JP3508554B2 - Method for producing high-purity thallium iodide and spherical high-purity thallium iodide - Google Patents

Method for producing high-purity thallium iodide and spherical high-purity thallium iodide

Info

Publication number
JP3508554B2
JP3508554B2 JP18711298A JP18711298A JP3508554B2 JP 3508554 B2 JP3508554 B2 JP 3508554B2 JP 18711298 A JP18711298 A JP 18711298A JP 18711298 A JP18711298 A JP 18711298A JP 3508554 B2 JP3508554 B2 JP 3508554B2
Authority
JP
Japan
Prior art keywords
thallium
iodide
purity
thallium iodide
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18711298A
Other languages
Japanese (ja)
Other versions
JP2000016813A (en
Inventor
裕美 持田
道広 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP18711298A priority Critical patent/JP3508554B2/en
Publication of JP2000016813A publication Critical patent/JP2000016813A/en
Application granted granted Critical
Publication of JP3508554B2 publication Critical patent/JP3508554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高純度ヨウ化タリウ
ムとその球状化物に関する。より詳しくは、鉛濃度が低
く、赤外線透光性ガラスやイオン伝導性ガラスなどの添
加成分として好適な、取扱性に優れた高純度ヨウ化タリ
ウムとその球状化物に関する。
TECHNICAL FIELD The present invention relates to high-purity thallium iodide and its spheroidized product. More specifically, the present invention relates to high-purity thallium iodide and its spheroidized product, which have a low lead concentration and are suitable as an additive component for infrared translucent glass, ion conductive glass and the like and have excellent handleability.

【0002】[0002]

【従来の技術】ヨウ化タリウムの原料であるタリウム金
属は銅、亜鉛、鉛などの製錬工程で副生する残査から主
に回収されており、鉛やカドミウムを不純物として含
む。この鉛やカドミウムはタリウムと化学的性質が似て
いるため高純度に分離するのが難しく、これらの不純物
濃度の少ないタリウムを得るのが難しい。特に鉛はバー
ゼル条約で規制されている物質であり、適正な分離処理
が必要である。しかもヨウ化タリウムをガラスに添加し
て用いる場合、鉛が少量でも含まれていると赤外線透光
性、X線透光性能、イオン伝導性等が著しく低下するた
め、タリウム中から鉛を十分に除去する必要がある。特
に最近ではヨウ化タリウム中の鉛濃度を1ppm以下に抑
えることが望まれている。
2. Description of the Related Art Thallium metal, which is a raw material for thallium iodide, is mainly recovered from residues such as copper, zinc and lead by-produced in a smelting process and contains lead and cadmium as impurities. Since lead and cadmium have similar chemical properties to thallium, it is difficult to separate them into high purity, and it is difficult to obtain thallium having a low impurity concentration. In particular, lead is a substance regulated by the Basel Convention and proper separation treatment is necessary. Moreover, when thallium iodide is added to glass, if infrared rays are contained in a small amount, infrared ray transmissivity, X-ray translucent performance, ionic conductivity, etc. are significantly reduced. Need to be removed. Particularly recently, it has been desired to suppress the lead concentration in thallium iodide to 1 ppm or less.

【0003】また、通常、従来のヨウ化タリウムは粉状
であるため流動性が悪く、しかも粉塵が生じ易い。一般
にタリウム化合物は毒性を有するため、粉塵による周囲
への飛散は出来るだけ避けることが望まれる。
Further, since conventional thallium iodide is in the form of powder, its flowability is poor and dust is easily generated. In general, thallium compounds are toxic, and it is desirable to avoid scattering of dust to the surroundings as much as possible.

【0004】[0004]

【発明の解決課題】本発明の目的は、従来の上記問題を
解決した高純度ヨウ化タリウムを提供するものであっ
て、不純物、特に鉛ないしカドミウム含有量を極力低減
した高純度ヨウ化タリウムを提供する。さらに本発明の
他の目的は、取扱性に優れた球状のヨウ化タリウムを提
供するものである。
An object of the present invention is to provide a high-purity thallium iodide which solves the above-mentioned problems of the prior art, and to provide a high-purity thallium iodide in which the content of impurities, especially lead or cadmium is reduced as much as possible. provide. Still another object of the present invention is to provide spherical thallium iodide having excellent handleability.

【0005】[0005]

【課題の解決手段】すなわち、本発明は(1)粗タリウ
ムを硝酸、硫酸またはこれらの混酸に溶解し、この溶解
液のpHを0.5以上、液中の溶存酸素量を50ppm以下
とし、該溶解液に金属タリウムを加えて不純物金属を置
換析出させることによって溶解液の鉛含有量を低減し、
分離した溶解液にヨウ化物を添加して沈澱したヨウ化タ
リウムを回収することによって鉛含有量1.0ppm以下の
高純度ヨウ化タリウムを製造することを特徴とする方法
に関する。
Means for Solving the Problems That is, according to the present invention, (1) crude thallium is dissolved in nitric acid, sulfuric acid or a mixed acid thereof, and the pH of the solution is adjusted to 0.5 or more and the amount of dissolved oxygen in the solution is set to 50 ppm or less, To reduce the lead content of the solution by adding metal thallium to the solution to substitute and precipitate the impurity metal,
A method for producing high-purity thallium iodide having a lead content of 1.0 ppm or less by recovering the precipitated thallium iodide by adding iodide to the separated solution.

【0006】また、本発明は(2)上記(1)の方法によ
って得た鉛含有量が1.0ppm以下の高純度ヨウ化タリウ
ムを加熱溶融し、不活性雰囲気下に加圧滴下することに
よって球状化することを特徴とする高純度球状ヨウ化タ
リウムの製造方法、(3)上記(1)の方法によって得た
鉛含有量が1.0ppm以下の高純度ヨウ化タリウムをスプ
レードライヤー方式で噴霧乾燥し、生じたペレット状の
粒子を200〜420℃に仮焼して多孔質の球状ヨウ化
タリウムを製造することを特徴とする高純度球状ヨウ化
タリウムの製造方法に関する。
Further, according to the present invention, (2) a high-purity thallium iodide having a lead content of 1.0 ppm or less obtained by the method of (1) above is melted by heating and dropped under pressure in an inert atmosphere. A method for producing high-purity spherical thallium iodide, characterized by spheroidizing, (3) A high-purity thallium iodide having a lead content of 1.0 ppm or less obtained by the method (1) is sprayed by a spray dryer method. The present invention relates to a method for producing high-purity spherical thallium iodide, which comprises drying and producing pelletized particles which are calcined at 200 to 420 ° C. to produce porous spherical thallium iodide.

【0007】また、本発明は(4)粗タリウムを60℃
以上で硝酸に溶解後、溶解液を室温以下に冷却して析出
した硝酸タリウムを回収し、さらに該硝酸タリウムを水
に溶解後、ヨウ化物を添加して沈澱したヨウ化タリウム
を回収することによって得た鉛含有量が1.0ppm以下の
高純度ヨウ化タリウムを加熱溶融し、不活性雰囲気下に
加圧滴下することによって球状化することを特徴とする
高純度球状ヨウ化タリウムの製造方法、または、(5)
上記(4)方法において、鉛含有量が1.0ppm以下の高純
度ヨウ化タリウムを加熱溶融し、不活性雰囲気下に加圧
滴下することに代えて、上記高純度ヨウ化タリウムをス
プレードライヤー方式で噴霧乾燥し、生じたペレット状
の粒子を200〜420℃に仮焼して多孔質の球状ヨウ
化タリウムを製造することを特徴とする高純度球状ヨウ
化タリウムの製造方法に関する。
The present invention also provides (4) crude thallium at 60 ° C.
After dissolving in nitric acid as described above, the solution is cooled to room temperature or below to recover the precipitated thallium nitrate, and after dissolving the thallium nitrate in water, iodide is added to recover the precipitated thallium iodide. A method for producing high-purity spherical thallium iodide, characterized in that the obtained high-purity thallium iodide having a content of 1.0 ppm or less is melted by heating, and is spherically dropped by pressure dropping under an inert atmosphere, Or (5)
In the above method (4), high purity thallium iodide having a lead content of 1.0 ppm or less is melted by heating, and the high purity thallium iodide is spray-dried in place of dropping under pressure in an inert atmosphere. The present invention relates to a method for producing high-purity spherical thallium iodide, which comprises spray-drying the obtained particles in a pellet form and calcining the resulting pelletized particles to 200 to 420 ° C. to produce porous spherical thallium iodide.

【0008】さらに、本発明は(6)上記(2)〜(5)の何
れかの方法によって製造された、鉛含有量1.0ppm以
下、粒径0.2〜2mmφ、嵩密度3.0〜4.5g/cm3の高
純度球状ヨウ化タリウムに関する。
Further, the present invention (6) is produced by the method according to any one of the above (2) to (5) and has a lead content of 1.0 ppm or less, a particle size of 0.2 to 2 mmφ and a bulk density of 3.0. ~ 4.5 g / cm 3 high purity spherical thallium iodide.

【0009】[0009]

【発明の実施の態様】以下、本発明の具体的な態様を説
明する。(I)粗タリウム 本発明で使用する粗タリウムは、亜鉛や銅、鉛などの製
錬工程において生じるタリウム含有滓から得た金属タリ
ウムを用いることができる。この金属タリウムは、例え
ば次のようにして得ることができる。タリウム含有滓を
硫酸に溶解して硫酸タリウム溶液とし、これに硫化ナト
リウム等の硫化物を添加し、液中に含まれる鉛やカドミ
ウムを硫化物に転じて沈澱させ、これを濾別して除去す
る。次いで、この濾液に亜鉛を投入してタリウムを置換
析出させ、スポンジ状の金属タリウムを得る。このタリ
ウムに苛性ソーダを加えて500〜700℃に加熱溶融
し、 液中に含まれる不純物の鉛やカドミウムを苛性ソ
ーダに吸着させてスラグ化し除去することにより、鉛お
よびカドミウムの含有量が20ppm程度まで低減した粗
タリウムが得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of the present invention will be described below. (I) Crude Thallium As the crude thallium used in the present invention, metal thallium obtained from a thallium-containing slag produced in a smelting process of zinc, copper, lead or the like can be used. This metal thallium can be obtained as follows, for example. The thallium-containing slag is dissolved in sulfuric acid to form a thallium sulfate solution, to which sulfides such as sodium sulfide are added, and lead and cadmium contained in the solution are converted into sulfides to cause precipitation, which is then filtered off. Next, zinc is added to this filtrate to substitute and deposit thallium to obtain sponge-like metal thallium. By adding caustic soda to this thallium and heating and melting it to 500-700 ° C, the impurities lead and cadmium contained in the liquid are adsorbed by caustic soda and removed as slag, thereby reducing the content of lead and cadmium to about 20 ppm. To obtain crude thallium.

【0010】(II)溶解液の調製 上記粗タリウムを硝酸、硫酸またはこれらの混酸に溶解
する。酸の濃度は0.5〜2.0mol/lが適当である。溶
解液のタリウム濃度は15〜60g/lが好ましく、ま
た、液温はタリウムの溶解を促すために60℃以上に加
熱するのが好ましい。
(II) Preparation of Dissolution Solution The above crude thallium is dissolved in nitric acid, sulfuric acid or a mixed acid thereof. A suitable acid concentration is 0.5 to 2.0 mol / l. The thallium concentration of the solution is preferably 15 to 60 g / l, and the solution temperature is preferably heated to 60 ° C. or higher in order to promote the dissolution of thallium.

【0011】粗タリウムの溶解液は強酸性であるので、
これにアルカリを添加してpH0.5以上、好ましくは
pH1.0〜3.0に調整する。該溶解液のpHが0.5
未満であると次工程でタリウムの置換析出反応が十分に
進行しない。アルカリとしては水酸化ナトリウムなどを
用いることができる。
Since the solution of crude thallium is strongly acidic,
The pH is adjusted to 0.5 or more, preferably pH 1.0 to 3.0 by adding an alkali to this. The pH of the solution is 0.5
If it is less than the above value, the substitutional precipitation reaction of thallium does not proceed sufficiently in the next step. Sodium hydroxide or the like can be used as the alkali.

【0012】さらに、上記タリウム溶解液の溶存酸素量
を50ppm以下、好ましくは10ppm以下に整える。液中
の溶存酸素量を50ppm以下にするには、密閉容器中で
該溶解液に不活性ガスを吹き込んでバブリングまたは加
熱沸騰させ、液中の酸素を系外に追い出せば良い。不純
物金属として液中に含まれる鉛イオンの還元電位はタリ
ウムイオンよりも僅かに高い程度なので、液中の溶存酸
素を追い出すことにより、次工程でのタリウム金属によ
るセメンテーションが有効に行われるようにする。液中
の溶存酸素量が50ppmより多いと、セメンテーション
による不純物金属の鉛やカドミウムの析出が不十分にな
る。これは、溶存酸素があると、不純物とタリウムの電
位差が僅かなため酸化反応が起き、セメンテーションが
有効に作用しないためと考えられる。
Further, the dissolved oxygen content of the thallium solution is adjusted to 50 ppm or less, preferably 10 ppm or less. In order to reduce the amount of dissolved oxygen in the liquid to 50 ppm or less, an inert gas may be blown into the dissolved liquid in a closed container to cause bubbling or heating to boil to expel oxygen in the liquid out of the system. Since the reduction potential of lead ion contained in the liquid as an impurity metal is slightly higher than that of thallium ion, by expelling the dissolved oxygen in the liquid, the cementation by the thallium metal in the next step can be effectively performed. To do. When the amount of dissolved oxygen in the liquid is more than 50 ppm, precipitation of impurity metals such as lead and cadmium due to cementation becomes insufficient. This is presumably because the presence of dissolved oxygen causes an oxidation reaction due to a small potential difference between the impurities and thallium, and cementation does not act effectively.

【0013】(III)浄液 上記液性条件下で、溶解液にタリウム金属を加えて鉛や
カドミウム等の不純物金属イオンを析出させる。溶解液
に加えるタリウム金属は棒状、板状、粉状など何れでも
良い。なお多数のタリウム金属板を液中に並べれば効率
が良い。このセメンテーションにより、タリウム金属が
イオン化して溶解するのに伴い、液中の鉛やカドミウム
等のタリウムよりも貴な不純物金属イオンが還元されて
析出し、槽底に沈積する。これを容器の底部から抜き出
し、濾過して不純物を除去し、溶解液中の鉛イオンを大
幅に減少した液を得ることができる。
(III) Purification Solution Under the above-mentioned liquid conditions, thallium metal is added to the solution to precipitate impurity metal ions such as lead and cadmium. The thallium metal added to the solution may be rod-shaped, plate-shaped or powder-shaped. It is efficient to arrange a large number of thallium metal plates in the liquid. As a result of this cementation, as the thallium metal is ionized and dissolved, impurities in the liquid, such as lead and cadmium, which are more precious than thallium, are reduced and deposited, and deposited on the bottom of the tank. This can be extracted from the bottom of the container, filtered to remove impurities, and a solution in which lead ions in the solution are significantly reduced can be obtained.

【0014】以上のようなセメンテーションに代えて、
溶解度の相違を利用した浄液法によることもできる。す
なわち、粗タリウムを、60℃以上の液温で、硝酸に溶
解して硝酸タリウム溶液とした後に、液温を室温以下ま
で次第に下げて硝酸タリウムを析出させる。液温が高い
場合には硝酸タリウムの溶解度が硝酸鉛や硝酸カドミウ
ムの溶解度よりも高く、タリウムの溶解に適するが、室
温以下の液温になると硝酸タリウムの溶解度は硝酸鉛や
硝酸カドミウムよりも低くなり、硝酸タリウムが先に析
出するので、液中に溶存する鉛イオンやカドミウムイオ
ンと分離して回収することができる。次で、得られたタ
リウム化合物(硝酸タリウム等)をアルコール等で洗浄
することにより、回収した硝酸タリウム中の鉛濃度を大
幅に低減することができる。この硝酸タリウムを水に溶
解して硝酸タリウムの精製液を得る。
Instead of the above cementation,
It is also possible to use a purification method utilizing the difference in solubility. That is, crude thallium is dissolved in nitric acid at a liquid temperature of 60 ° C. or higher to form a thallium nitrate solution, and then the liquid temperature is gradually lowered to room temperature or lower to precipitate thallium nitrate. When the liquid temperature is high, the solubility of thallium nitrate is higher than that of lead nitrate or cadmium nitrate, which is suitable for the dissolution of thallium, but when the liquid temperature is below room temperature, the solubility of thallium nitrate is lower than that of lead nitrate or cadmium nitrate. Since thallium nitrate is deposited first, it is possible to separate and recover lead ions and cadmium ions dissolved in the liquid. Next, by washing the obtained thallium compound (such as thallium nitrate) with alcohol or the like, the lead concentration in the recovered thallium nitrate can be significantly reduced. This thallium nitrate is dissolved in water to obtain a purified solution of thallium nitrate.

【0015】(IV)ヨウ化タリウムの回収 上記セメンテーションにより浄液したタリウム溶解液、
あるいは溶解度の相違を利用して浄液した硝酸タリウム
溶液に、ヨウ化物を添加してヨウ化タリウムを沈殿さ
せ、これを固液分離して回収する。ヨウ化物としてはヨ
ウ化カリウム(KI)、ヨウ化水素酸などを用いることが
できる。その添加量は液中のタリウム量に対して1.0
〜1.15当量程度が好ましい。
(IV) Recovery of thallium iodide Thallium solution purified by the above cementation,
Alternatively, iodide is added to a thallium nitrate solution purified by utilizing the difference in solubility to precipitate thallium iodide, which is solid-liquid separated and recovered. Potassium iodide (KI), hydriodic acid or the like can be used as the iodide. The amount added is 1.0 with respect to the amount of thallium in the liquid.
It is preferably about 1.15 equivalents.

【0016】(V)高純度ヨウ化タリウム 以上のようにして得られた本発明のヨウ化タリウムは、
不純物の鉛濃度が1ppm以下の高純度品であり、赤外線
透光性やX線透光性、イオン伝導性等の性能を著しく阻
害する鉛含有量が従来品に比べて大幅に低減されている
ため、各種のガラス材料や光半導体材料に適する。
(V) High Purity Thallium Iodide The thallium iodide of the present invention obtained as described above is
It is a high-purity product with an impurity lead concentration of 1 ppm or less, and the lead content, which significantly impairs infrared transparency, X-ray transparency, and ion conductivity, is significantly reduced compared to conventional products. Therefore, it is suitable for various glass materials and optical semiconductor materials.

【0017】(VI)球状化 上記高純度ヨウ化タリウムを球状化することにより、そ
の取扱性を高めることができる。該球状化物を製造する
ための装置構成の概略を図1に示す。本装置はヨウ化タ
リウムを溶融して滴下するための溶融部10、滴下され
た溶融ヨウ化タリウムを冷却固化するための冷却部2
0、および固化したヨウ化タリウム球状化物を回収する
ための回収部30からなり、これらは密閉した空間に形
成されている。
(VI) Spheroidization By handling the above-mentioned high-purity thallium iodide into a spherical shape, its handleability can be improved. The outline of the apparatus configuration for producing the spheroidized product is shown in FIG. This apparatus comprises a melting section 10 for melting and dropping thallium iodide and a cooling section 2 for cooling and solidifying the dropped molten thallium iodide.
0, and a recovery unit 30 for recovering the solidified thallium iodide spheroidized product, which are formed in a closed space.

【0018】該装置上部の溶融部10には溶融ルツボ1
1とヒータ12が設けられており、該溶融ルツボ底部に
は溶融したヨウ化タリウム13を滴下するためのノズル
14が付設されている。また、ルツボ上部には不活性ガ
ス導入口15が設けられ、その導入口は不活性ガスの加
圧供給手段16に通じている。一方、ノズル14から装
置底部に至る冷却部20の途中には不活性液体の噴射口
34が開口し、この噴射口34は管路を介して装置底部
に溜まった不活性液体に通じており、管路に設けたポン
プ33によって装置底部の不活性液体が抜き出され、噴
射口34から噴出される。噴射された不活性液体は再び
装置底部に溜まる。この循環系により装置底部に溜まっ
た不活性液体を繰り返し再利用することができる。
A melting crucible 1 is provided in a melting portion 10 above the apparatus.
1 and a heater 12, and a nozzle 14 for dropping the molten thallium iodide 13 is attached to the bottom of the melting crucible. Further, an inert gas introducing port 15 is provided on the upper part of the crucible, and the introducing port communicates with the pressurized gas supplying means 16 of the inert gas. On the other hand, an injection port 34 of an inert liquid is opened in the middle of the cooling unit 20 from the nozzle 14 to the bottom of the device, and this injection port 34 communicates with the inert liquid accumulated at the bottom of the device via a pipe line. The inert liquid at the bottom of the device is extracted by the pump 33 provided in the pipe and is ejected from the ejection port 34. The jetted inert liquid again accumulates at the bottom of the device. With this circulation system, the inert liquid accumulated at the bottom of the apparatus can be reused repeatedly.

【0019】上記高純度ヨウ化タリウムをルツボ11に
封入し、ヒータ12によってその融点(442℃)以上に加
熱して溶融する。加熱温度の上限は480℃程度で良
い。なお、粉状のヨウ化タリウムは乾燥すると取り扱う
際に粉塵が飛散するので、乾燥しない状態でルツボに装
入するのが好ましい。加熱溶融時には、溶融途中で溶湯
13がノズル14から滴下しないように、ノズル側から
不活性ガスを逆流させておけばよい。具体的には、図示
するように、不活性ガスを通じる管路の途中に分岐バル
ブ17を設けてノズル14の下方に開口する分岐管路を
介設し、該分岐管路を通じて装置内部にガス圧をかけ、
ノズルから溶湯が滴下しないようにすればよい。
The above-mentioned high-purity thallium iodide is enclosed in a crucible 11 and heated by a heater 12 to a temperature above its melting point (442 ° C.) to melt it. The upper limit of the heating temperature may be about 480 ° C. If powdery thallium iodide is dried, dust will scatter during handling, so it is preferable to load thallium iodide into the crucible in a non-dried state. During heating and melting, an inert gas may be allowed to flow backward from the nozzle side so that the molten metal 13 does not drip from the nozzle 14 during melting. Specifically, as shown in the figure, a branch valve 17 is provided in the middle of a pipeline through which an inert gas is provided, and a branch pipeline that opens below the nozzle 14 is provided. Apply pressure,
It suffices to prevent molten metal from dripping from the nozzle.

【0020】溶融後、分岐管路を通じた不活性ガスの供
給を止め、ルツボ上方の開口15から不活性ガスを供給
して溶湯13を加圧し、ヨウ化タリウムの溶湯13をノ
ズル14から不活性雰囲気下(脱酸化性雰囲気下)で滴下
させる。滴下された溶湯13は冷却部20を自由落下す
る間に固化し、その表面張力によって球状化し、装置底
部に溜まる。この落下時に、噴射口34から不活性液体
を噴出し、この噴射流に向かって落下させることにより
冷却が促進されて表面が堅い状態になるので好ましい。
滴下後、装置底部に溜まった球状ヨウ化タリウム31を
回収する。
After the melting, the supply of the inert gas through the branch pipe is stopped, the inert gas is supplied from the opening 15 above the crucible to pressurize the molten metal 13, and the molten thallium iodide 13 is inactivated from the nozzle 14. Add dropwise under an atmosphere (under a deoxidizing atmosphere). The dropped molten metal 13 solidifies during free fall in the cooling unit 20, becomes spherical due to its surface tension, and collects at the bottom of the apparatus. At the time of this drop, the inert liquid is jetted from the jet port 34 and dropped toward this jet flow, whereby cooling is promoted and the surface becomes hard, which is preferable.
After the dropping, the spherical thallium iodide 31 collected at the bottom of the device is recovered.

【0021】上記装置構成において、溶融温度、ノズル
径、不活性ガス圧、不活性液体の噴射圧等を調整するこ
とにより、粒径が0.2〜2.0mmφ、好ましくは0.4
〜1.2mmφ、嵩密度が3.0〜4.5g/cm3、好ましくは
3.5〜4.2g/cm3の球状ヨウ化タリウムを得ることが
できる。このような球状物であれば粉塵も生じ難く、流
動性も良いので取扱い易い。粒径が0.2mmφより小さ
いと粉塵が生じやすく、取扱性に劣る。また、粒径が
2.0mmφより大きいものは製造が困難であり、さらに
冷却が遅くなるため表面強度が十分ではなく、表面剥離
や崩壊を起こしやすくなる。上記嵩密度の範囲であれば
球状化の程度が良く、この範囲を外れると形状が異形に
なって砕けやすく、また表面積も大きく微細化し、粉塵
も生じやすくなる。
In the above apparatus structure, the particle size is 0.2 to 2.0 mmφ, preferably 0.4 by adjusting the melting temperature, nozzle diameter, inert gas pressure, inert liquid injection pressure, and the like.
It is possible to obtain spherical thallium iodide having a diameter of .about.1.2 mm and a bulk density of 3.0 to 4.5 g / cm @ 3, preferably 3.5 to 4.2 g / cm @ 3. Such a spherical object is easy to handle because it is less likely to generate dust and has good fluidity. If the particle size is smaller than 0.2 mmφ, dust is likely to be generated, resulting in poor handleability. Further, if the particle size is larger than 2.0 mmφ, it is difficult to manufacture, and further the cooling is delayed, so that the surface strength is not sufficient, and the surface is liable to peel or collapse. If the bulk density is in the above range, the degree of spheroidization is good, and if it is out of this range, the shape becomes irregular and is easily broken, and the surface area becomes large and fine, and dust is easily generated.

【0022】以上のような滴下法による球状化の他に、
噴霧乾燥して仮焼することにより球状ヨウ化タリウムを
製造することができる。すなわち、上記高純度ヨウ化タ
リウムをスプレードライヤー等で湿式噴霧乾燥し、生じ
たペレット状の粒子を、200〜500℃、好ましくは
200〜420℃に仮焼することにより、粒径0.2〜
0.5mmφの球状ヨウ化タリウムを得ることができる。
Besides spheroidizing by the dropping method as described above,
Spherical thallium iodide can be produced by spray drying and calcining. That is, the high-purity thallium iodide is wet-spray dried with a spray dryer or the like, and the resulting pellet-shaped particles are calcined at 200 to 500 ° C., preferably 200 to 420 ° C.
A spherical thallium iodide having a diameter of 0.5 mm can be obtained.

【0023】[0023]

【発明の効果】以上のように、本発明の高純度ヨウ化タ
リウムは鉛含有量が従来よりも大幅に少なく、従って、
赤外線透光性やイオン伝導性に優れたガラス添加剤を得
ることができる。また、本発明の高純度ヨウ化タリウム
の球状化物は、適度な粒径を有し、球形度が良く流動性
に優れており、しかも表面が緻密であるため強度が大き
く、従って粉化し難く取扱性の良いものである。
As described above, the high-purity thallium iodide of the present invention has a lead content much smaller than that of the conventional one, and therefore,
It is possible to obtain a glass additive having excellent infrared translucency and ionic conductivity. Further, the spheroidized product of the high-purity thallium iodide of the present invention has an appropriate particle size, has good sphericity and excellent fluidity, and has a dense surface so that it has high strength and is therefore difficult to be pulverized. It is a good one.

【0024】[0024]

【実施例】以下、本発明の実施例を示す。なお、これら
は例示であり、本発明を限定するものではない。
EXAMPLES Examples of the present invention will be shown below. It should be noted that these are examples and do not limit the present invention.

【0025】実施例1 タリウム含有滓から得た硝酸タリウム溶解液(Tl濃度35g
/l、Pb濃度7.5mg/l)に水酸化ナトリウムを加えてpHを
1.2に調整した後、液中に窒素ガスを吹き込んでバブ
リングを行い、液中の酸素溶存量を10ppmにした。窒
素ガスのバブリングを継続しながら該溶解液にタリウム
金属板を挿入し、4時間撹拌した。その後、容器底部の
沈澱物と共に溶液を抜き出して固液分離し、その濾液の
鉛濃度を測定したところ1.0mg/l未満であった。引き
続き、このタリウム硝酸溶液2リットルにヨウ化カリウム6
0gを加え、生じた沈殿物を濾過分離して乾燥すること
によりヨウ化タリウム粉末110gを得た。この粉末の
鉛濃度は0.1ppm未満であった。
Example 1 Thallium nitrate solution obtained from a thallium-containing slag (Tl concentration 35 g
After adjusting the pH to 1.2 by adding sodium hydroxide to (/ l, Pb concentration 7.5 mg / l), nitrogen gas was blown into the solution for bubbling to adjust the amount of dissolved oxygen in the solution to 10 ppm. While continuing the bubbling of nitrogen gas, a thallium metal plate was inserted into the solution and stirred for 4 hours. After that, the solution was extracted together with the precipitate at the bottom of the container, and solid-liquid separation was performed, and the lead concentration of the filtrate was measured and found to be less than 1.0 mg / l. Then, 2 liters of this thallium nitric acid solution was added with potassium iodide 6
0 g was added, and the resulting precipitate was separated by filtration and dried to obtain 110 g of thallium iodide powder. The lead concentration of this powder was less than 0.1 ppm.

【0026】比較例1 窒素ガスのバブリングを行わなかった以外は実施例1と
同様にして金属タリウム板によるセメンテーションを行
った。固液分離後の濾液の鉛濃度は2.5mg/lであっ
た。また、実施例1と同様にしてこの濾液から得たヨウ
化タリウム粉末の鉛濃度は13ppmであった。
Comparative Example 1 Cementation with a metal thallium plate was performed in the same manner as in Example 1 except that bubbling of nitrogen gas was not performed. The lead concentration of the filtrate after solid-liquid separation was 2.5 mg / l. The lead concentration of the thallium iodide powder obtained from this filtrate in the same manner as in Example 1 was 13 ppm.

【0027】実施例2 実施例1で得たヨウ化タリウム沈殿物を濾過回収した
後、乾燥せずに、図1に示す装置の溶融ルツボに入れ、
石英製ノズル下方の冷却部に窒素ガス圧をかけながら、
460℃に加熱して溶融させた。次いで、バルブを切り
替え、溶融ルツボ上部に窒素ガス圧をかけて、ノズル
(孔径0.3mmφ)からヨウ化タリウムの溶湯を滴下し
た。また、その滴下途中に不活性液体のフロン113を噴
射し、その噴射流に滴下させた。滴下後、回収部に溜ま
った球状化物を回収し、粒径分布および嵩密度を測定し
たところ、この球状化物は、粒径1.2mmφ以上のもの
が1重量%、粒径0.4〜1.2mmφのものが95重量
%、0.4mmφ未満のものが2重量%であり、平均嵩密
度が3.8g/cm3の球形の整ったものであった。
Example 2 The thallium iodide precipitate obtained in Example 1 was collected by filtration and then put in a melting crucible of the apparatus shown in FIG. 1 without drying.
While applying nitrogen gas pressure to the cooling part below the quartz nozzle,
It was heated to 460 ° C. and melted. Then, switch the valve, apply nitrogen gas pressure to the upper part of the melting crucible, and
The molten metal of thallium iodide was dropped from (pore diameter 0.3 mmφ). Further, Freon 113, which is an inert liquid, was jetted during the dropping, and dropped into the jet flow. After the dropping, the spheroidized material collected in the recovery part was recovered, and the particle size distribution and bulk density were measured. 95% by weight of 0.2 mmφ and 2% by weight of less than 0.4 mmφ were spherical regular particles having an average bulk density of 3.8 g / cm 3 .

【0028】実施例3 タリウムメタル(Pb22ppm含有)500gに、硝酸(60wt
%)400gと水を加えて85℃で溶解した。得られた
硝酸タリウム溶解液1.2リットルを撹拌しながら5℃まで
冷却すると、硝酸タリウムの結晶が析出した。これを濾
過し、アルコールで洗浄して硝酸タリウム結晶を得た。
結晶中の鉛は1.0ppmであり、結晶量は600gであっ
た。次いで、これを水に溶解し、ヨウ化水素303gを
添加してヨウ化タリウムを沈澱させた。濾過して回収し
たヨウ化タリウム中の鉛濃度は0.4ppmであった。この
ヨウ化タリウム粉末をアルコールでスラリー状とした
後、結着剤を添加し、スプレードライヤーで噴霧乾燥し
たところ、平均粒径0.24mmφのペレットを得た。こ
れを加熱炉で340℃に焼成したところ、平均粒径0.
21mmφの緻密な球状焼結ペレットを得た。
Example 3 500 g of thallium metal (containing 22 ppm of Pb) was added with nitric acid (60 wt.
%) 400 g and water were added and dissolved at 85 ° C. When 1.2 liters of the obtained thallium nitrate solution was cooled to 5 ° C. with stirring, crystals of thallium nitrate were precipitated. This was filtered and washed with alcohol to obtain thallium nitrate crystals.
Lead in the crystal was 1.0 ppm, and the amount of crystal was 600 g. Next, this was dissolved in water, and 303 g of hydrogen iodide was added to precipitate thallium iodide. The lead concentration in thallium iodide collected by filtration was 0.4 ppm. This thallium iodide powder was made into a slurry with alcohol, a binder was added, and the mixture was spray-dried with a spray dryer to obtain pellets having an average particle size of 0.24 mmφ. When this was fired at 340 ° C. in a heating furnace, the average particle size was 0.1.
21 mmφ dense spherical sintered pellets were obtained.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の高純度ヨウ化タリウム球状化物を製
造するための装置構成を示す模式断面図。
FIG. 1 is a schematic cross-sectional view showing an apparatus configuration for producing a high-purity thallium iodide spheroidized product of the present invention.

【符号の説明】[Explanation of symbols]

10…溶融部、11…溶融ルツボ、12…ヒータ、13
…溶湯、14…ノズル、20…冷却部、30…回収部
10 ... Melting part, 11 ... Melting crucible, 12 ... Heater, 13
... Molten metal, 14 ... Nozzle, 20 ... Cooling unit, 30 ... Recovery unit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 - 23/08 B01J 2/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C01G 1/00-23/08 B01J 2/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粗タリウムを硝酸、硫酸またはこれらの
混酸に溶解し、この溶解液のpHを0.5以上、液中の
溶存酸素量を50ppm以下とし、該溶解液に金属タリウ
ムを加えて不純物金属を置換析出させることによって溶
解液の鉛含有量を低減し、分離した溶解液にヨウ化物を
添加して沈澱したヨウ化タリウムを回収することによっ
鉛含有量1 . ppm 以下の高純度ヨウ化タリウムを製造
することを特徴とする方法。
1. Crude thallium is dissolved in nitric acid, sulfuric acid or a mixed acid thereof, the pH of the solution is adjusted to 0.5 or more, the amount of dissolved oxygen in the solution is set to 50 ppm or less, and metal thallium is added to the solution. soluble by replacing precipitate impurity metals
A high-purity thallium iodide having a lead content of 1.0 ppm or less is produced by reducing the lead content of the solution and adding iodide to the separated solution to recover the precipitated thallium iodide .
A method characterized by:
【請求項2】 請求項1の方法によって得た鉛含有量が
. ppm 以下の高純度ヨウ化タリウムを加熱溶融し、不
活性雰囲気下に加圧滴下することによって球状化するこ
とを特徴とする高純度球状ヨウ化タリウムの製造方法。
2. The lead content obtained by the method of claim 1 is
1. The 0 ppm or less of a high-purity thallium iodide heated and melted, high purity spherical manufacturing method of thallium iodide, characterized in that the spheroidized by lower pressure dropping under an inert atmosphere.
【請求項3】 請求項1の方法によって得た鉛含有量が
. ppm 以下の高純度ヨウ化タリウムをスプレードライ
ヤー方式で噴霧乾燥し、生じたペレット状の粒子を20
0〜420℃に仮焼して多孔質の球状ヨウ化タリウムを
製造することを特徴とする高純度球状ヨウ化タリウムの
製造方法。
3. The lead content obtained by the method of claim 1 is
1. 0 ppm or less of a high-purity thallium iodide was spray-dried with a spray dryer method, the resulting pellet-like particles 20
A method for producing high-purity spherical thallium iodide, which comprises calcination at 0 to 420 ° C. to produce porous spherical thallium iodide.
【請求項4】 粗タリウムを60℃以上で硝酸に溶解
後、溶解液を室温以下に冷却して析出した硝酸タリウム
を回収し、さらに該硝酸タリウムを水に溶解後、ヨウ化
物を添加して沈澱したヨウ化タリウムを回収することに
よって得た鉛含有量が1 . ppm 以下の高純度ヨウ化タリ
ウムを加熱溶融し、不活性雰囲気下に加圧滴下すること
によって球状化することを特徴とする高純度球状ヨウ化
タリウムの製造方法。
4. After dissolving crude thallium in nitric acid at 60 ° C. or higher, the solution is cooled to room temperature or lower to recover the precipitated thallium nitrate, further dissolve the thallium nitrate in water, and then add iodide. High-purity thallium iodide having a lead content of 1.0 ppm or less obtained by recovering the precipitated thallium iodide .
To melt um by heating and drop it under pressure in an inert atmosphere.
High-purity spherical iodide characterized by being spheroidized by
Method for producing thallium.
【請求項5】 請求項4の方法において、鉛含有量が
. ppm 以下の高純度ヨウ化タリウムを加熱溶融し、不
活性雰囲気下に加圧滴下することに代えて、上記高純度
ヨウ化タリウムをスプレードライヤー方式で噴霧乾燥
し、生じたペレット状の粒子を200〜420℃に仮焼
して多孔質の球状ヨウ化タリウムを製造することを特徴
とする高純度球状ヨウ化タリウムの製造方法。
5. The method according to claim 4, wherein the lead content is
1. Melted by heating 0 ppm or less of a high-purity thallium iodide, not
Instead of dropping under pressure in an active atmosphere,
Spray drying thallium iodide using a spray dryer
And calcining the resulting pellet-shaped particles to 200 to 420 ° C.
To produce porous spherical thallium iodide
And a method for producing high-purity spherical thallium iodide.
【請求項6】 請求項2〜5の何れかの方法によって製
造された、鉛含有量1 . ppm 以下、粒径0 . 2〜2 mm
φ、嵩密度3 . 0〜4 . g/cm 3 の高純度球状ヨウ化タリ
ウム。
6.Made by the method according to any one of claims 2 to 5.
Made, lead content 1 . 0 ppm Below, particle size 0 . 2 to 2 mm
φ, bulk density 3 . 0-4 . 5 g / cm 3 High-purity spherical thallium iodide
Umm.
JP18711298A 1998-07-02 1998-07-02 Method for producing high-purity thallium iodide and spherical high-purity thallium iodide Expired - Lifetime JP3508554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18711298A JP3508554B2 (en) 1998-07-02 1998-07-02 Method for producing high-purity thallium iodide and spherical high-purity thallium iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18711298A JP3508554B2 (en) 1998-07-02 1998-07-02 Method for producing high-purity thallium iodide and spherical high-purity thallium iodide

Publications (2)

Publication Number Publication Date
JP2000016813A JP2000016813A (en) 2000-01-18
JP3508554B2 true JP3508554B2 (en) 2004-03-22

Family

ID=16200322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18711298A Expired - Lifetime JP3508554B2 (en) 1998-07-02 1998-07-02 Method for producing high-purity thallium iodide and spherical high-purity thallium iodide

Country Status (1)

Country Link
JP (1) JP3508554B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044035A1 (en) * 2005-09-14 2007-03-15 Basf Ag Method for dripping liquids
JP5293007B2 (en) 2008-08-29 2013-09-18 住友大阪セメント株式会社 Method and apparatus for recovering thallium and potassium nitrate
JP5293005B2 (en) 2008-08-29 2013-09-18 住友大阪セメント株式会社 Method and apparatus for recovering thallium and potassium nitrate
CN116239142B (en) * 2023-03-14 2024-03-22 广西埃索凯循环科技有限公司 Method for preparing thallium iodide by taking industrial thallium-containing solid waste residues as raw materials

Also Published As

Publication number Publication date
JP2000016813A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
CN103717764B (en) The recovery method of rare earth element
KR101199661B1 (en) Method for recovering indium
CN101376174B (en) Method for preparing superfine spherical cobalt powder
JP2004035398A (en) Spheroidizing of silicon metal powder
CA2396445C (en) Process for refining silver bullion with gold separation
JPH04116109A (en) Production of fine copper powder
CN104884649B (en) The recovery method of rare earth element
KR20100117653A (en) Process for manufacturing prefluxed metal oxide from metal hydroxide and metal carbonate precursors
JP3508554B2 (en) Method for producing high-purity thallium iodide and spherical high-purity thallium iodide
CN104724740B (en) A kind of preparation method of high pure and ultra-fine aluminium hydrate powder
CN113387387A (en) Method for preparing sodium tungstate solution by utilizing tungsten-containing waste in short process
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
JP4511957B2 (en) Silicon refining method
RU2539593C1 (en) Electrochemical method of obtaining of powder of calcium hexaboride
JP2004123523A (en) Method for producing indium oxide-tin oxide powder
JP4701480B2 (en) Tin oxide powder and method for producing tin oxide powder
JP4253907B2 (en) Method for producing indium oxide-tin oxide powder
JP4183926B2 (en) Method for recovering tantalum / niobium from tantalum / niobium-containing carbide materials
KR20130100332A (en) Apparatus for manufacturing fine powder of high purity silicon
JP2002302720A (en) Method for recovering tallium from tallium-containing glass scrap
CN110171846B (en) Method for preparing lead oxide powder by utilizing waste lead paste through ultrasonic spray roasting
KR20230117427A (en) Production method of porous nano-silicon
CN107074556A (en) Prepare the apparatus and method of basic activated carbon
CN110127753A (en) A method of lead oxide is recycled by waste and old lead acid accumulator
JPS5942736B2 (en) Method for reducing copper-containing substances

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

EXPY Cancellation because of completion of term