JP3507945B2 - High-speed tire uniformity estimation method and tire selection method - Google Patents

High-speed tire uniformity estimation method and tire selection method

Info

Publication number
JP3507945B2
JP3507945B2 JP32741799A JP32741799A JP3507945B2 JP 3507945 B2 JP3507945 B2 JP 3507945B2 JP 32741799 A JP32741799 A JP 32741799A JP 32741799 A JP32741799 A JP 32741799A JP 3507945 B2 JP3507945 B2 JP 3507945B2
Authority
JP
Japan
Prior art keywords
speed
tire
component
order component
rfv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32741799A
Other languages
Japanese (ja)
Other versions
JP2001141615A (en
Inventor
金也 森口
始 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP32741799A priority Critical patent/JP3507945B2/en
Publication of JP2001141615A publication Critical patent/JP2001141615A/en
Application granted granted Critical
Publication of JP3507945B2 publication Critical patent/JP3507945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、タイヤの高速ユニ
フォミティ推定方法及びタイヤの選別方法に関する。よ
り詳細には、実用域の速度でのタイヤのRFV(ラジア
ルフォースバリエイション)のフーリエ解析による1次
成分(高速RFV1次成分)の大きさをタイヤの他の測
定データから推定する方法、及び、この推定値に基づい
て高速RFV1次成分の小さいタイヤを選別する方法に
関するものである。
TECHNICAL FIELD The present invention relates to a tire high-speed uniformity estimation method and a tire selection method. More specifically, a method of estimating the magnitude of the first-order component (fast RFV first-order component) by Fourier analysis of the tire's RFV (radial force variation) at a speed in a practical range, and this method The present invention relates to a method of selecting a tire having a small high-speed RFV primary component based on an estimated value.

【0002】[0002]

【従来の技術】一般に、空気入りタイヤにおいては、1
回転する間にタイヤ軸にユニフォミティと言われる力変
動が発生する。タイヤは、高速走行時においては約10
〜30回/秒で回転するため、高速走行時におけるユニ
フォミティの1次成分の周波数は10〜30Hzであ
る。一方、車両のサスペンションのばね下共振周波数は
通常10〜18Hzにあるため、高速走行時にユニフォ
ミティの一次成分の周波数と合致してボディ振動を発生
させることがある。
2. Description of the Related Art Generally, in a pneumatic tire, 1
While rotating, a force variation called uniformity occurs on the tire shaft. The tires are about 10 when running at high speed.
Since it rotates at -30 times / second, the frequency of the primary component of uniformity during high-speed running is 10-30 Hz. On the other hand, since the unsprung resonance frequency of the suspension of the vehicle is usually 10 to 18 Hz, the body vibration may be generated in conformity with the frequency of the primary component of uniformity during high-speed running.

【0003】上記ユニフォミティのうち、このボディ振
動の主要因となるのがタイヤ半径方向の力の変動である
RFVであるが、このような実走状態での高速RFVを
計測するには、特別な試験機が必要であり、タイヤ全数
を計測することは困難である。
Of the above-mentioned uniformity, the main cause of this body vibration is RFV, which is the fluctuation of force in the tire radial direction, but it is special to measure such high speed RFV in actual running conditions. A testing machine is required and it is difficult to measure the total number of tires.

【0004】例えば、高速RFVは特開平5−1965
33号公報にあるような高速ユニフォミティマシンにて
計測可能であるが、現在の試験機は工場での全数検査に
対応したものが開発されてなく、全数検査は不可能であ
る。そのため、低速(1回/秒)でのRFVを測定する
ことで代用している。
For example, high-speed RFV is disclosed in Japanese Patent Laid-Open No. 1965/1993.
Although it is possible to measure with a high-speed uniformity machine as disclosed in Japanese Patent No. 33, the current testing machine has not been developed to support 100% inspection in the factory, and 100% inspection is impossible. Therefore, it is substituted by measuring the RFV at low speed (1 time / second).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、振動が
発生したタイヤを調査すると、このような低速RFVの
1次成分が小さくても高速RFVの1次成分が大きくな
っている場合が多い。
However, when a tire in which vibration has occurred is examined, it is often the case that the primary component of the high speed RFV is large even if the primary component of the low speed RFV is small.

【0006】これまで、この高速RFVが増加する原因
として、タイヤの振動特性による影響が論じられてお
り、高次成分ではその影響が確認されているが、1次成
分の周波数域では影響するほどの特性を有していない。
Up to now, the influence of the vibration characteristics of the tire has been discussed as a cause of the increase in the high-speed RFV, and the influence has been confirmed in the high-order component, but the influence is increased in the frequency range of the first-order component. Does not have the characteristics of

【0007】本発明は、以上の点に鑑みてなされたもの
であり、高速RFV1次成分の推定を可能にして、高速
RFV1次成分を新たに計測することなくタイヤを選別
することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to enable estimation of the high-speed RFV first-order component and to select tires without newly measuring the high-speed RFV first-order component. .

【0008】[0008]

【課題を解決するための手段】本発明者は、タイヤに質
量アンバランスがあると、その部分が遠心力で膨らむこ
とでタイヤ径変動であるRRO(ラジアルランアウト)
が大きくなり、それにより高速回転時には低速回転時と
は別のRFVが発生して増加すると考え、実験によりそ
れが正しいことを証明した。そこで、この結果を用い
て、低速RFV1次成分と静アンバランスとによる高速
RFV1次成分の推定式を導き、この推定式を用いるこ
とで高速RFVを新たに計測することなく推定すること
ができることを見出し、本発明を完成した。
Means for Solving the Problems The present inventor has found that when a tire has a mass imbalance, that portion swells due to a centrifugal force to cause a tire diameter variation RRO (radial runout).
It was thought that RFV would be increased at the time of high-speed rotation and that different from that at the time of low-speed rotation, which would increase, and it was proved to be correct by experiments. Therefore, using this result, an estimation formula of the high-speed RFV first-order component due to the low-speed RFV first-order component and the static imbalance is derived, and by using this estimation formula, the high-speed RFV can be estimated without newly measuring. Heading, completed the present invention.

【0009】すなわち、本発明のタイヤの高速ユニフォ
ミティ推定方法は、ある品種のタイヤについて高速RF
V1次成分と低速RFV1次成分と静アンバランスを測
定して、高速RFV1次成分と低速RFV1次成分と静
アンバランスとの関係を求めておき、高速RFV1次成
分が未知の同品種のタイヤについて、低速RFV1次成
分と静アンバランスとを測定し、その測定結果と上記関
係とから、そのタイヤの高速RFV1次成分の推定値を
算出するものである。
That is, the tire high-speed uniformity estimation method according to the present invention uses a high-speed RF for a certain type of tire.
V1 component and low-speed RF V1 component and static imbalance are measured.
Then , the relationship between the high-speed RFV first-order component, the low-speed RFV first-order component, and the static unbalance is obtained in advance, and the low-speed RFV first-order component and the static unbalance are measured for tires of the same type in which the high-speed RFV first-order component is unknown. The estimated value of the high-speed RFV primary component of the tire is calculated from the measurement result and the above relationship.

【0010】ここで、低速RFVとは、静アンバランス
に基づく遠心力によってタイヤに新たな径変動を発生さ
せない程度の回転数で測定したときのRFVをいい、通
常は、タイヤ回転数=1回/秒で測定される。一方、高
速RFVは、それよりも速い回転数でのRFVであり、
その回転数は通常8回/秒以上、より詳細には10〜3
0回/秒の範囲内で適宜に決定される。
Here, the low-speed RFV means an RFV measured at a rotational speed at which a new diameter variation is not generated in a tire due to a centrifugal force based on static imbalance, and usually, a tire rotational speed = 1 time. / Sec. On the other hand, the high-speed RFV is the RFV at a faster rotation speed than that,
The rotation speed is usually 8 times / second or more, more specifically 10 to 3
It is appropriately determined within the range of 0 times / second.

【0011】本発明の他の高速ユニフォミティ推定方法
は、ある品種のタイヤについて高速RFV1次成分と低
速RFV1次成分とRRO1次成分の速度変化を測定し
て、タイヤの高速RFV1次成分と低速RFV1次成分
とRRO1次成分の速度変化との関係を求めておき、高
速RFV1次成分が未知の同品種のタイヤについて、低
速RFV1次成分とRRO1次成分の速度変化とを測定
し、その測定結果と上記関係とから、そのタイヤの高速
RFV1次成分の推定値を算出するものである。
Another high-speed uniformity estimation method according to the present invention is a high- speed RFV first-order component and low
Measure the velocity change of the fast RFV primary component and the RRO primary component
Then, the relationship between the high-speed RFV first-order component, the low-speed RFV first-order component, and the speed change of the RRO first-order component of the tire is obtained in advance. The speed change is measured, and the estimated value of the high-speed RFV primary component of the tire is calculated from the measurement result and the above relationship.

【0012】ここで、RRO1次成分の速度変化とは、
速度変化に基づくRRO1次成分の増分、即ち、低速
(低速RFVを測定する際の回転数)から高速(高速R
FVを測定する際の回転数)に速度を上げることにより
新たに発生するRRO1次成分であり、高速RRO1次
成分に対する低速RRO1次成分のベクトル差として求
められる。
Here, the velocity change of the first-order component of RRO is
Increment of RRO primary component based on speed change, that is, low speed (rotation speed when measuring low speed RFV) to high speed (high speed R
It is the RRO first-order component newly generated by increasing the speed to the rotational speed when measuring FV), and is obtained as the vector difference of the low-speed RRO first-order component with respect to the high-speed RRO first-order component.

【0013】本発明のタイヤの選別方法は、上記方法で
算出した高速RFV1次成分の推定値と、高速RFV1
次成分の規格値とを比較してタイヤを選別するものであ
る。ここで、規格値とは、タイヤに応じて予め定められ
た出荷できる上限値である。
The method of selecting tires according to the present invention includes an estimated value of the high-speed RFV first-order component calculated by the above method and a high-speed RFV1.
Tires are selected by comparing the standard values of the following components. Here, the standard value is an upper limit value that can be shipped, which is predetermined according to the tire.

【0014】本発明の他のタイヤの選別方法は、タイヤ
の低速RFV1次成分の規格値と高速RFV1次成分の
規格値とから静アンバランスの上限値を算出しておき、
高速RFV1次成分が未知のタイヤについて、静アンバ
ランスを測定して、その測定値が上記の上限値以下のタ
イヤを選別するものである。
In another tire selecting method of the present invention, the upper limit of static unbalance is calculated from the standard value of the low speed RFV primary component and the standard value of the high speed RFV primary component of the tire,
With respect to a tire of which the primary component of high-speed RFV is unknown, the static unbalance is measured, and the tire whose measured value is equal to or less than the above upper limit value is selected.

【0015】本発明のさらに他のタイヤの選別方法は、
タイヤの低速RFV1次成分の規格値と高速RFV1次
成分の規格値とからRRO1次成分の速度変化の上限値
を算出しておき、高速RFV1次成分が未知のタイヤに
ついて、RRO1次成分の速度変化を測定して、その測
定値が上記の上限値以下のタイヤを選別するものであ
る。
Yet another tire selection method of the present invention is:
The upper limit of the speed change of the RRO first-order component is calculated from the standard value of the low speed RFV first-order component and the standard value of the high-speed RFV first-order component, and the speed change of the RRO first-order component is calculated for the tire in which the high-speed RFV first-order component is unknown. Is measured, and tires whose measured value is less than or equal to the above upper limit value are selected.

【0016】[0016]

【発明の実施の形態】1.質量アンバランスと径変動と
の関係 タイヤのある部分に質量アンバランスがあると、高速回
転時に、その部分が遠心力により膨らむ。このように膨
らむことでタイヤに新たな径変動が生じる。
BEST MODE FOR CARRYING OUT THE INVENTION 1. Relationship between mass imbalance and diameter variation If there is mass imbalance in a portion of the tire, that portion swells due to centrifugal force during high speed rotation. Such a bulge causes a new diameter variation in the tire.

【0017】例えば、タイヤサイズ=175SR14、
リムサイズ=14×5Jのタイヤについて、空気圧=1
96kPa、荷重=3,960N、回転数=15.6回
/秒とし、踏面部のタイヤ内面側に質量を付着してRR
Oを測定したところ、質量10gにつき約0.1mmの
新たな径変動が発生した。
For example, tire size = 175SR14,
For tires with rim size = 14 x 5J, air pressure = 1
96 kPa, load = 3,960 N, rotation speed = 15.6 times / sec, mass was attached to the tire inner surface side of the tread, and RR
When O was measured, a new diameter variation of about 0.1 mm occurred for every 10 g of mass.

【0018】2.質量アンバランスと高速RFV1次成
分との関係 一般に、RFVは下記式(0)で表される。
2. Relationship between mass imbalance and high-speed RFV first-order component Generally, RFV is represented by the following equation (0).

【0019】 RFV=Kv・Dc+Kc・Dv ……(0) ここで、Kvは、タイヤの径方向ばね定数の周方向変動
であり、Dcは、タイヤのたわみ量であり、Kcは、該
当回転数でのタイヤの径方向ばね定数であり、Dvは、
タイヤの径変動、即ちRROである。
RFV = Kv · Dc + Kc · Dv (0) where Kv is the circumferential variation of the radial spring constant of the tire, Dc is the amount of deflection of the tire, and Kc is the corresponding rotational speed. Is the radial spring constant of the tire at, and Dv is
It is the diameter variation of the tire, or RRO.

【0020】上記式(0)において、Dcはタイヤの回
転数によらず一定であり、また、Kvも単なるフックの
弾性体のようなばねが周上にあるとみなせばタイヤ回転
数によって変化しないと考えられる。よって、上記式
(0)における第1項のKv・Dcは、タイヤ回転数に
よって変化しないと考えられる。
In the above formula (0), Dc is constant irrespective of the number of rotations of the tire, and Kv does not change depending on the number of rotations of the tire if it is considered that a spring such as an elastic body of a hook is on the circumference. it is conceivable that. Therefore, it is considered that the first term Kv · Dc in the above equation (0) does not change depending on the tire rotation speed.

【0021】一方、第2項のKc・Dvにおいて、Dv
は上記1.で述べたように高速になると質量アンバラン
スの影響によって変化する。そのため、この第2項Kc
・Dvは速度により変化し、これにより高速RFV1次
成分と低速RFV1次成分とに差が発生する。つまり、
低速回転時には影響を及ぼさない質量アンバランスが、
高速回転時には遠心力によってタイヤに新たな径変動を
生じさせ、この新たな径変動により、高速回転時には、
低速回転時とは別の新たなRFV1次成分が発生してい
る。
On the other hand, in Kc · Dv of the second term, Dv
Is above 1. As I said, at high speed, it changes due to the effect of mass imbalance. Therefore, this second term Kc
Dv changes depending on the speed, which causes a difference between the high-speed RFV first-order component and the low-speed RFV first-order component. That is,
Mass unbalance that does not affect at low speed rotation,
At high speed rotation, centrifugal force causes a new diameter variation in the tire, and due to this new diameter variation, at high speed rotation,
A new RFV primary component different from that during low-speed rotation is generated.

【0022】例えば、上記1.のタイヤでは、質量10
gにつきDvが0.1mm変化する。Kcはタイヤ構造が
決まれば一定であり、このタイヤの場合、回転数=1
5.6回/秒で、Kc=152N/mmである。そのた
め、RFV1次成分の変化量は、Kc・Dv=152×
0.1=15.2Nと算出される。一方、このタイヤに
ついて、踏面部に質量10gを付して低速RFVと高速
RFVを測定したところ、低速RFV1次成分は質量付
与により変化しなかったが、高速RFV1次成分は質量
10gについて約15N増加しており、上記算出結果と
一致していた。
For example, the above 1. For tires of 10 mass
Dv changes by 0.1 mm per g. Kc is constant if the tire structure is determined, and in the case of this tire, the rotation speed is 1
At 5.6 times / second, Kc = 152 N / mm. Therefore, the change amount of the RFV first-order component is Kc · Dv = 152 ×
Calculated as 0.1 = 15.2N. On the other hand, when a low-speed RFV and a high-speed RFV were measured with a mass of 10 g on the tread portion of this tire, the low-speed RFV primary component did not change due to the mass addition, but the high-speed RFV primary component increased by about 15 N for a mass of 10 g. And was in agreement with the above calculation result.

【0023】以上より、高速RFV1次成分は、低速R
FV1次成分に、質量アンバランス(静アンバランス)
に起因する新たなRFV1次成分を合成したものである
と考えることができる。この関係を図示したのが図1で
ある。図1に示すように、高速RFV1次成分Hは、低
速RFV1次成分Lと、静アンバランスSとを用いて、
これらのベクトル和として求められ、下記式(1)で表
される。
From the above, the high-speed RFV primary component is low-speed R
Mass unbalance (static unbalance) for FV primary component
It can be considered that this is a combination of new RFV first-order components caused by. FIG. 1 illustrates this relationship. As shown in FIG. 1, the high-speed RFV primary component H uses a low-speed RFV primary component L and a static imbalance S,
It is calculated as the vector sum of these and is represented by the following equation (1).

【0024】H=L+a・S ……(1) ここで、aはタイヤの種類に応じて定められる係数であ
り、上記1.のタイヤであれば、静アンバランスが0.
00307kg・m、それによる高速RFVの増加分が
15Nであるので、a=15/0.00307である。
H = L + a · S (1) Here, a is a coefficient determined according to the type of tire, and the above 1. No tires have a static unbalance of 0.
Since the increase in high-speed RFV is 15N due to 30307 kg · m, a = 15 / 0.00307.

【0025】3.低速RFVと静アンバランスによる高
速RFVの推定式 (推定式1)図1(a)〜(e)に示すように、高速R
FV1次成分Hは、低速RFV1次成分Lと静アンバラ
ンスSが同位相の場合(即ち、図1(e)に示す、タイ
ヤ周方向における両者の位置関係が位相差φ=0degの場
合)に最大となり、そのときの高速RFV1次成分Hの
大きさHmは、低速RFV1次成分の大きさLm及び静
アンバランスの大きさSmを用いて下記式(2)で表さ
れる。
3. Estimating formula for low-speed RFV and high-speed RFV due to static unbalance (estimation formula 1) As shown in FIGS.
The FV first-order component H is obtained when the low-speed RFV first-order component L and the static unbalance S have the same phase (that is, when the positional relationship between the two in the tire circumferential direction shown in FIG. 1E is a phase difference φ = 0 deg). The maximum value Hm of the high-speed RFV first-order component H at that time is expressed by the following formula (2) using the size Lm of the low-speed RFV first-order component H and the static unbalance size Sm.

【0026】Hm=Lm+a・Sm ……(2) 従って、この式(2)により、高速RFV1次成分の最
大値を求めることができるので、この算出した値が高速
RFV1次成分の規格値を超えるタイヤを取り除くこと
により、該規格値を超えるタイヤを出荷することを防止
することができる。
Hm = Lm + aSm (2) Therefore, the maximum value of the high-speed RFV first-order component can be obtained by the equation (2), and the calculated value exceeds the standard value of the high-speed RFV first-order component. By removing the tire, it is possible to prevent the shipment of the tire exceeding the standard value.

【0027】式(2)は誤差成分を考慮して下記式
(3)のように書き換えられる。
The equation (2) can be rewritten as the following equation (3) in consideration of the error component.

【0028】 Hm=b+b・Lm+b・Sm ……(3) ここで、b、b、bはタイヤの種類に応じて定め
られる係数であり、例えば、タイヤの種類毎に重回帰分
析して当てはめることができる。なお、式(2)は、式
(3)において、b=0、b=1、b=aの場合
である。
Hm = b 1 + b 2 · Lm + b 3 · Sm (3) Here, b 1 , b 2 and b 3 are coefficients determined according to the type of tire, for example, for each type of tire. Multiple regression analysis can be applied. The formula (2) is a case where b 1 = 0, b 2 = 1 and b 3 = a in the formula (3).

【0029】以上より、Hmが未知のタイヤについてL
mとSmを測定し、これらを式(3)に代入することに
より、高速RFV1次成分の大きさ(詳細には、その最
大の場合の値)を推定することができる。
From the above, L for tires with unknown Hm
By measuring m and Sm and substituting them into the equation (3), the magnitude of the high-speed RFV first-order component (specifically, the maximum value thereof) can be estimated.

【0030】(推定式2)図1(e)に示すように低速
RFV1次成分Lと静アンバランスSが同位相の場合に
は、式(2)のように両者を単純に足し合わせることで
高速RFV1次成分の大きさHmを求めることができる
が、それ以外の場合には、図1(a)〜(d)に示すよ
うに両者の単純な足し合わせでは算出できず、場合によ
っては図1(a)及び(b)に示すようにHmが逆に減
少することもある。そこで、高速RFV1次成分の大き
さHmは、低速RFV1次成分Lと静アンバランスSと
の位相差φを考慮すると、近似的に下記式(4)で表す
ことができる。
(Estimation formula 2) When the low-speed RFV first-order component L and the static imbalance S have the same phase as shown in FIG. 1 (e), they can be simply added together as shown in formula (2). The magnitude Hm of the high-speed RFV first-order component can be obtained, but in other cases, it cannot be calculated by simple addition of the two as shown in FIGS. 1 (a) to 1 (d). As shown in 1 (a) and (b), Hm may decrease in reverse. Therefore, the magnitude Hm of the high-speed RFV first-order component can be approximately represented by the following formula (4) when the phase difference φ between the low-speed RFV first-order component L and the static unbalance S is considered.

【0031】 Hm=Lm+a・Sm・cosφ ……(4) 従って、Lm、Sm及びφを測定することにより、式
(4)から高速RFV1次成分の大きさHmを推定する
ことができる。
Hm = Lm + a · Sm · cosφ (4) Therefore, by measuring Lm, Sm, and φ, the magnitude Hm of the high-speed RFV first-order component can be estimated from the equation (4).

【0032】式(4)は誤差成分を考慮して下記式
(5)のように書き換えられる。
The equation (4) can be rewritten as the following equation (5) in consideration of the error component.

【0033】 Hm=c+c・Lm+c・Sm・cosφ ……(5) ここで、c、c、cはタイヤの種類に応じて定め
られる係数であり、例えば、タイヤの種類毎に重回帰分
析して当てはめることができる。なお、式(4)は、式
(5)において、c=0、c=1、c=aの場合
である。
Hm = c 1 + c 2 · Lm + c 3 · Sm · cos φ (5) Here, c 1 , c 2 and c 3 are coefficients determined according to the type of tire, for example, the type of tire Multiple regression analysis can be applied for each case. The expression (4) is the case where c 1 = 0, c 2 = 1 and c 3 = a in the expression (5).

【0034】以上より、Hmが未知のタイヤについてL
mとSmと両者の位相差φを測定し、これらを式(5)
に代入することにより、高速RFV1次成分の大きさを
推定することができる。
From the above, L for tires with unknown Hm
m and Sm and the phase difference φ between them are measured, and these are expressed by the formula (5).
, The magnitude of the high-speed RFV first-order component can be estimated.

【0035】(推定式3)高速RFV1次成分Hの大き
さは、低速RFV1次成分Lと静アンバランスSとのベ
クトル和を上記式(1)で求めることにより算出するこ
とができる。この式(1)におけるH、L及びSはいず
れも大きさだけでなく位相成分も含む複素数である。従
って、式(1)は、下記式(1−1)に書き換えられ
る。
(Estimation Formula 3) The magnitude of the high-speed RFV first-order component H can be calculated by obtaining the vector sum of the low-speed RFV first-order component L and the static unbalance S by the above-mentioned formula (1). H, L, and S in this equation (1) are all complex numbers including not only the magnitude but also the phase component. Therefore, the equation (1) can be rewritten as the following equation (1-1).

【0036】 H=H+H・j =L+a・S+(L+a・S)・j ……(1−1) ここで、Hは高速RFV1次成分Hの実数部、H
高速RFV1次成分Hの虚数部、Lは低速RFV1次
成分Lの実数部、Lは低速RFV1次成分Lの虚数
部、Sは静アンバランスSの実数部、Sは静アンバ
ランスSの虚数部である。また、j=−1である。
H = H x + H y · j = L x + a · S x + (L y + a · S y ) · j (1-1) where H x is the real part of the high-speed RFV first-order component H. , the imaginary part of H y fast RFV1 order component H, L x is the real part of the low-speed RFV1 order component L, L y is the imaginary part of the low-speed RFV1 order component L, real part of S x are static imbalance S, S y Is the imaginary part of the static imbalance S. Also, j 2 = −1.

【0037】図2は、式(1−1)の関係を示した図で
ある。図2に示すように、タイヤ赤道面上にx−yの直
交座標を定義したとき、静アンバランスSは、大きさS
mとタイヤ周方向における位置、即ち位相θとを有す
るベクトルであるため、x成分とy成分に分解して(S
,S)で表される。同様に、低速RFV1次成分L
も、大きさLmと位相θとを有するベクトルであるた
め、x成分とy成分に分解して(L,L)で表さ
れ、高速RFV1次成分Hも、大きさHmと位相θ
を有するベクトルであるため、x成分とy成分に分解し
て(H,H)で表される。このx成分が実数部、y
成分が虚数部である。
FIG. 2 is a diagram showing the relationship of equation (1-1). As shown in FIG. 2, when the xy Cartesian coordinates are defined on the tire equatorial plane, the static unbalance S is equal to the size S.
Since this is a vector having m and a position in the tire circumferential direction, that is, a phase θ S , it is decomposed into an x component and a y component (S
x , S y ). Similarly, low-speed RFV first-order component L
Also, since a vector having a magnitude Lm and phase theta L, by decomposing the x and y components (L x, L y) is represented by high-speed RFV1 order component H is also the size Hm and phase theta Since it is a vector having H , it is decomposed into an x component and ay component and represented by (H x , H y ). This x component is the real part, y
The component is the imaginary part.

【0038】上記式(1−1)より、高速RFV1次成
分の大きさHmは、下記式(6)で表される。
From the above equation (1-1), the magnitude Hm of the high-speed RFV first-order component is expressed by the following equation (6).

【0039】[0039]

【数5】 従って、LとSを測定することにより、式(6)から高
速RFV1次成分の大きさHmを推定することができ
る。
[Equation 5] Therefore, by measuring L and S, the magnitude Hm of the high-speed RFV first-order component can be estimated from the equation (6).

【0040】式(1−1)について、誤差成分を考慮し
て書き換えると下記式(7)のようになる。上記のよう
にH、L及びSはいずれも複素数であるため、そのまま
では通常の重回帰分析は行えないが、実数部と虚数部は
互いに独立なので、式(8−1)及び(8−2)により
別々に重回帰分析し、これらを合成することで式(7)
を得る。
When the equation (1-1) is rewritten in consideration of the error component, the following equation (7) is obtained. As described above, since H, L, and S are all complex numbers, normal multiple regression analysis cannot be performed as they are, but since the real part and the imaginary part are independent of each other, the expressions (8-1) and (8-2 ) Are separately subjected to multiple regression analysis, and these are combined to obtain the formula (7).
To get

【0041】 H=d+d・L+d・S +(d+d・L+d・S)・j ……(7) (実数部) H=d+d・L+d・S ……(8−1) (虚数部) H=d+d・L+d・S ……(8−2) ここで、d、d、d、d、d及びdは、タ
イヤの種類に応じて定められる係数であり、タイヤの種
類毎に重回帰分析して当てはめることができる。
H = d 1 + d 2 · L x + d 3 · S x + (D 4 + d 5 · L y + d 6 · S y) · j ...... (7) ( the real part) H x = d 1 + d 2 · L x + d 3 · S x ...... (8-1) ( imaginary part) H y = d 4 + d 5 · L y + d 6 · S y ...... (8-2) where, d 1, d 2, d 3, d 4, d 5 and d 6 is of the type of tire It is a coefficient determined according to the type, and can be applied by performing multiple regression analysis for each tire type.

【0042】上記式(7)より、高速RFV1次成分の
大きさHmは、下記式(9)で表される。
From the above equation (7), the magnitude Hm of the high-speed RFV first-order component is expressed by the following equation (9).

【0043】[0043]

【数6】 以上より、Hmが未知のタイヤについてLとSを測定
し、その測定結果から式(9)を用いて高速RFV1次
成分の大きさを推定することができる。
[Equation 6] From the above, it is possible to measure L and S of a tire of which Hm is unknown, and to estimate the magnitude of the high-speed RFV first-order component from the measurement result using Expression (9).

【0044】4.低速RFVとRROの速度変化による
高速RFVの推定式 上記2.で述べたように、式(0)における第1項のK
v・Dcはタイヤ回転数によって変化しないが、第2項
のKc・Dvは、Dvが高速になると質量アンバランス
の影響によって変化することから、速度により変化し、
これにより高速RFV1次成分と低速RFV1次成分と
に差が発生する。つまり、高速回転時に生じる新たな径
変動により、高速回転時には低速回転時とは別の新たな
RFV1次成分が発生している。
4. Estimating formula of high-speed RFV by changing speed of low-speed RFV and RRO. As described above, the first term K in equation (0)
Although v · Dc does not change depending on the number of rotations of the tire, Kc · Dv of the second term changes due to the influence of mass imbalance when Dv becomes high speed, and therefore changes depending on speed.
This causes a difference between the high-speed RFV first-order component and the low-speed RFV first-order component. In other words, due to the new diameter fluctuation that occurs during high speed rotation, a new RFV primary component different from that during low speed rotation is generated during high speed rotation.

【0045】従って、高速RFV1次成分は、低速RF
V1次成分に、この新たな径変動に起因する新たなRF
V1次成分を合成したものであると考えることができ
る。この関係を図示したのが図3である。図3に示すよ
うに、高速RFV1次成分Hは、低速RFV1次成分L
と、新たな径変動であるRRO1次成分の速度変化Dと
を用いて、これらのベクトル和として求められ、下記式
(11)で表される。
Therefore, the high speed RFV primary component is the low speed RF
A new RF due to this new diameter variation in the V1 component
It can be considered to be a composite of the V1st order component. This relationship is shown in FIG. As shown in FIG. 3, the high-speed RFV first-order component H is the low-speed RFV first-order component L.
And the velocity change D of the RRO first-order component, which is a new diameter variation, are obtained as the vector sum of these and expressed by the following equation (11).

【0046】H=L+e・D ……(11) ここで、eはタイヤの種類に応じて定められる係数であ
り、上記1.のタイヤであれば、新たな径変動が0.1
mm、それによる高速RFVの増加分が15Nであるの
で、e=15/0.1である。
H = L + e · D (11) Here, e is a coefficient determined according to the type of tire, and the above 1. If the tire is, the new diameter variation is 0.1
mm, the increase in the high-speed RFV due to this is 15 N, so e = 15 / 0.1.

【0047】また、RRO1次成分の速度変化Dは、低
速RRO1次成分Dlと高速RRO1次成分Dhとを用
いて図4に示す関係にあるため、下記式(21)により
算出することができる。
Since the velocity change D of the RRO first-order component has the relationship shown in FIG. 4 using the low-speed RRO first-order component Dl and the high-speed RRO first-order component Dh, it can be calculated by the following equation (21).

【0048】D=Dh−Dl ……(21) ここで、D、Dl、Dhはいずれも大きさだけでなく位
相成分も含む複素数である。なお、Dlは低速ユニフォ
ミティマシンにより、Dhはタイヤを装着して高速回転
させることが可能な装置にレーザー式変位計を用いるこ
とで計測することができる。
D = Dh-Dl (21) Here, D, Dl, and Dh are all complex numbers including not only the magnitude but also the phase component. It should be noted that Dl can be measured by a low speed uniformity machine, and Dh can be measured by using a laser displacement meter in an apparatus capable of rotating at high speed by mounting a tire.

【0049】式(11)より、上記3.の推定式1〜3
と同様に、以下の推定式4〜6が導かれる。
From equation (11), the above 3. Estimation formulas 1-3
Similarly, the following estimation formulas 4 to 6 are derived.

【0050】(推定式4)高速RFV1次成分Hは、図
3(e)に示す、低速RFV1次成分LとRRO1次成
分の速度変化Dが同位相の場合に最大となり、そのとき
の高速RFV1次成分Hの大きさHmは、低速RFV1
次成分Lの大きさLm及びRRO1次成分の速度変化D
の大きさDmを用いて下記式(12)で表される。
(Estimation formula 4) The high-speed RFV first-order component H becomes maximum when the low-speed RFV first-order component L and the speed change D of the RRO first-order component shown in FIG. The magnitude Hm of the next component H is the low speed RFV1.
The magnitude Lm of the next component L and the velocity change D of the first component RRO
It is represented by the following formula (12) using the size Dm of

【0051】 Hm=Lm+e・Dm ……(12) この式(12)は誤差成分を考慮して下記式(13)の
ように書き換えられる。
Hm = Lm + e · Dm (12) This equation (12) can be rewritten as the following equation (13) in consideration of the error component.

【0052】 Hm=f+f・Lm+f・Dm ……(13) ここで、f、f、fはタイヤの種類に応じて定め
られる係数であり、例えば、タイヤの種類毎に重回帰分
析して当てはめることができる。なお、式(12)は、
式(13)において、f=0、f=1、f=eの
場合である。
Hm = f 1 + f 2 ⋅Lm + f 3 ⋅Dm (13) Here, f 1 , f 2 and f 3 are coefficients determined according to the tire type, for example, for each tire type. Multiple regression analysis can be applied. In addition, the equation (12) is
In the formula (13), f 1 = 0, f 2 = 1 and f 3 = e.

【0053】以上より、Hmが未知のタイヤについてL
mとDmを測定し、これらを式(12)又は(13)に
代入することにより、高速RFV1次成分の大きさ(詳
細には、その最大の場合の値)を推定することができ
る。
From the above, L for tires with unknown Hm
By measuring m and Dm and substituting them into the equation (12) or (13), the magnitude of the high-speed RFV first-order component (specifically, the maximum value thereof) can be estimated.

【0054】(推定式5)高速RFV1次成分の大きさ
Hmは、低速RFV1次成分LとRRO1次成分の速度
変化Dとの位相差γを考慮すると、近似的に下記式(1
4)で表すことができる。
(Estimation equation 5) The magnitude Hm of the high-speed RFV first-order component is approximately calculated by the following equation (1) in consideration of the phase difference γ between the low-speed RFV first-order component L and the speed change D of the RRO first-order component.
4).

【0055】 Hm=Lm+e・Dm・cosγ ……(14) 式(14)は誤差成分を考慮して下記式(15)のよう
に書き換えられる。
Hm = Lm + e · Dm · cosγ (14) The equation (14) can be rewritten as the following equation (15) in consideration of the error component.

【0056】 Hm=g+g・Lm+g・Dm・cosγ ……(15) ここで、g、g、gはタイヤの種類に応じて定め
られる係数であり、例えば、タイヤの種類毎に重回帰分
析して当てはめることができる。なお、式(14)は、
式(15)において、g=0、g=1、g=eの
場合である。
Hm = g 1 + g 2 · Lm + g 3 · Dm · cosγ (15) Here, g 1 , g 2 and g 3 are coefficients determined according to the type of tire, for example, the type of tire Multiple regression analysis can be applied for each case. Note that equation (14) is
This is a case where g 1 = 0, g 2 = 1 and g 3 = e in the formula (15).

【0057】以上より、Hmが未知のタイヤについてL
mとDmと両者の位相差γを測定し、これらを式(1
4)又は(15)に代入することにより、高速RFV1
次成分の大きさを推定することができる。
From the above, L for tires with unknown Hm
m and Dm and the phase difference γ between them are measured, and these are expressed by the formula (1
By substituting in 4) or (15), high-speed RFV1
The magnitude of the next component can be estimated.

【0058】(推定式6)高速RFV1次成分Hの大き
さは、低速RFV1次成分LとRRO1次成分の速度変
化Dとのベクトル和を上記式(11)で求めることによ
り算出することができる。この式(11)におけるH、
L及びDはいずれも大きさだけでなく位相成分も含む複
素数である。従って、高速RFV1次成分の大きさHm
は、式(11)を変形した下記式(16)で表すことが
できる。
(Estimation Formula 6) The magnitude of the high-speed RFV first-order component H can be calculated by obtaining the vector sum of the low-speed RFV first-order component L and the velocity change D of the RRO first-order component by the above-mentioned formula (11). . H in this equation (11),
Both L and D are complex numbers including not only the magnitude but also the phase component. Therefore, the magnitude Hm of the high-speed RFV first-order component is
Can be expressed by the following formula (16) which is a modification of the formula (11).

【0059】[0059]

【数7】 ここで、DはRRO1次成分の速度変化Dの実数部、
はRRO1次成分の速度変化Dの虚数部である。
[Equation 7] Where D x is the real part of the velocity change D of the RRO first-order component,
D y is the imaginary part of the velocity change D of the RRO first-order component.

【0060】式(11)について、誤差成分を考慮して
書き換えると下記式(17)のようになる。上記のよう
にH、L及びDはいずれも複素数であるため、そのまま
では通常の重回帰分析は行えないが、実数部と虚数部は
互いに独立なので、式(18−1)及び(18−2)に
より別々に重回帰分析し、これらを合成することで式
(17)を得る。
When the equation (11) is rewritten in consideration of the error component, the following equation (17) is obtained. As described above, since H, L, and D are all complex numbers, ordinary multiple regression analysis cannot be performed as they are, but since the real part and the imaginary part are independent of each other, the expressions (18-1) and (18-2 ) Separately, multiple regression analysis is performed separately, and these are synthesized to obtain formula (17).

【0061】 H=h+h・L+h・D +(h+h・L+h・D)・j ……(17) (実数部) H=h+h・L+h・D ……(18−1) (虚数部) H=h+h・L+h・D ……(18−2) ここで、h、h、h、h、h及びhは、タ
イヤの種類に応じて定められる係数であり、タイヤの種
類毎に重回帰分析して当てはめることができる。
H = h 1 + h 2 · L x + h 3 · D x + (H 4 + h 5 · L y + h 6 · D y) · j ...... (17) ( the real part) H x = h 1 + h 2 · L x + h 3 · D x ...... (18-1) ( imaginary part) H y = h 4 + h 5 · L y + h 6 · D y ...... (18-2) wherein, h 1, h 2, h 3, h 4, h 5 and h 6 are of the type of tire It is a coefficient determined according to the type, and can be applied by performing multiple regression analysis for each tire type.

【0062】この式(17)より、高速RFV1次成分
の大きさHmは、下記式(19)で表される。
From this equation (17), the magnitude Hm of the high-speed RFV first-order component is expressed by the following equation (19).

【0063】[0063]

【数8】 以上より、Hmが未知のタイヤについてLとDを測定
し、その測定結果から式(16)又は(19)を用いて
高速RFV1次成分の大きさを推定することができる。
[Equation 8] From the above, it is possible to measure L and D with respect to a tire of which Hm is unknown, and to estimate the magnitude of the high-speed RFV first-order component from the measurement result using Expression (16) or (19).

【0064】5.タイヤの選別方法1(推定式1〜3) 高速RFV1次成分の推定式の導出 タイヤの選別に先立って、高速RFV1次成分と低速R
FV1次成分と静アンバランスとの関係を求める。
5. Tire selection method 1 (estimation formulas 1 to 3) Derivation of estimation formula for high-speed RFV first-order component Prior to tire selection, high-speed RFV first-order component and low-speed R
The relationship between the FV first-order component and static imbalance is obtained.

【0065】詳細には、ある品種のタイヤについて、公
知の高速ユニフォミティマシン、低速ユニフォミティマ
シン及びバランサーを用いて、高速RFV1次成分と低
速RFV1次成分と静アンバランスを所定本数(例えば
20〜30本)測定する。そして、その測定結果を上記
推定式1〜3のいずれか一式に当てはめ、重回帰分析し
て各係数を求める。なお、低速RFVを測定する際のタ
イヤ回転数は、下記で低速RFVを測定する際と同一
速度とし、高速RFVを測定する際の回転数は、下記
で推定しようとする高速RFVの回転数と同一速度とす
る。
Specifically, for a certain type of tire, a known high-speed uniformity machine, low-speed uniformity machine, and balancer are used to determine a predetermined number (for example, 20 to 30 pieces) of static unbalance between the high-speed RFV first-order component and the low-speed RFV first-order component. )taking measurement. Then, the measurement result is applied to any one of the above estimation formulas 1 to 3 and multiple regression analysis is performed to obtain each coefficient. The tire rotation speed when measuring the low speed RFV is the same as that when measuring the low speed RFV below, and the rotation speed when measuring the high speed RFV is the same as the rotation speed of the high speed RFV to be estimated below. Use the same speed.

【0066】 低速RFV1次成分と静アンバランス
の測定 高速RFV1次成分が未知である上記と同品種のタイヤ
について、低速RFV1次成分と静アンバランスを測定
する。低速RFV1次成分については公知の低速ユニフ
ォミティマシンにより、静アンバランスについては公知
のバランサーにより測定することができる。
Measurement of Low-Speed RFV Primary Component and Static Unbalance The low-speed RFV primary component and static imbalance are measured for tires of the same type as described above in which the high-speed RFV primary component is unknown. The low-speed RFV first-order component can be measured by a known low-speed uniformity machine, and the static imbalance can be measured by a known balancer.

【0067】 高速RFVの推定 上記の測定結果を上記で求めた推定式に当てはめ
て、そのタイヤの高速RFV1次成分の推定値を算出す
る。
Estimation of High Speed RFV The above measurement result is applied to the estimation formula obtained above to calculate an estimated value of the high speed RFV primary component of the tire.

【0068】 タイヤの選別 上記で算出した高速RFV1次成分の推定値と、その
品種のタイヤについて予め定められた高速RFV1次成
分の規格値とを比較し、推定値が規格値以下のタイヤを
選別し、規格値を超えるタイヤを取り除く。
Selection of Tires The estimated value of the high-speed RFV primary component calculated above is compared with the standard value of the high-speed RFV primary component predetermined for the tire of that type, and the tire having the estimated value of the standard value or less is selected. And remove tires that exceed the standard value.

【0069】これにより、高速RFVを実際に計測する
ことなく、規格値を超えたタイヤの出荷を防止すること
ができる。
As a result, it is possible to prevent the shipment of tires exceeding the standard value without actually measuring the high-speed RFV.

【0070】6.タイヤの選別方法2(推定式4〜6) 高速RFV1次成分の推定式の導出 上記選別方法1のと同様に、タイヤの選別に先立っ
て、高速RFV1次成分と低速RFV1次成分とRRO
1次成分の速度変化との関係(推定式4〜6)を求め
る。
6. Tire Selection Method 2 (Estimation Formulas 4 to 6) Derivation of Estimated Formulas for High-Speed RFV First-Order Component Similar to the above-mentioned selection method 1, prior to tire selection, a high-speed RFV first-order component, a low-speed RFV first-order component, and an RRO.
The relationship (estimation formulas 4 to 6) with the speed change of the first-order component is obtained.

【0071】 低速RFV1次成分とRRO1次成分
の速度変化の測定 高速RFV1次成分が未知である上記と同品種のタイヤ
について、低速RFV1次成分とRRO1次成分の速度
変化を測定する。
Measurement of Velocity Change of Low-Speed RFV Primary Component and RRO Primary Component With respect to a tire of the same type as described above in which the high-speed RFV first-order component is unknown, velocity changes of the low-speed RFV first-order component and RRO first-order component are measured.

【0072】 高速RFVの推定 上記の測定結果を上記で求めた推定式に当てはめ
て、そのタイヤの高速RFV1次成分の推定値を算出す
る。
Estimation of high-speed RFV The above measurement result is applied to the above-obtained estimation formula to calculate an estimated value of the high-speed RFV primary component of the tire.

【0073】 タイヤの選別 上記で算出した高速RFV1次成分の推定値と、その
品種のタイヤについて予め定められた高速RFV1次成
分の規格値とを比較し、推定値が規格値以下のタイヤを
選別し、規格値を超えるタイヤを取り除く。
Selection of Tires The estimated value of the high-speed RFV first-order component calculated above is compared with the standard value of the high-speed RFV first-order component determined in advance for the tire of that type, and the tire having the estimated value equal to or less than the standard value is selected. And remove tires that exceed the standard value.

【0074】これにより、高速RFVを実際に計測する
ことなく、規格値を超えたタイヤの出荷を防止すること
ができる。
As a result, it is possible to prevent the shipment of tires exceeding the standard value without actually measuring the high speed RFV.

【0075】7.タイヤの簡易選別方法1 タイヤに低速RFV1次成分の規格値と高速RFV1次
成分の規格値が定められている場合、上記式(2)を用
いて、より簡易なタイヤの選別方法が提供される。即
ち、式(2)によればタイヤの高速RFV1次成分の最
大値を算出することができるので、低速RFV1次成分
の規格値Lmrと高速RFV1次成分の規格値Hmrと
を用いて下記式(10)から静アンバランスの上限値S
mrを算出することができる。
7. Simplified tire selection method 1 When the standard value of the low-speed RFV primary component and the standard value of the high-speed RFV primary component are set for the tire, a simpler tire selection method is provided using the above formula (2). . That is, since the maximum value of the high-speed RFV first-order component of the tire can be calculated according to the formula (2), the following formula (2) is calculated using the standard value Lmr of the low-speed RFV first-order component and the standard value Hmr of the high-speed RFV first-order component. 10) From the upper limit value S of static imbalance
It is possible to calculate mr.

【0076】 Smr=(Hmr−Lmr)/a ……(10) タイヤの選別に際しては、予め式(10)を用いて静ア
ンバランスの上限値Smrをタイヤの品種毎に算出して
おく。そして、高速RFV未知のタイヤについて、低速
RFV1次成分の大きさを測定してその測定値が規格値
Lmrを越えるタイヤを取り除くとともに、静アンバラ
ンスの大きさを測定してその測定値が上限値Smrを越
えるタイヤを取り除いて、上限値Smr以下のタイヤを
選別する。
Smr = (Hmr-Lmr) / a (10) When selecting tires, the upper limit value Smr of static unbalance is calculated in advance using Formula (10) for each type of tire. Then, with respect to a tire of unknown high-speed RFV, the magnitude of the low-speed RFV primary component is measured, and the tire whose measured value exceeds the standard value Lmr is removed, and the magnitude of static imbalance is measured and the measured value is the upper limit value. Tires exceeding Smr are removed, and tires having an upper limit value Smr or less are selected.

【0077】これにより、高速RFVを実際に計測する
ことなく、高速RFV1次成分が規格値Hmrを越えた
タイヤの出荷を防止することができる。
This makes it possible to prevent the shipment of tires whose high-speed RFV primary component exceeds the standard value Hmr without actually measuring the high-speed RFV.

【0078】例えば、上記1.のタイヤについて、低速
RFV1次成分の規格値Lmrが80N、高速RFV1
次成分の規格値Hmrが160Nと規定されていたとす
る。このタイヤではa=15/0.00307なので、
上記式(10)より、Smr=0.0164kg・mで
ある。よって、静アンバランスの測定値が0.0164
kg・m以下のタイヤを選別することにより、高速RF
V1次成分が規格値160Nを越えたタイヤを出荷する
ことはなくなる。
For example, the above 1. Of the low-speed RFV first-order component, the standard value Lmr of the tire is 80 N, and the high-speed RFV1
It is assumed that the standard value Hmr of the next component is specified as 160N. In this tire, a = 15 / 0.00307, so
From the above formula (10), Smr = 0.164 kg · m. Therefore, the measured value of static unbalance is 0.0164.
High-speed RF by selecting tires of kg / m or less
Tires whose V1 component exceeds the standard value of 160 N will not be shipped.

【0079】8.タイヤの簡易選別方法2 上記簡易選別方法1と同様に、式(12)を用いて、タ
イヤの簡易選別方法2が提供される。即ち、低速RFV
1次成分の規格値Lmrと高速RFV1次成分の規格値
Hmrとを用いて下記式(20)からRRO1次成分の
速度変化の上限値Dmrを算出することができる。
8. Simplified tire selection method 2 Similar to the simplified selection method 1 described above, a simplified tire selection method 2 is provided using the equation (12). That is, low speed RFV
Using the standard value Lmr of the first-order component and the standard value Hmr of the high-speed RFV first-order component, the upper limit value Dmr of the velocity change of the RRO first-order component can be calculated from the following equation (20).

【0080】 Dmr=(Hmr−Lmr)/e ……(20) タイヤの選別に際しては、予め式(20)を用いてRR
O1次成分の速度変化の上限値Dmrをタイヤの品種毎
に算出しておく。そして、高速RFV未知のタイヤにつ
いて、低速RFV1次成分の大きさを測定してその測定
値が規格値Lmrを越えるタイヤを取り除くとともに、
RRO1次成分の速度変化の大きさを測定してその測定
値が上限値Dmrを越えるタイヤを取り除いて、上限値
Dmr以下のタイヤを選別する。
Dmr = (Hmr−Lmr) / e (20) When selecting tires, RR is calculated in advance using equation (20).
The upper limit value Dmr of the velocity change of the O1st order component is calculated for each tire type. Then, with respect to the tire of which the high speed RFV is unknown, the magnitude of the low speed RFV primary component is measured, and the tire whose measured value exceeds the standard value Lmr is removed.
The magnitude of the velocity change of the RRO primary component is measured, and the tires whose measured value exceeds the upper limit value Dmr are removed, and tires having the upper limit value Dmr or less are selected.

【0081】これにより、簡易選別方法1と同様、高速
RFVを実際に計測することなく、高速RFV1次成分
が規格値Hmrを越えたタイヤの出荷を防止することが
できる。
As a result, similarly to the simple selection method 1, it is possible to prevent the shipment of tires in which the primary component of the high-speed RFV exceeds the standard value Hmr without actually measuring the high-speed RFV.

【0082】[0082]

【実施例】実施例1 タイヤサイズ=225/55R16、リムサイズ=16
×71/2−JJのタイヤを11本用い、空気圧=200
kPa、荷重=4,903Nとして、低速RFV1次成
分(回転数=1回/秒=8km/h)と、高速RFV1
次成分(回転数=16.7回/秒=120km/h)
と、静アンバランスを測定した。
EXAMPLES Example 1 Tire size = 225 / 55R16, rim size = 16
Using 11 x71 / 2-JJ tires, air pressure = 200
kPa, load = 4,903N, low-speed RFV first-order component (rotation speed = 1 time / second = 8 km / h) and high-speed RFV1
Next component (rotation speed = 16.7 times / second = 120 km / h)
And the static imbalance was measured.

【0083】図5(d)に、低速RFV1次成分の大き
さと高速RFV1次成分の大きさとの関係を示した。両
者の相関係数は、R=0.578であった。
FIG. 5D shows the relationship between the magnitude of the low speed RFV primary component and the magnitude of the high speed RFV primary component. The correlation coefficient between the two was R = 0.578.

【0084】上記で測定した低速RFV1次成分と高速
RFV1次成分と静アンバランスの測定値を用いて、上
記式(3)、(5)及び(7)に当てはめ、重回帰分析
してそれぞれ下記式(3−1)、(5−1)及び(7−
1)を得た。
Using the measured values of the low-speed RFV first-order component, the high-speed RFV first-order component, and the static unbalance measured above, the equations (3), (5), and (7) were applied, and multiple regression analysis was performed to obtain the following. Formulas (3-1), (5-1) and (7-
1) was obtained.

【0085】 Hm=3.2+0.74Lm+1031Sm ……(3−1) Hm=31.4+0.57Lm+531Sm・cosφ ……(5−1) H=−22.5+0.80L+2024S +(−2.7+0.96L+1610S)・j ……(7−1) 式(3−1)は、低速RFV1次成分の大きさと静アン
バランスの大きさのみの相関関係に基づき高速RFV1
次成分の大きさを推定するものである。図5(a)に、
式(3−1)による推定値と実際の測定値との関係を示
した。両者の相関係数は、R=0.720であった。
[0085] Hm = 3.2 + 0.74Lm + 1031Sm ...... (3-1) Hm = 31.4 + 0.57Lm + 531Sm · cosφ ...... (5-1) H = -22.5 + 0.80L x + 2024S x + (-2.7 + 0.96L y + 1610S y ) · j (7-1) Equation (3-1) is based on the correlation between only the magnitude of the low-speed RFV first-order component and the magnitude of the static imbalance, and the high-speed RFV1.
It estimates the magnitude of the next component. In FIG. 5 (a),
The relationship between the estimated value by the formula (3-1) and the actual measured value is shown. The correlation coefficient between the two was R = 0.720.

【0086】式(5−1)は、低速RFV1次成分の大
きさと静アンバランスの大きさと両者の位相差との相関
関係に基づき高速RFV1次成分の大きさを推定するも
のである。図5(b)に、式(5−1)による推定値と
実際の測定値との関係を示した。両者の相関係数は、R
=0.731であった。
The equation (5-1) estimates the magnitude of the high-speed RFV first-order component based on the correlation between the magnitude of the low-speed RFV first-order component, the magnitude of the static imbalance, and the phase difference between the two. FIG. 5B shows the relationship between the estimated value by the equation (5-1) and the actual measured value. The correlation coefficient between the two is R
Was 0.731.

【0087】式(7−1)は、低速RFV1次成分と静
アンバランスとのベクトル和に基づき高速RFV1次成
分の大きさを推定するものである。図5(c)に、式
(7−1)による推定値と実際の測定値との関係を示し
た。両者の相関係数は、R=0.868であった。
Expression (7-1) is for estimating the magnitude of the high-speed RFV first-order component based on the vector sum of the low-speed RFV first-order component and the static imbalance. FIG. 5C shows the relationship between the estimated value by the equation (7-1) and the actual measured value. The correlation coefficient between the two was R = 0.868.

【0088】実施例2 タイヤサイズ=215/60R16、リムサイズ=16
×71/2−JJのタイヤを30本用い、空気圧=200
kPa、荷重=4,903Nとして、低速RFV1次成
分(回転数=1回/秒=8km/h)と、高速RFV1
次成分(回転数=19.5回/秒=140km/h)
と、静アンバランスを測定した。
Example 2 Tire size = 215 / 60R16, rim size = 16
* 7 1 / 2-JJ tires 30 tires, air pressure = 200
kPa, load = 4,903N, low-speed RFV first-order component (rotation speed = 1 time / second = 8 km / h) and high-speed RFV1
Next component (rotation speed = 19.5 times / sec = 140 km / h)
And the static imbalance was measured.

【0089】図6(c)に、低速RFV1次成分の大き
さと高速RFV1次成分の大きさとの関係を示した。両
者の相関係数は、R=0.901であった。
FIG. 6C shows the relationship between the magnitude of the low speed RFV primary component and the magnitude of the high speed RFV primary component. The correlation coefficient between the two was R = 0.901.

【0090】上記で測定した低速RFV1次成分と高速
RFV1次成分と静アンバランスの測定値を用いて、上
記式(5)及び(7)に当てはめ、重回帰分析してそれ
ぞれ下記式(5−2)及び(7−2)を得た。
By using the measured values of the low-speed RFV first-order component, the high-speed RFV first-order component, and the static unbalance measured above, the equations (5) and (7) were applied, and multiple regression analysis was performed to obtain the following equation (5- 2) and (7-2) were obtained.

【0091】 Hm=−9.6+1.17Lm+2511Sm・cosφ ……(5−2) H=21.4+1.07L+5010S +(30.1+1.28L+4486S)・j ……(7−2) 式(5−2)は、式(5−1)と同様、低速RFV1次
成分と静アンバランスとの位相差を考慮して高速RFV
1次成分の大きさを推定するものである。図6(a)
に、式(5−2)による推定値と実際の測定値との関係
を示した。両者の相関係数は、R=0.938であっ
た。
Hm = −9.6 + 1.17Lm + 2511Sm · cosφ (5-2) H = 21.4 + 1.07L x + 5010S x + (30.1 + 1.28L y + 4486S y ) · j (7-2) Equation (5-2), like equation (5-1), considers the phase difference between the low-speed RFV first-order component and the static imbalance. And high speed RFV
The magnitude of the first-order component is estimated. Figure 6 (a)
Shows the relationship between the estimated value by the equation (5-2) and the actual measured value. The correlation coefficient between the two was R = 0.938.

【0092】式(7−2)は、式(7−1)と同様、ベ
クトル和に基づき高速RFV1次成分の大きさを推定す
るものである。図6(b)に、式(7−2)による推定
値と実際の測定値との関係を示した。両者の相関係数
は、R=0.986であった。
The equation (7-2), like the equation (7-1), estimates the magnitude of the high-speed RFV first-order component based on the vector sum. FIG. 6B shows the relationship between the estimated value by the equation (7-2) and the actual measured value. The correlation coefficient between the two was R = 0.986.

【0093】実施例3 タイヤサイズ=155/80R13、リムサイズ=13
×41/2−JJのタイヤを30本用い、空気圧=200
kPa、荷重=3,138Nとして、低速RFV1次成
分(回転数=1回/秒=6km/h)と、高速RFV1
次成分(回転数=22.3回/秒=140km/h)
と、静アンバランスを測定した。
Example 3 Tire size = 155 / 80R13, rim size = 13
30 tires of × 4 1 / 2-JJ, air pressure = 200
kPa, load = 3,138N, low-speed RFV first-order component (rotation speed = 1 time / second = 6 km / h), and high-speed RFV1
Next component (rotation speed = 22.3 times / second = 140 km / h)
And the static imbalance was measured.

【0094】図7(c)に、低速RFV1次成分の大き
さと高速RFV1次成分の大きさとの関係を示した。両
者の相関係数は、R=0.884であった。
FIG. 7C shows the relationship between the magnitude of the low speed RFV primary component and the magnitude of the high speed RFV primary component. The correlation coefficient between the two was R = 0.884.

【0095】上記で測定した低速RFV1次成分と高速
RFV1次成分と静アンバランスの測定値を用いて、上
記式(5)及び(7)に当てはめ、重回帰分析してそれ
ぞれ下記式(5−3)及び(7−3)を得た。
By using the measured values of the low-speed RFV first-order component, the high-speed RFV first-order component, and the static unbalance measured above, the equations (5) and (7) were applied, and multiple regression analysis was performed to obtain the following equation (5- 3) and (7-3) were obtained.

【0096】 Hm=8.6+1.19Lm+4607Sm・cosφ ……(5−3) H=2.9+1.38L+6128S +(13.1+1.28L+2545S)・j ……(7−3) 式(5−3)は、式(5−1)と同様、低速RFV1次
成分と静アンバランスとの位相差を考慮して高速RFV
1次成分の大きさを推定するものである。図7(a)
に、式(5−3)による推定値と実際の測定値との関係
を示した両者の相関係数は、R=0.920であった。
Hm = 8.6 + 1.19Lm + 4607Sm · cosφ (5-3) H = 2.9 + 1.38L x + 6128S x + (13.1 + 1.28L y + 2545S y ) · j (7-3) Equation (5-3), like Equation (5-1), considers the phase difference between the low-speed RFV first-order component and the static unbalance. And high speed RFV
The magnitude of the first-order component is estimated. Figure 7 (a)
In addition, the correlation coefficient between the two, which shows the relationship between the estimated value by the equation (5-3) and the actual measured value, was R = 0.920.

【0097】式(7−3)は、式(7−1)と同様、ベ
クトル和に基づき高速RFV1次成分の大きさを推定す
るものである。図7(b)に、式(7−3)による推定
値と実際の測定値との関係を示した。両者の相関係数
は、R=0.982であった。
The equation (7-3), like the equation (7-1), estimates the magnitude of the high-speed RFV first-order component based on the vector sum. FIG. 7B shows the relationship between the estimated value by the equation (7-3) and the actual measured value. The correlation coefficient between the two was R = 0.982.

【0098】以上のように、式(3−1)、式(5−1
〜3)及び式(7−1〜3)を用いて推定した本発明の
実施例の場合においては、低速RFVのみで高速RFV
1次成分の大きさを推定する従来の方法に比べて、より
正確に高速RFV1次成分の大きさを推定することがで
きる。特に、低速RFV1次成分と静アンバランスのベ
クトル和に基づいて高速RFV1次成分を推定する式
(7−1〜3)による場合、かなり正確に高速RFV1
次成分の大きさを推定することができる。
As described above, the equations (3-1) and (5-1)
˜3) and equations (7-1 to 3), the embodiment of the present invention estimates the high speed RFV only with the low speed RFV.
It is possible to more accurately estimate the magnitude of the high-speed RFV first-order component than the conventional method of estimating the magnitude of the first-order component. Particularly, in the case of the equations (7-1 to 3) for estimating the high-speed RFV first-order component based on the vector sum of the low-speed RFV first-order component and the static unbalance, the high-speed RFV1
The magnitude of the next component can be estimated.

【0099】実施例4 タイヤサイズ=175/70R13、リムサイズ=13
×5−Jのタイヤを12本用い、空気圧=200kP
a、荷重=3,530Nとして、低速RFV1次成分
(回転数=1回/秒=6km/h)と、高速RFV1次
成分(回転数=22.1回/秒=140km/h)と、
RRO1次成分の速度変化を測定した。
Example 4 Tire size = 175 / 70R13, rim size = 13
Twelve x5-J tires were used, air pressure = 200 kP
a, load = 3,530 N, low-speed RFV first-order component (revolution speed = 1 rotation / second = 6 km / h), high-speed RFV first-order component (revolution speed = 22.1 rotation / second = 140 km / h),
The velocity change of the RRO first-order component was measured.

【0100】図8(d)に、低速RFV1次成分の大き
さと高速RFV1次成分の大きさとの関係を示した。両
者の相関係数は、R=0.897であった。
FIG. 8D shows the relationship between the magnitude of the low-speed RFV first-order component and the magnitude of the high-speed RFV first-order component. The correlation coefficient between the two was R = 0.897.

【0101】上記で測定した低速RFV1次成分と高速
RFV1次成分とRRO1次成分の速度変化の測定値を
用いて、上記式(13)、(15)及び(17)に当て
はめ、重回帰分析してそれぞれ下記式(13−1)、
(15−1)及び(17−1)を得た。
Using the measured values of the velocity changes of the low-speed RFV first-order component, the high-speed RFV first-order component, and the RRO first-order component measured as described above, the equations (13), (15), and (17) were applied, and multiple regression analysis was performed. And the following formula (13-1),
(15-1) and (17-1) were obtained.

【0102】 Hm=−0.9+0.87Lm+84Dm ……(13−1) Hm=12.8+1.28Lm+67Dm・cosγ ……(15−1) H=12.0+1.56L+52D +(23.4+1.36L+16D)・j ……(17−1) 式(13−1)は、低速RFV1次成分の大きさとRR
O1次成分の速度変化の大きさのみの相関関係に基づき
高速RFV1次成分の大きさを推定するものである。図
8(a)に、式(13−1)による推定値と実際の測定
値との関係を示した。両者の相関係数は、R=0.92
6であった。
Hm = −0.9 + 0.87Lm + 84Dm (13-1) Hm = 12.8 + 1.28Lm + 67Dm · cosγ (15-1) H = 12.0 + 1.56L x + 52D x + (23.4 + 1.36L y + 16D y ) · J (17-1) Equation (13-1) is the magnitude of the low-speed RFV first-order component and RR.
The magnitude of the fast RFV first-order component is estimated based on the correlation of only the magnitude of the velocity change of the O-first-order component. FIG. 8A shows the relationship between the estimated value by the equation (13-1) and the actual measured value. The correlation coefficient between the two is R = 0.92.
It was 6.

【0103】式(15−1)は、低速RFV1次成分の
大きさとRRO1次成分の速度変化の大きさと両者の位
相差との相関関係に基づき高速RFV1次成分の大きさ
を推定するものである。図8(b)に、式(15−1)
による推定値と実際の測定値との関係を示した。両者の
相関係数は、R=0.956であった。
Expression (15-1) is for estimating the magnitude of the high-speed RFV first-order component based on the correlation between the magnitude of the low-speed RFV first-order component, the magnitude of the velocity change of the RRO first-order component, and the phase difference between the two. . FIG. 8B shows the equation (15-1).
The relationship between the estimated value and the actual measured value is shown. The correlation coefficient between the two was R = 0.957.

【0104】式(17−1)は、低速RFV1次成分と
RRO1次成分の速度変化とのベクトル和に基づき高速
RFV1次成分の大きさを推定するものである。図8
(c)に、式(17−1)による推定値と実際の測定値
との関係を示した。両者の相関係数は、R=0.974
であった。
Expression (17-1) is for estimating the magnitude of the high speed RFV first order component based on the vector sum of the low speed RFV first order component and the velocity change of the RRO first order component. Figure 8
The relationship between the estimated value by the equation (17-1) and the actual measured value is shown in (c). The correlation coefficient between the two is R = 0.974
Met.

【0105】以上のように、式(13−1)、式(15
−1)及び式(17−1)を用いて推定した本発明の実
施例の場合においては、低速RFVのみで高速RFV1
次成分の大きさを推定する従来の方法に比べて、より正
確に高速RFV1次成分の大きさを推定することができ
る。特に、低速RFV1次成分とRRO1次成分の速度
変化のベクトル和に基づいて高速RFV1次成分を推定
する式(17−1)による場合、かなり正確に高速RF
V1次成分の大きさを推定することができる。
As described above, equations (13-1) and (15)
In the case of the embodiment of the present invention estimated using −1) and the equation (17-1), only the low speed RFV and the high speed RFV1
The magnitude of the high-speed RFV first-order component can be estimated more accurately as compared with the conventional method of estimating the magnitude of the second-order component. Particularly, in the case of the equation (17-1) for estimating the high-speed RFV first-order component based on the vector sum of the velocity changes of the low-speed RFV first-order component and the RRO first-order component, the high-speed RFV is fairly accurately calculated.
The magnitude of the V1st order component can be estimated.

【0106】[0106]

【発明の効果】請求項1〜記載の発明によれば、低速
RFV1次成分と静アンバランスの測定結果から、高速
RFV1次成分の大きさを推定することができるので、
この推定値と高速RFV1次成分の規格値とを比較し
て、規格値以下のタイヤを選別することにより、高速R
FV1次成分が規格値を超えるタイヤの出荷を防止する
ことができる。
Effects of the Invention According to the invention of claim 1-4, wherein the measurement results of the low speed RFV1 order component and the static unbalance, it is possible to estimate the size of the high-speed RFV1 order component,
By comparing this estimated value with the standard value of the high-speed RFV primary component and selecting tires with a standard value or less, high-speed R
It is possible to prevent the shipment of tires whose FV primary component exceeds the standard value.

【0107】また、請求項記載の発明によれば、
低速RFV1次成分とRRO1次成分の速度変化との測
定結果から、高速RFV1次成分の大きさを推定するこ
とができるので、この推定値と高速RFV1次成分の規
格値とを比較して、規格値以下のタイヤを選別すること
により、高速RFV1次成分が規格値を超えるタイヤの
出荷を防止することができる。
According to the inventions of claims 5 to 8 ,
Since the magnitude of the high-speed RFV first-order component can be estimated from the measurement results of the velocity changes of the low-speed RFV first-order component and the RRO first-order component, this estimated value is compared with the standard value of the high-speed RFV first-order component to determine the standard. It is possible to prevent the shipment of tires whose high-speed RFV primary component exceeds the standard value by selecting tires having a value less than or equal to the value.

【0108】よって、請求項記載の発明によれば、高
速RFV1次成分を実際に測定することなく、その大き
さを推定して規格値以下のタイヤを選別することができ
る。
Therefore, according to the invention as set forth in claim 9 , it is possible to estimate the magnitude of the high-speed RFV first-order component without actually measuring it and select a tire having a standard value or less.

【0109】請求項10記載の発明によれば、高速RF
V1次成分を実際に測定することなく、タイヤの静アン
バランスの測定結果から、高速RFV1次成分が規格値
以下のタイヤを簡易に選別することができる。
According to the tenth aspect of the present invention, high-speed RF
A tire having a high-speed RFV primary component equal to or less than the standard value can be easily selected from the measurement result of the static unbalance of the tire without actually measuring the V primary component.

【0110】請求項11記載の発明によれば、高速RF
V1次成分を実際に測定することなく、タイヤのRRO
1次成分の速度変化の測定結果から、高速RFV1次成
分が規格値以下のタイヤを簡易に選別することができ
る。
According to the eleventh aspect of the present invention, high-speed RF
RRO of tire without actually measuring V1 component
From the measurement result of the speed change of the primary component, it is possible to easily select the tire having the high-speed RFV primary component equal to or less than the standard value.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(e)は、高速RFV1次成分と低速
RFV1次成分と静アンバランスの関係を示すタイヤの
側面概略図である。
FIG. 1A to FIG. 1E are schematic side views of tires showing a relationship between a high-speed RFV first-order component, a low-speed RFV first-order component, and a static unbalance.

【図2】式(1−1)における高速RFV1次成分と低
速RFV1次成分と静アンバランスとの関係を図示した
説明図である。
FIG. 2 is an explanatory diagram illustrating a relationship between a high-speed RFV first-order component, a low-speed RFV first-order component, and a static unbalance in Expression (1-1).

【図3】(a)〜(e)は、高速RFV1次成分と低速
RFV1次成分とRRO1次成分の速度変化の関係を示
すタイヤの側面概略図である。
3 (a) to 3 (e) are schematic side views of tires showing a relationship between speed changes of a high-speed RFV first-order component, a low-speed RFV first-order component, and an RRO first-order component.

【図4】低速RRO1次成分と高速RRO1次成分とR
RO1次成分の速度変化との関係を示すタイヤの側面概
略図である。
FIG. 4 Low-speed RRO first-order component, high-speed RRO first-order component, and R
It is a side surface schematic diagram of a tire which shows the relation with the speed change of the RO primary component.

【図5】(a)〜(c)は、実施例1における高速RF
V1次成分の推定値と測定値との関係を示すグラフであ
り、(d)は、高速RFV1次成分と低速RFV1次成
分との関係を示すグラフである。
5A to 5C are high-speed RF in the first embodiment.
It is a graph which shows the relationship between the estimated value of a V1st order component, and a measured value, (d) is a graph which shows the relationship between a high speed RFV first order component and a low speed RFV first order component.

【図6】(a)及び(b)は、実施例2における高速R
FV1次成分の推定値と測定値との関係を示すグラフで
あり、(c)は、高速RFV1次成分と低速RFV1次
成分との関係を示すグラフである。
6A and 6B are high-speed R in the second embodiment.
It is a graph which shows the relationship between the estimated value and measured value of the FV first-order component, and (c) is a graph which shows the relationship between the high-speed RFV first-order component and the low-speed RFV first-order component.

【図7】(a)及び(b)は、実施例3における高速R
FV1次成分の推定値と測定値との関係を示すグラフで
あり、(c)は、高速RFV1次成分と低速RFV1次
成分との関係を示すグラフである。
7A and 7B are high-speed R in the third embodiment.
It is a graph which shows the relationship between the estimated value and measured value of the FV first-order component, and (c) is a graph which shows the relationship between the high-speed RFV first-order component and the low-speed RFV first-order component.

【図8】(a)〜(c)は、実施例4における高速RF
V1次成分の推定値と測定値との関係を示すグラフであ
り、(d)は、高速RFV1次成分と低速RFV1次成
分との関係を示すグラフである。
FIGS. 8A to 8C are high-speed RF in Example 4.
It is a graph which shows the relationship between the estimated value of a V1st order component, and a measured value, (d) is a graph which shows the relationship between a high speed RFV first order component and a low speed RFV first order component.

【符号の説明】[Explanation of symbols]

H……高速RFV1次成分 L……低速RFV1次成分 S……静アンバランス D……RRO1次成分の速度変化 a、e……係数 H: High-speed RFV primary component L: Low-speed RFV primary component S: static imbalance D: Velocity change of RRO primary component a, e ... Coefficient

フロントページの続き (56)参考文献 特開 平8−66975(JP,A) 特開 平1−314935(JP,A) 特開 平8−122220(JP,A) タイヤ運動特性専門委員会編,タイヤ −自動車系の運動と安全性向上先端技 術,社団法人自動車技術会,1998年 3 月15日,30−35 (58)調査した分野(Int.Cl.7,DB名) G01M 17/02 G01M 1/16 Continuation of the front page (56) Reference JP-A-8-66975 (JP, A) JP-A-1-314935 (JP, A) JP-A-8-122220 (JP, A) Edited by the tire dynamic characteristics expert committee, Tire-movement and safety improvement advanced technology of automobile system, Japan Society of Automotive Engineers, March 15, 1998, 30-35 (58) Fields investigated (Int.Cl. 7 , DB name) G01M 17/02 G01M 1/16

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分と静アンバランスを測定し
て、高速RFV1次成分と低速RFV1次成分と静アン
バランスとの関係を求めておき、 高速RFV1次成分が未知の同品種のタイヤについて、
低速RFV1次成分と静アンバランスとを測定し、その
測定結果と上記関係とから、そのタイヤの高速RFV1
次成分の推定値を算出することを特徴とするタイヤの高
速ユニフォミティ推定方法。
1. A high speed RFV primary for a certain type of tire
Component and low speed RFV primary component and static imbalance are measured
Te, to previously obtain the relationship between the high-speed RFV1-order component and the low-speed RFV1-order component and the static unbalance, high-speed RFV1 order component for the tire of the unknown of the same breed,
The low-speed RFV1 primary component and static imbalance were measured, and the high-speed RFV1 of the tire was determined from the measurement results and the above relationship.
A method for estimating high speed uniformity of a tire, which comprises calculating an estimated value of a next component.
【請求項2】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分と静アンバランスを測定し
て、下記式(3)で表される関係を求めておき、 高速RFV1次成分が未知の同品種のタイヤについて、
低速RFV1次成分の大きさと静アンバランスの大きさ
とを測定し、式(3)に基づきそのタイヤの高速RFV
1次成分の推定値を算出することを特徴とするタイヤの
高速ユニフォミティ推定方法。 Hm=b+b・Lm+b・Sm ……(3) (Hmは高速RFV1次成分の大きさ、Lmは低速RF
V1次成分の大きさ、Smは静アンバランスの大きさ、
、b、bはタイヤの種類に応じて定められる係
数である。)
2. A high speed RFV primary for a certain type of tire
Component and low speed RFV primary component and static imbalance are measured
Then, the relation expressed by the following formula (3) is obtained, and for a tire of the same type whose high-speed RFV primary component is unknown,
The magnitude of the low speed RFV primary component and the magnitude of the static imbalance are measured, and the high speed RFV of the tire is calculated based on the equation (3).
A method for estimating a high speed uniformity of a tire, characterized by calculating an estimated value of a primary component. Hm = b 1 + b 2 · Lm + b 3 · Sm (3) (Hm is the magnitude of the high-speed RFV first-order component, Lm is the low-speed RF
The magnitude of V1 component, Sm is the magnitude of static imbalance,
b 1 , b 2 , and b 3 are coefficients determined according to the type of tire. )
【請求項3】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分と静アンバランスを測定し
て、下記式(5)で表される関係を求めておき、 高速RFV1次成分が未知の同品種のタイヤについて、
低速RFV1次成分の大きさと静アンバランスの大きさ
と両者の位相差を測定し、式(5)に基づきそのタイヤ
の高速RFV1次成分の推定値を算出することを特徴と
するタイヤの高速ユニフォミティ推定方法。 Hm=c+c・Lm+c・Sm・cosφ ……
(5) (Hmは高速RFV1次成分の大きさ、Lmは低速RF
V1次成分の大きさ、Smは静アンバランスの大きさ、
φは低速RFV1次成分と静アンバランスとの位相差、
、c、cはタイヤの種類に応じて定められる係
数である。)
3. A high speed RFV primary for a certain type of tire
Component and low speed RFV primary component and static imbalance are measured
Then, the relationship represented by the following formula (5) is obtained, and for a tire of the same type whose high-speed RFV primary component is unknown,
High-speed uniformity estimation of a tire characterized by measuring the magnitude of the low-speed RFV first-order component, the magnitude of static imbalance, and the phase difference between the two, and calculating an estimated value of the high-speed RFV first-order component of the tire based on equation (5). Method. Hm = c 1 + c 2 · Lm + c 3 · Sm · cosφ ……
(5) (Hm is the magnitude of the high-speed RFV first-order component, Lm is the low-speed RFV
The magnitude of V1 component, Sm is the magnitude of static imbalance,
φ is the phase difference between the low-speed RFV first-order component and static imbalance,
c 1 , c 2 , and c 3 are coefficients determined according to the type of tire. )
【請求項4】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分と静アンバランスを測定し
て、下記式(9)で表される関係を求めておき、 高速RFV1次成分が未知の同品種のタイヤについて、
低速RFV1次成分と静アンバランスとを測定し、式
(9)に基づきそのタイヤの高速RFV1次成分の推定
値を算出することを特徴とするタイヤの高速ユニフォミ
ティ推定方法。 【数1】 (Hmは高速RFV1次成分の大きさ、Lは低速RF
V1次成分の実数部、Lは低速RFV1次成分の虚数
部、Sは静アンバランスの実数部、Sは静アンバラ
ンスの虚数部、d、d、d、d、d、d
タイヤの種類に応じて定められる係数である。)
4. A high speed RFV primary for a certain type of tire
Component and low speed RFV primary component and static imbalance are measured
Then, the relationship represented by the following formula (9) is obtained, and for a tire of the same type whose high-speed RFV primary component is unknown,
A method for estimating a high speed uniformity of a tire, characterized by measuring a low speed RFV primary component and a static unbalance and calculating an estimated value of a high speed RFV primary component of the tire based on equation (9). [Equation 1] (Hm is the magnitude of the high-speed RFV first-order component, L x is the low-speed RF
V 1 -order component real part, L y is low-speed RFV 1st-order component imaginary part, S x is static unbalanced real part, S y is static unbalanced imaginary part, d 1 , d 2 , d 3 , d 4 , d 5 and d 6 are coefficients determined according to the type of tire. )
【請求項5】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分とRRO1次成分の速度変化
を測定して、高速RFV1次成分と低速RFV1次成分
とRRO1次成分の速度変化との関係を求めておき、 高速RFV1次成分が未知の同品種のタイヤについて、
低速RFV1次成分とRRO1次成分の速度変化とを測
定し、その測定結果と上記関係とから、そのタイヤの高
速RFV1次成分の推定値を算出することを特徴とする
タイヤの高速ユニフォミティ推定方法。
5. A high speed RFV primary for a certain type of tire
Change of velocity component, low-speed RFV first-order component, and RRO first-order component
Of the tires of the same type in which the high-speed RFV first-order component is unknown, and the relationship between the high-speed RFV first-order component, the low-speed RFV first-order component, and the speed change of the RRO first-order component is obtained in advance.
A method for estimating a high-speed uniformity of a tire, which comprises measuring a change in speed of a low-speed RFV first-order component and a change in speed of a first-order RRO component, and calculating an estimated value of a high-speed RFV first-order component of the tire from the measurement result and the above relationship.
【請求項6】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分とRRO1次成分の速度変化
を測定して、下記式(13)で表される関係を求めてお
き、 高速RFV1次成分が未知の同品種のタイヤについて、
低速RFV1次成分の大きさとRRO1次成分の速度変
化の大きさとを測定し、式(13)に基づきそのタイヤ
の高速RFV1次成分の推定値を算出することを特徴と
するタイヤの高速ユニフォミティ推定方法。 Hm=f+f・Lm+f・Dm ……(13) (Hmは高速RFV1次成分の大きさ、Lmは低速RF
V1次成分の大きさ、DmはRRO1次成分の速度変化
の大きさ、f、f、fはタイヤの種類に応じて定
められる係数である。)
6. A high speed RFV primary for a certain type of tire
Change of velocity component, low-speed RFV first-order component, and RRO first-order component
Of the tire of the same type whose high-speed RFV primary component is unknown,
A high speed uniformity estimation method for a tire, characterized in that the magnitude of the low speed RFV first order component and the magnitude of the speed change of the RRO first order component are measured, and an estimated value of the high speed RFV first order component of the tire is calculated based on equation (13). . Hm = f 1 + f 2 · Lm + f 3 · Dm (13) (Hm is the magnitude of the high-speed RFV first-order component, Lm is the low-speed RF
The magnitude of the V-first-order component, Dm is the magnitude of the speed change of the RRO first-order component, and f 1 , f 2 , and f 3 are coefficients determined according to the type of tire. )
【請求項7】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分とRRO1次成分の速度変化
を測定して、下記式(15)で表される関係を求めてお
き、 高速RFV1次成分が未知の同品種のタイヤについて、
低速RFV1次成分の大きさとRRO1次成分の速度変
化の大きさと両者の位相差を測定し、式(15)に基づ
きそのタイヤの高速RFV1次成分の推定値を算出する
ことを特徴とするタイヤの高速ユニフォミティ推定方
法。 Hm=g+g・Lm+g・Dm・cosγ ……
(15) (Hmは高速RFV1次成分の大きさ、Lmは低速RF
V1次成分の大きさ、DmはRRO1次成分の速度変化
の大きさ、γは低速RFV1次成分とRRO1次成分の
速度変化との位相差、g、g、gはタイヤの種類
に応じて定められる係数である。)
7. A high speed RFV primary for a certain type of tire
Change of velocity component, low-speed RFV first-order component, and RRO first-order component
Of the tire of the same type whose high-speed RFV primary component is unknown,
The magnitude of the low-speed RFV first-order component, the magnitude of the velocity change of the RRO first-order component, and the phase difference between the two are measured, and the estimated value of the high-speed RFV first-order component of the tire is calculated based on equation (15) . Fast uniformity estimation method. Hm = g 1 + g 2 · Lm + g 3 · Dm · cosγ ···
(15) (Hm is the magnitude of the high-speed RFV first-order component, Lm is the low-speed RFV
The magnitude of the V1 order component, Dm is the magnitude of the speed change of the RRO first order component, γ is the phase difference between the low speed RFV first order component and the speed change of the RRO first order component, g 1 , g 2 and g 3 are tire types. It is a coefficient determined accordingly. )
【請求項8】ある品種のタイヤについて高速RFV1次
成分と低速RFV1次成分とRRO1次成分の速度変化
を測定して、下記式(19)で表される関係を求めてお
き、高速RFV1次成分が未知の同品種のタイヤについ
て、低速RFV1次成分とRRO1次成分の速度変化と
を測定し、式(19)に基づきそのタイヤの高速RFV
1次成分の推定値を算出することを特徴とするタイヤの
高速ユニフォミティ推定方法。 【数2】 (Hmは高速RFV1次成分の大きさ、Lは低速RF
V1次成分の実数部、Lは低速RFV1次成分の虚数
部、DはRRO1次成分の速度変化の実数部、D
RRO1次成分の速度変化の虚数部、h、h
、h、h、hはタイヤの種類に応じて定めら
れる係数である。)
8. A high speed RFV primary for a certain type of tire
Change of velocity component, low-speed RFV first-order component, and RRO first-order component
Is measured to obtain the relationship represented by the following formula (19), and the speed change of the low-speed RFV first-order component and the RRO first-order component is measured for a tire of the same type whose high-speed RFV first-order component is unknown, High speed RFV of the tire based on (19)
A method for estimating a high speed uniformity of a tire, characterized by calculating an estimated value of a primary component. [Equation 2] (Hm is the magnitude of the high-speed RFV first-order component, L x is the low-speed RF
V 1 -order component real part, L y is low speed RFV 1st-order component imaginary part, D x is RRO 1st-order component speed change real part, D y is RRO 1st- order component speed change imaginary part, h 1 , h 2 ,
h 3 , h 4 , h 5 , h 6 are coefficients determined according to the type of tire. )
【請求項9】請求項1〜のいずれか一項に記載の方法
で算出した高速RFV1次成分の推定値と、高速RFV
1次成分の規格値とを比較してタイヤを選別することを
特徴とするタイヤの選別方法。
9. An estimated value of a high-speed RFV first-order component calculated by the method according to any one of claims 1 to 8 and a high-speed RFV.
A method for selecting a tire, which comprises selecting a tire by comparing it with a standard value of a primary component.
【請求項10】タイヤの低速RFV1次成分の規格値と
高速RFV1次成分の規格値とから静アンバランスの上
限値を算出しておき、 高速RFV1次成分が未知のタイヤについて、静アンバ
ランスを測定して、その測定値が上記の上限値以下のタ
イヤを選別することを特徴とするタイヤの選別方法。
10. An upper limit of static unbalance is calculated from the standard value of low-speed RFV primary component and the standard value of high-speed RFV primary component of a tire, and the static unbalance is calculated for a tire whose high-speed RFV primary component is unknown. A method for selecting a tire, which comprises measuring and selecting a tire whose measured value is equal to or less than the above upper limit value.
【請求項11】タイヤの低速RFV1次成分の規格値と
高速RFV1次成分の規格値とからRRO1次成分の速
度変化の上限値を算出しておき、 高速RFV1次成分が未知のタイヤについて、RRO1
次成分の速度変化を測定して、その測定値が上記の上限
値以下のタイヤを選別することを特徴とするタイヤの選
別方法。
11. An upper limit value of the speed change of the RRO primary component is calculated in advance from the standard value of the low speed RFV primary component and the standard value of the high speed RFV primary component of the tire.
A method for selecting a tire, characterized in that a change in speed of the next component is measured, and a tire having a measured value equal to or less than the above upper limit value is selected.
JP32741799A 1999-11-17 1999-11-17 High-speed tire uniformity estimation method and tire selection method Expired - Lifetime JP3507945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32741799A JP3507945B2 (en) 1999-11-17 1999-11-17 High-speed tire uniformity estimation method and tire selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32741799A JP3507945B2 (en) 1999-11-17 1999-11-17 High-speed tire uniformity estimation method and tire selection method

Publications (2)

Publication Number Publication Date
JP2001141615A JP2001141615A (en) 2001-05-25
JP3507945B2 true JP3507945B2 (en) 2004-03-15

Family

ID=18198938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32741799A Expired - Lifetime JP3507945B2 (en) 1999-11-17 1999-11-17 High-speed tire uniformity estimation method and tire selection method

Country Status (1)

Country Link
JP (1) JP3507945B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9569563B2 (en) 2010-06-14 2017-02-14 Michelin Recherche Et Technique S.A. Method for prediction and control of harmonic components of tire uniformity parameters
US9778032B2 (en) 2010-12-02 2017-10-03 Compagnie Generale Des Etablissements Michelin Method for prediction and control of tire uniformity parameters from crown thickness variation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609074B2 (en) * 2001-03-27 2003-08-19 The Goodyear Tire & Rubber Company Tire uniformity prediction using balance and low speed uniformity data
US7174271B2 (en) 2001-10-11 2007-02-06 Bridgestone Corporation Tire radial force variation prediction method
DE10257907B4 (en) 2002-12-11 2011-09-29 Snap-On Equipment Gmbh Method and apparatus for checking the uniformity of a pneumatic tire
JP4072097B2 (en) * 2003-05-29 2008-04-02 住友ゴム工業株式会社 Manufacturing method of high-speed FV reduction tire
JP4113088B2 (en) * 2003-10-17 2008-07-02 東洋ゴム工業株式会社 High-speed tire uniformity estimation method and tire selection method
US7082816B2 (en) * 2003-10-20 2006-08-01 Michelin Recherche Et Technique S.A. Prediction and control of mass unbalance and high speed uniformity
JP4714154B2 (en) * 2003-11-21 2011-06-29 ソシエテ ド テクノロジー ミシュラン Tire manufacturing method with improved tire uniformity
US7213451B2 (en) * 2004-05-26 2007-05-08 Michelin Rechercheqet Technique, S.A. Tire uniformity through compensation between radial run out and stiffness variation
JP4740624B2 (en) * 2005-03-28 2011-08-03 株式会社ブリヂストン High-speed tire uniformity inspection method
JP5416427B2 (en) * 2009-02-10 2014-02-12 住友ゴム工業株式会社 Estimation system for high-speed tire FV
WO2011159280A2 (en) 2010-06-15 2011-12-22 Michelin Recherche Et Technique, S.A. Tire surface anomaly detection
JP7188010B2 (en) * 2018-11-22 2022-12-13 住友ゴム工業株式会社 High Speed Uniformity Estimation Method for Tires

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
タイヤ運動特性専門委員会編,タイヤ−自動車系の運動と安全性向上先端技術,社団法人自動車技術会,1998年 3月15日,30−35

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9569563B2 (en) 2010-06-14 2017-02-14 Michelin Recherche Et Technique S.A. Method for prediction and control of harmonic components of tire uniformity parameters
US9778032B2 (en) 2010-12-02 2017-10-03 Compagnie Generale Des Etablissements Michelin Method for prediction and control of tire uniformity parameters from crown thickness variation

Also Published As

Publication number Publication date
JP2001141615A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP3507945B2 (en) High-speed tire uniformity estimation method and tire selection method
JP4025560B2 (en) Prediction of tire uniformity using balance and low speed uniformity data
US7428467B2 (en) Method for tangential force variation and angular acceleration fluctuation prediction in tires
KR100944650B1 (en) Improved tire uniformity through compensation between radial run out and stiffness variation
RU2096746C1 (en) Method of decrease of tendency of tire and wheel unit to cause vibration in plane perpendicular to axis of its rotation, process of manufacture of tire and wheel unit and equipment to determine additional static disbalance
US20050081614A1 (en) Prediction and control of mass unbalance and high speed uniformity
US20150165705A1 (en) Uniformity improvement through discrete effect identification
JP5631264B2 (en) Tire balance test method and tire balance tester
JP4652585B2 (en) Assembly method of tire and wheel
US6347547B1 (en) Method of modifying uniformity of a tire
US6584836B1 (en) Bias method for identifying and removing machine contribution to test data
JP4113088B2 (en) High-speed tire uniformity estimation method and tire selection method
Negrus et al. Tire radial vibrations at high speed of rolling
US20180252618A1 (en) Tires for testing force variation sensitivity in a vehicle
JP4431023B2 (en) Tire vibration characteristics measurement method
US7238249B2 (en) Producing method of high speed FV reducing tire
JP4005262B2 (en) Method and apparatus for assembling tire and wheel
JP2936327B1 (en) Method and apparatus for assembling tire and wheel
JP7188010B2 (en) High Speed Uniformity Estimation Method for Tires
JPH06320640A (en) Reduction of unbalance quantity of tire
JP3051665B2 (en) How to correct weight imbalance of rim-mounted tires
JP2011247786A (en) High-speed uniformity adjustment system of tire wheel assembly, high-speed uniformity adjustment method, and tire wheel assembly adjusted by high-speed uniformity adjustment
JPH0561489B2 (en)
JP3052655B2 (en) Vehicle vibration measurement method
JP3139373B2 (en) Dynamic imbalance evaluation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

R150 Certificate of patent or registration of utility model

Ref document number: 3507945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160109

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term