measuring unit and the outflow hole.
Outflow side rectification units are provided, and the inflow side rectification units are further provided.
And the outflow side rectifying portion is more than the inflow hole and the outflow hole.
Chambers with large cross-sections and the flow of these chambers
Inflow / outflow symmetric flowmeter composed of a rectifying member arranged on the side of the volume measuring unit .
【請求項2】整流部材をハニカムおよびメッシュのどち
らか一方もしくは両方から構成した請求項1記載の流入
・流出対称型流量計。
2. Which one of a honeycomb and a mesh is used as the rectifying member
The symmetrical inflow / outflow type flowmeter according to claim 1, wherein the flowmeter is composed of one or both .
【請求項3】流量計測部の中央部に、熱式フローセンサ
を設けた請求項1記載の流入・流出対称型流量計。
3. A thermal type flow sensor in the center of the flow rate measuring section.
The symmetrical inflow / outflow type flowmeter according to claim 1, wherein the flowmeter is provided .
【請求項4】熱式フローセンサを、前記流量計測部の壁
面に設けた凹部に格納した請求項3記載の流入・流出対
称型流量計。
4. A thermal type flow sensor is provided on the wall of the flow rate measuring section.
The symmetrical inflow / outflow type flowmeter according to claim 3, wherein the inflow / outflow symmetric flowmeter is housed in a recess provided in the surface .
【請求項5】流量計測部に一対の超音波振動子を対向し
て設け、超音波伝播方向を流体の流れる方向に配置した
請求項1記載の流入・流出対称型流量計。
5. A pair of ultrasonic transducers are opposed to the flow rate measuring unit.
And the ultrasonic wave propagation direction is arranged in the fluid flow direction.
The symmetrical inflow / outflow type flowmeter according to claim 1 .
【請求項6】流量計測部に複数対の超音波振動子を対向
して設け超音波伝播方向を流体の流れる方向と交差する
ようにして配設した請求項5記載の流入・流出対称型流
量計。
6. A plurality of ultrasonic transducers are opposed to the flow rate measuring unit.
The ultrasonic wave propagation direction intersects with the fluid flow direction
The symmetrical inflow / outflow type flowmeter according to claim 5, wherein the flowmeter is arranged as described above .
【請求項7】流入孔と流入側整流部との間に流入側開閉
弁を、流量計測部と流出孔との間に流出側開閉弁をそれ
ぞれ設けた請求項1記載の流入・流出対称型流量計。
7. An inflow side opening / closing is provided between the inflow hole and the inflow side rectifying portion.
Install a valve on the outflow side between the flow measurement unit and the outflow hole.
The inflow / outflow symmetric flowmeter according to claim 1, which is provided respectively .
【請求項8】流入側開閉弁と流出側開閉弁の少なくとも
一方を動作可能とした請求項7記載の流入・流出対称型
流量。
8. At least an inflow-side opening / closing valve and an outflow-side opening / closing valve
The inflow / outflow symmetrical flow rate according to claim 7, wherein one of them is operable .
【請求項9】流量計測部の中央部に、ゲート型開閉弁を
設けた請求項1記載の流入・流出対称型流量計。
9. A gate type on-off valve is provided at the center of the flow rate measuring section.
The symmetrical inflow / outflow type flowmeter according to claim 1, which is provided .
JP31516399A 1999-11-05 1999-11-05 Inlet / outlet symmetric flow meter Expired - Fee Related JP3511959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31516399A JP3511959B2 (en) 1999-11-05 1999-11-05 Inlet / outlet symmetric flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31516399A JP3511959B2 (en) 1999-11-05 1999-11-05 Inlet / outlet symmetric flow meter

Publications (2)

Publication Number Publication Date
JP2001133307A JP2001133307A (en) 2001-05-18
JP3511959B2 true JP3511959B2 (en) 2004-03-29

Family

ID=18062191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31516399A Expired - Fee Related JP3511959B2 (en) 1999-11-05 1999-11-05 Inlet / outlet symmetric flow meter

Country Status (1)

Country Link
JP (1) JP3511959B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003534A (en) * 2003-06-12 2005-01-06 Tokyo Gas Co Ltd Flow regulating instrument
JP4684548B2 (en) * 2003-12-08 2011-05-18 東京瓦斯株式会社 Gas meter and assembling method thereof
JP4291338B2 (en) * 2006-05-17 2009-07-08 株式会社オーバル Servo type volumetric flow meter with sub flow meter
JP2008014833A (en) * 2006-07-06 2008-01-24 Toshiba Corp Ultrasonic flowmeter
JP5086704B2 (en) * 2007-06-15 2012-11-28 善胤 田村 Ultrasonic current meter
JP2009058444A (en) * 2007-08-31 2009-03-19 Institute Of National Colleges Of Technology Japan Flowmeter for artificial respirator
JP5229105B2 (en) * 2009-05-15 2013-07-03 パナソニック株式会社 Flow measuring device
JP5229164B2 (en) * 2009-09-02 2013-07-03 パナソニック株式会社 Fluid flow measuring device
JP2014077750A (en) * 2012-10-12 2014-05-01 Panasonic Corp Ultrasonic meter
JP6136328B2 (en) * 2013-02-13 2017-05-31 株式会社デンソー Measuring method for gas flowmeter
JP7087811B2 (en) 2018-08-10 2022-06-21 オムロン株式会社 Flow measuring device and piping equipment to which the flow measuring device is applied

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329163A (en) * 1976-08-30 1978-03-18 Hokushin Electric Works Supersonic flowmeter
JPS57194313A (en) * 1981-05-26 1982-11-29 Oval Eng Co Ltd Ultrasonic flow meter for gas
JPS58162815A (en) * 1982-03-24 1983-09-27 Honda Motor Co Ltd Ultrasonic flowmeter for suction air in internal combustion engine
JPH02195941A (en) * 1989-01-25 1990-08-02 Yamatake Honeywell Co Ltd Breathed air flow meter
JP3407443B2 (en) * 1994-12-26 2003-05-19 日産自動車株式会社 Air intake sensor for internal combustion engines
JPH11281438A (en) * 1998-03-31 1999-10-15 Yazaki Corp Pulsation absorbing structure for flow meter

Also Published As

Publication number Publication date
JP2001133307A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
WO2010070891A1 (en) Ultrasonic flowmeter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP3758111B2 (en) Air flow measurement device
EP1041367A1 (en) Flowmeter
JP6375519B2 (en) Gas meter
JP2895704B2 (en) Ultrasonic flow meter
JP4936856B2 (en) Flowmeter
JP2781063B2 (en) Fluidic flow meter
AU600409B2 (en) Trapped-vortex pair flowmeter
JP6134899B2 (en) Flow measurement unit
JP3335688B2 (en) Flowmeter
JP4984348B2 (en) Flow measuring device
JP2009186429A (en) Gas meter
JPH11173896A (en) Flowmeter
JPH06137914A (en) Flow rate measuring apparatus
JP3355130B2 (en) Pulsation absorption structure of flow meter
JP3398251B2 (en) Flowmeter
JP3921518B2 (en) Pulsation absorption structure of electronic gas meter
JPH11281437A (en) Pulsation absorbing structure for flow meter
JPH11281438A (en) Pulsation absorbing structure for flow meter
JPH0547380Y2 (en)
JP2591173Y2 (en) Fluidic flow meter
JP3383576B2 (en) Pulsation absorption structure of flow meter
JP3530645B2 (en) Flow meter structure
JPH10111155A (en) Large flow rate-type fluidic flowmeter

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees