JP3507732B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3507732B2
JP3507732B2 JP27825599A JP27825599A JP3507732B2 JP 3507732 B2 JP3507732 B2 JP 3507732B2 JP 27825599 A JP27825599 A JP 27825599A JP 27825599 A JP27825599 A JP 27825599A JP 3507732 B2 JP3507732 B2 JP 3507732B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
region
type
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27825599A
Other languages
Japanese (ja)
Other versions
JP2001102577A (en
Inventor
孝 四戸
雄介 川口
彰博 八幡
和敏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27825599A priority Critical patent/JP3507732B2/en
Publication of JP2001102577A publication Critical patent/JP2001102577A/en
Application granted granted Critical
Publication of JP3507732B2 publication Critical patent/JP3507732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置、特に
電力用のスーパージャンクション素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a super junction element for electric power.

【0002】[0002]

【従来の技術】図7は、従来の縦型スーパージャンクシ
ョンMOSFETの素子構造を示した断面図である。
2. Description of the Related Art FIG. 7 is a sectional view showing a device structure of a conventional vertical super junction MOSFET.

【0003】この素子の基本構造は、n+ 型半導体基板
に形成されたn+ 型ドレイン層1、その上にエピタキシ
ャル成長されたn- 型ベース層(図示せず)、p型ベー
ス層3、n+ 型ソース層4、p+ 型層5、ドレイン電極
6、ソース電極7、ゲート電極8、ゲート絶縁膜9、n
- 型ベース層内でn型低濃度層10及びp型低濃度層1
1が交互に繰り返し配置された補助領域によって構成さ
れている。
The basic structure of this device is that an n + type drain layer 1 formed on an n + type semiconductor substrate, an n type base layer (not shown) epitaxially grown thereon, a p type base layer 3, n. + Type source layer 4, p + type layer 5, drain electrode 6, source electrode 7, gate electrode 8, gate insulating film 9, n
- n-type by type base layer low-concentration layer 10 and the p-type low concentration layer 1
1 is composed of auxiliary regions arranged alternately and repeatedly.

【0004】なお、図では、n型低濃度層10の左半分
及びp型低濃度層11の右半分に対応した領域からなる
単位領域のみ示しているが、実際には隣接する単位領域
どおしが単位領域間の境界面で面対称になるようにして
複数配置されている。
In the figure, only the unit regions consisting of the left half of the n-type low-concentration layer 10 and the right half of the p-type low-concentration layer 11 are shown. A plurality of ridges are arranged so as to be plane-symmetric at the boundary surface between the unit regions.

【0005】n型低濃度層10とp型低濃度層11とが
交互に繰り返し配置された補助領域の効果については、
例えば「T.Fujihira,Jpn.J.App
l.Phys.Vol.36(1997)pp.625
4−6262」に開示されている。これによれば、補助
領域のn型低濃度層10とp型低濃度層11の繰り返し
方向のキャリア積分量が、概略5×1012cm-2以下で
ほぼ同一になるように設計すれば、これらの低濃度層間
に逆方向電圧が印加された場合に、これらの低濃度層は
完全に空乏化するというものである。
Regarding the effect of the auxiliary region in which the n-type low concentration layer 10 and the p-type low concentration layer 11 are alternately and repeatedly arranged,
For example, "T. Fujihira, Jpn. J. App.
l. Phys. Vol. 36 (1997) pp. 625
4-6262 ". According to this, if the n-type low-concentration layer 10 and the p-type low-concentration layer 11 in the auxiliary region are designed such that the carrier integration amount in the repeating direction is approximately 5 × 10 12 cm −2 or less, they are substantially the same, When a reverse voltage is applied between these low concentration layers, these low concentration layers are completely depleted.

【0006】この原理によれば、例えばn型低濃度層1
0の濃度をn- 型ベース層の濃度の100倍に設定して
も、n型低濃度層10の幅を狭くしてキャリア積分量が
5×1012cm-2以下になるように調整すれば、補助領
域ではブレークダウンが起こらないことになる。したが
って、このような補助領域をn+ 型ドレイン層1とp型
ベース層3とに挟まれた領域に形成すれば、この部分の
抵抗を著しく低減することが可能となる。
According to this principle, for example, the n-type low concentration layer 1
Even if the concentration of 0 is set to 100 times the concentration of the n -type base layer, the width of the n-type low-concentration layer 10 should be narrowed so that the integrated carrier amount becomes 5 × 10 12 cm −2 or less. Thus, no breakdown will occur in the auxiliary area. Therefore, if such an auxiliary region is formed in a region sandwiched between the n + type drain layer 1 and the p type base layer 3, the resistance of this portion can be significantly reduced.

【0007】また、この補助領域はその厚さ方向の長さ
に比例して耐圧が増加するという性質を持っているの
で、オン抵抗は耐圧に直線的に比例する。一方、補助領
域のない場合には、n- 型ベース層の濃度を減らしなが
ら厚さを増加させないと耐圧が増加しないので、オン抵
抗は耐圧の2乗に比例して著しく増加する。したがっ
て、高耐圧が要求される素子になるほど、補助領域を設
けたことによるオン抵抗の低減効果が大きくなる。
Further, since the withstand voltage of this auxiliary region increases in proportion to its length in the thickness direction, the on-resistance is linearly proportional to the withstand voltage. On the other hand, when the auxiliary region is not provided, the breakdown voltage does not increase unless the thickness of the n type base layer is increased while the concentration of the n type base layer is reduced. Therefore, the on-resistance significantly increases in proportion to the square of the breakdown voltage. Therefore, the more the element is required to have a higher breakdown voltage, the greater the effect of reducing the on-resistance due to the provision of the auxiliary region.

【0008】また、補助領域のp型低濃度層11はp型
ベース層3と接続されてソース電極7とほぼ等電位に設
定されており、補助領域のn型低濃度層10はn+ 型ド
レイン層1と接続されてドレイン電極6とほぼ等電位に
設定されている。したがって、縦型MOSFETがター
ンオフし始めると、補助領域内部のキャリアは速やかに
素子外部へ吐き出されて空乏層が広がり、高速にターン
オフすることが可能となる。
Further, the p-type low-concentration layer 11 in the auxiliary region is connected to the p-type base layer 3 and set to substantially the same potential as the source electrode 7, and the n-type low-concentration layer 10 in the auxiliary region is n + -type. It is connected to the drain layer 1 and is set to have substantially the same potential as the drain electrode 6. Therefore, when the vertical MOSFET starts to turn off, the carriers inside the auxiliary region are quickly discharged to the outside of the element, the depletion layer spreads, and it becomes possible to turn off at high speed.

【0009】また、このような素子の製造方法は、
「G.Deboy et al.,IEDM98(19
98)pp.683−685」に開示されている。
Further, the manufacturing method of such an element is as follows.
"G. Deboy et al., IEDM 98 (19
98) pp. 683-685 ".

【0010】これによれば、n+ 型半導体基板上に例え
ば厚さ10μmのエピタキシャル層を形成して、補助領
域のn型低濃度層10及びp型低濃度層11が形成され
る領域に、イオン注入によって選択的に不純物を導入す
る。さらに、エピタキシャル層を形成して同様の工程を
行ない、これを素子の耐圧・厚さに応じて数回繰り返
す。
According to this, for example, an epitaxial layer having a thickness of 10 μm is formed on the n + type semiconductor substrate, and in the region where the n type low concentration layer 10 and the p type low concentration layer 11 of the auxiliary region are formed, Impurities are selectively introduced by ion implantation. Further, an epitaxial layer is formed and the same steps are performed, and this is repeated several times depending on the breakdown voltage and thickness of the device.

【0011】次に、p型ベース層3などのイオン注入を
行った後、熱拡散により、それぞれのエピタキシャル層
内部に形成されたイオン注入層から不純物を拡散させ
て、互いの層のn型低濃度層10及びp型低濃度層11
が接続されるようにする。その後、n+ 型ソース層4、
+ 型層5、ゲート絶縁膜9、ゲート電極8、ソース電
極7、ドレイン電極6などを形成し、素子を完成させ
る。
Next, after ion-implanting the p-type base layer 3 etc., impurities are diffused from the ion-implanted layers formed inside the respective epitaxial layers by thermal diffusion, so that the n-type lower layers of the respective layers are reduced. Concentration layer 10 and p-type low concentration layer 11
To be connected. After that, the n + type source layer 4,
The p + type layer 5, the gate insulating film 9, the gate electrode 8, the source electrode 7, the drain electrode 6 and the like are formed to complete the device.

【0012】上述したような製造方法を用いることによ
り、比較的簡単に補助領域を形成することができる。
By using the manufacturing method as described above, the auxiliary region can be formed relatively easily.

【0013】しかしながら、上述した従来の素子構造で
は、「P.M.Shenoy etal.,ISPSD
99(1999)pp.99−102」に開示されてい
るように、補助領域のn型低濃度層10とp型低濃度層
11のキャリア積分量がずれると、ターンオフ時間や内
蔵逆導通ダイオードの逆回復時間が大きく変動するとと
もに、耐圧が著しく低下するという問題が生じる。
However, in the above-mentioned conventional device structure, "PM Shenoy et al., ISPSD" is used.
99 (1999) pp. 99-102 ", if the carrier integration amounts of the n-type low-concentration layer 10 and the p-type low-concentration layer 11 in the auxiliary region deviate from each other, the turn-off time and the reverse recovery time of the built-in reverse conducting diode fluctuate significantly. At the same time, there arises a problem that the breakdown voltage is significantly lowered.

【0014】また、エピタキシャル成長は高温で行なう
ので、最初に行なったエピタキシャル成長層中に導入さ
れている不純物がしだいに拡散するため、補助領域下部
のキャリア積分量がずれやすいという問題が生じる。
Further, since the epitaxial growth is carried out at a high temperature, the impurities introduced into the epitaxial growth layer initially formed diffuse gradually, so that there is a problem that the carrier integrated amount in the lower portion of the auxiliary region tends to shift.

【0015】また、従来の素子構造では、補助領域のp
型低濃度層11がn+ 型ドレイン層1に接しているの
で、この部分の空乏層はp型低濃度層11内部にしか広
がらない。一方、補助領域のn型低濃度層10は比較的
濃度の低いp型ベース層3に接しているので、この部分
の空乏層はn型低濃度層10内部だけでなく、p型ベー
ス層3内部にも広がる。その結果、p型低濃度層11と
+ 型ドレイン層1が接している部分の電界強度が高く
なり、この部分で素子全体の耐圧が制限されるという問
題が生じる。
Further, in the conventional device structure, p of the auxiliary region is
Since the low-concentration type layer 11 is in contact with the n + -type drain layer 1, the depletion layer in this portion spreads only inside the low-concentration layer 11 of the p-type. On the other hand, since the n-type low-concentration layer 10 in the auxiliary region is in contact with the p-type base layer 3 having a relatively low concentration, the depletion layer in this portion is not only inside the n-type low-concentration layer 10 but also in the p-type base layer 3. Also spreads inside. As a result, the electric field strength increases at the portion where the p-type low-concentration layer 11 and the n + -type drain layer 1 are in contact with each other, and the breakdown voltage of the entire device is limited at this portion.

【0016】2次元数値計算の結果によれば、補助領域
の長さLが350μm、補助領域のn型低濃度層10及
びp型低濃度層11の幅Wn及びWpがともに3.5μ
m、n型低濃度層10及びp型低濃度層11の濃度Cn
及びCpがともに3×1015cm-3の場合に、素子の耐
圧は4950Vであった。局部的な電界集中のない理想
的な素子の耐圧は、半導体の絶縁破壊電界強度と補助領
域の長さとの積で表される7000Vになるはずなの
で、この素子構造では70%の耐圧しか得られないこと
になる。
According to the result of the two-dimensional numerical calculation, the length L of the auxiliary region is 350 μm, and the widths Wn and Wp of the n-type low concentration layer 10 and the p-type low concentration layer 11 of the auxiliary region are both 3.5 μm.
Concentration Cn of m, n-type low concentration layer 10 and p-type low concentration layer 11
When both Cp and Cp were 3 × 10 15 cm −3 , the breakdown voltage of the device was 4950V. The ideal breakdown voltage of an element without local electric field concentration should be 7,000 V, which is represented by the product of the dielectric breakdown field strength of the semiconductor and the length of the auxiliary region. Therefore, with this element structure, a breakdown voltage of only 70% can be obtained. There will be no.

【0017】[0017]

【発明が解決しようとする課題】このように、スーパー
ジャンクション素子は、オン抵抗の低減や高速ターンオ
フといった優れた性能を有している。しかしながら、従
来のスーパージャンクション素子は、補助領域のn型低
濃度層とp型低濃度層のキャリア積分量がずれると、タ
ーンオフ時間や内蔵逆導通ダイオードの逆回復時間が大
きく変動するとともに、耐圧が著しく低下するという問
題があった。また、p型低濃度層とn+ 型ドレイン層が
接している部分の電界強度が高くなり、この部分で素子
全体の耐圧が制限されるという問題もあった。
As described above, the super junction element has excellent performances such as reduction of on-resistance and high speed turn-off. However, in the conventional super junction element, if the carrier integration amount of the n-type low concentration layer and the p-type low concentration layer of the auxiliary region is deviated, the turn-off time and the reverse recovery time of the built-in reverse conducting diode are largely changed and the breakdown voltage is high. There was a problem of a significant decrease. Further, there is a problem that the electric field strength increases in a portion where the p-type low concentration layer and the n + -type drain layer are in contact with each other, and the withstand voltage of the entire device is limited in this portion.

【0018】本発明は上記従来の課題に対してなされた
ものであり、従来の素子に比べて耐圧及びターンオフ特
性を向上させることが可能な半導体装置を提供すること
を目的としている。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a semiconductor device capable of improving withstand voltage and turn-off characteristics as compared with a conventional element.

【0019】[0019]

【課題を解決するための手段】本発明に係る半導体装置
は、以下の構成を有している。なお、本発明の理解を容
易にするため、後述する実施形態において説明する図面
の参照番号を付して本発明の構成を示す。
A semiconductor device according to the present invention has the following configuration. In addition, in order to facilitate understanding of the present invention, the configuration of the present invention is shown with reference numerals of the drawings described in the embodiments described later.

【0020】本発明は、第1導電型の不純物が含有され
た第1の半導体領域(1)と、前記第1の半導体領域
(1)と離間して形成され第2導電型の不純物が含有さ
れた第2の半導体領域(3)と、前記第1の半導体領域
(1)と前記第2の半導体領域(3)との間に設けら
れ、第1導電型の不純物が含有された第1の半導体層
(10)と第2導電型の不純物が含有された第2の半導
体層(11)とが前記第1の半導体領域(1)と第2の
半導体領域(3)とが対向する方向と交差する方向に交
互に繰り返し配置された第3の半導体領域(10、1
1)と、を有する半導体装置であって、交互に繰り返し
配置された前記第1の半導体層(10)及び第2の半導
体層(11)の繰り返し方向のキャリア積分量が、第2
の半導体層(11)の方が第1の半導体層(10)より
も大きくなるように構成され、前記第1の半導体領域
(1)と前記第3の半導体領域(10、11)の少なく
とも第2の半導体層(11)との間に前記第1の半導体
領域(1)よりも第1導電型の不純物濃度の低い第4の
半導体領域(13)が形成されていることを特徴とす
る。
According to the present invention, a first semiconductor region (1) containing a first conductivity type impurity and a second conductivity type impurity formed apart from the first semiconductor region (1) are contained. A second semiconductor region (3) formed between the first semiconductor region (1) and the second semiconductor region (3), and a first conductivity type impurity is contained therein. Of the semiconductor layer (10) and the second semiconductor layer (11) containing an impurity of the second conductivity type face the first semiconductor region (1) and the second semiconductor region (3). Third semiconductor regions (10, 1) alternately arranged in a direction intersecting with
1) and, wherein the carrier integration amount in the repeating direction of the first semiconductor layer (10) and the second semiconductor layer (11) alternately and repeatedly arranged is the second
Of the first semiconductor region (1) and the third semiconductor region (10, 11) are configured to be larger than the first semiconductor layer (10). A fourth semiconductor region (13) having an impurity concentration of the first conductivity type lower than that of the first semiconductor region (1) is formed between the second semiconductor layer (11) and the second semiconductor layer (11).

【0021】本発明では、第3の半導体領域(補助領
域)の第2の半導体層の繰り返し方向のキャリア積分量
(Q2)が第1の半導体層の繰り返し方向のキャリア積
分量(Q1)よりも大きくなるようにしている(Q2>
Q1)ので、ターンオフの際に第1の半導体層が空乏化
した後にも第2の半導体層の中央部には非空乏化領域が
残存している。そのため、電流がこの非空乏化領域を通
って排出されることになり、高速にターンオフすること
が可能となる(特に、n型に比べてp型のキャリアの移
動度が小さいことから、第1の半導体層がn型で第2の
半導体層がp型である場合に、効果が大きい)。製造プ
ロセス等に起因するキャリア積分量の変動が多少あって
としても、Q2とQ1との大小関係が逆転しない程度に
Q2及びQ1の値を設定しておけば、ターンオフ時間の
揃った素子を容易に製造することが可能となる。
In the present invention, the carrier integration amount (Q2) in the repeating direction of the second semiconductor layer of the third semiconductor region (auxiliary region) is larger than the carrier integration amount (Q1) in the repeating direction of the first semiconductor layer. I try to make it bigger (Q2>
Since Q1), the non-depleted region remains in the central portion of the second semiconductor layer even after the first semiconductor layer is depleted during turn-off. Therefore, the current is discharged through this non-depleted region, and it is possible to turn off at a high speed (particularly, since the mobility of p-type carriers is smaller than that of n-type, The effect is great when the semiconductor layer is n-type and the second semiconductor layer is p-type). Even if there is some variation in the carrier integration amount due to the manufacturing process, etc., if the values of Q2 and Q1 are set so that the magnitude relationship between Q2 and Q1 does not reverse, an element with a uniform turn-off time can be easily manufactured. Can be manufactured.

【0022】また、第2の半導体層の中央部に非空乏化
領域が残存することから、第2の半導体領域の電位が非
空乏化領域を介して第1の半導体領域の近傍まで達する
ことになるが、第1の半導体領域と第3の半導体領域と
の間に第1の半導体領域よりも不純物濃度の低い第4の
半導体領域が形成されているので、空乏層が不純物濃度
の低い第4の半導体領域の内部に広がって電界を緩和
し、高耐圧化をはかることが可能となる。
Further, since the non-depleted region remains in the central portion of the second semiconductor layer, the potential of the second semiconductor region reaches the vicinity of the first semiconductor region through the non-depleted region. However, since the fourth semiconductor region whose impurity concentration is lower than that of the first semiconductor region is formed between the first semiconductor region and the third semiconductor region, the depletion layer is the fourth semiconductor region whose impurity concentration is low. It is possible to increase the breakdown voltage by spreading inside the semiconductor region and relaxing the electric field.

【0023】前記発明において、前記第3の半導体領域
(10、11)の第2の半導体層(11)は、前記第1
の半導体領域(1)側の方が前記第2の半導体領域
(3)側よりも不純物濃度が低くなるように構成された
複数の半導体層からなることが好ましい。
In the above invention, the second semiconductor layer (11) of the third semiconductor region (10, 11) is the first semiconductor layer (11).
It is preferable that the semiconductor region (1) side is composed of a plurality of semiconductor layers configured to have an impurity concentration lower than that of the second semiconductor region (3) side.

【0024】このような構成により、第3の半導体領域
(補助領域)の第2の半導体層における第1の半導体領
域に近い側の領域が容易に空乏化するため、第2の半導
体領域の電位の影響をより一層抑制することが可能とな
り、高耐圧化をより一層高めることが可能となる。ま
た、第2の半導体領域に近い側の領域では、第2の半導
体層は比較的低抵抗となるので、排出電流が制限されて
ターンオフの高速性が損なわれることはない。
With this structure, the region of the second semiconductor layer of the third semiconductor region (auxiliary region) on the side closer to the first semiconductor region is easily depleted, so that the potential of the second semiconductor region is reduced. It is possible to further suppress the influence of, and it is possible to further enhance the high breakdown voltage. Further, in the region close to the second semiconductor region, the second semiconductor layer has a relatively low resistance, so that the discharge current is limited and the high-speed turn-off is not impaired.

【0025】また、前記発明において、前記第4の半導
体領域(13)は、前記第1の半導体領域(1)と前記
第3の半導体領域(10、11)との間に形成されたバ
ッファ領域であってもよい。
Further, in the above invention, the fourth semiconductor region (13) is a buffer region formed between the first semiconductor region (1) and the third semiconductor region (10, 11). May be

【0026】このような構成により、第3の半導体領域
(補助領域)の第2の半導体層が比較的高濃度となるこ
とによって内蔵逆導通ダイオードの逆回復電流が大きく
なっても、バッファ領域にキャリアを蓄積することでソ
フトリカバリ特性が得られ、電圧振動を効果的に防止す
ることが可能となる。
With such a structure, even if the reverse recovery current of the built-in reverse conducting diode becomes large due to the relatively high concentration of the second semiconductor layer in the third semiconductor region (auxiliary region), the buffer region will be stored in the buffer region. By accumulating carriers, soft recovery characteristics can be obtained, and voltage oscillation can be effectively prevented.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0028】なお、以下の実施形態では、第1導電型を
n型とし、第2導電型をp型とした場合を示している
が、第1導電型をp型とし、第2導電型をn型とするこ
とも可能である。
In the following embodiments, the first conductivity type is n type and the second conductivity type is p type. However, the first conductivity type is p type and the second conductivity type is It can also be an n-type.

【0029】(第1の実施形態)図1は、本発明の第1
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
Vertical super junction MOSF according to the embodiment
It is sectional drawing which showed the element structure of ET.

【0030】なお、基本的な素子構造や基本的な製造方
法については、すでに図7を用いて説明した従来の縦型
スーパージャンクションMOSFETとほぼ同様であ
り、図7に示した構成要素に対応する構成要素について
は同一の参照番号を付し、ここではこれらの詳細な説明
は省略する(図2〜図5に示した第2〜第5の実施形態
についても同様)。
The basic element structure and the basic manufacturing method are almost the same as those of the conventional vertical type super junction MOSFET already described with reference to FIG. 7, and correspond to the constituent elements shown in FIG. The same reference numerals are given to the constituent elements, and detailed description thereof will be omitted here (the same applies to the second to fifth embodiments shown in FIGS. 2 to 5).

【0031】本実施形態の縦型スーパージャンクション
MOSFETでは、補助領域(第3の半導体領域)のp
型低濃度層(第2の半導体層)11のキャリア積分量Q
pは、n型低濃度層(第1の半導体層)10のキャリア
積分量Qnよりも大きくなる(Qp>Qn)ように設定
されている。また、これらのキャリア積分量は、Qp及
びQnともに、5×1012cm-2以下となるように設定
されている。また、p型低濃度層11とn+ 型ドレイン
層(第1の半導体領域)1との間には、n- 型層(第4
の半導体領域)13が形成されている。
In the vertical superjunction MOSFET of this embodiment, p in the auxiliary region (third semiconductor region) is used.
Carrier integrated amount Q of the low concentration layer (second semiconductor layer) 11
p is set to be larger than the integrated carrier amount Qn of the n-type low concentration layer (first semiconductor layer) 10 (Qp> Qn). Further, the integrated amounts of these carriers are set to be 5 × 10 12 cm −2 or less for both Qp and Qn. Further, between the p-type low concentration layer 11 and the n + type drain layer (first semiconductor region) 1, an n type layer (fourth type) is formed.
Semiconductor region) 13 is formed.

【0032】本実施形態によれば、ターンオフが開始し
てn型低濃度層10が完全に空乏化しても、p型低濃度
層11の中央部付近(図では左端付近の領域に対応)に
非空乏化領域が残り、n型に比べて移動度の小さいp型
のキャリア(ホール)による電流が、この非空乏化領域
を通って排出されるので、高速ターンオフを実現するこ
とができる。
According to the present embodiment, even if the turn-off is started and the n-type low-concentration layer 10 is completely depleted, the p-type low-concentration layer 11 is near the center (corresponding to the region near the left end in the figure). The non-depleted region remains, and the current due to the p-type carriers (holes) having a smaller mobility than the n-type is discharged through the non-depleted region, so that high-speed turn-off can be realized.

【0033】ターンオフ時間は、QpとQnとの大小関
係が逆転してQn>Qpとなると急に遅くなるが、予め
マージンを見込んでQp>Qnとなるように設定してあ
れば、多少のプロセス変動があってもQp>Qnの関係
が保持されるので、ターンオフ時間が大きくばらつくよ
うなことはない。例えば、プロセス変動によってQpと
Qnとの差が5%程度ばらつく場合があり得るが、Qp
がQnよりも7〜8%程度多くなるように設定しておけ
ば、プロセス変動があっても確実にQp>Qnの関係を
維持することができる。
The turn-off time is abruptly delayed when the magnitude relation between Qp and Qn is reversed and Qn> Qp, but if the margin is set in advance so that Qp> Qn, some process Even if there is a change, the relationship of Qp> Qn is maintained, so the turn-off time does not vary greatly. For example, the difference between Qp and Qn may vary by about 5% due to process variation.
Is set to be about 7 to 8% larger than Qn, it is possible to reliably maintain the relationship of Qp> Qn even if there is a process variation.

【0034】また、p型低濃度層11の中央部付近に非
空乏化領域が残ることから、p型低濃度層11の中央部
の下部領域の電位が非空乏化領域を介してp型ベース層
3の電位と同電位となり、n+ 型ドレイン層1との境界
部付近で電界強度が高くなるという問題が考えられる。
本実施形態では、n- 型層13によって空乏層を広げる
ことができるため、電界が緩和されて高耐圧を維持する
ことができ、このような問題を防止することができる。
Further, since the non-depleted region remains near the central portion of the p-type low concentration layer 11, the potential of the lower region of the central portion of the p-type low concentration layer 11 is p-type base via the non-depleted region. The potential is the same as that of the layer 3, and there is a problem that the electric field strength increases near the boundary with the n + type drain layer 1.
In the present embodiment, since the depletion layer can be widened by the n type layer 13, the electric field can be relaxed and the high breakdown voltage can be maintained, and such a problem can be prevented.

【0035】なお、n型低濃度層10とp型低濃度層1
1との接合終端領域については、補助領域の端部に半分
のキャリア積分量を持つp型低濃度層11を配置し、通
常のn- 型ベース層に対するガードリングやRESUR
Fなどの接合終端構造を適用することが望ましい。
The n-type low concentration layer 10 and the p-type low concentration layer 1
For the junction termination region with 1, the p-type low-concentration layer 11 having a half carrier integration amount is arranged at the end of the auxiliary region, and a guard ring for the normal n -type base layer or a RESUUR is provided.
It is desirable to apply a junction termination structure such as F.

【0036】(第2の実施形態)図2は、本発明の第2
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
Vertical super junction MOSF according to the embodiment
It is sectional drawing which showed the element structure of ET.

【0037】本実施形態では、第1の実施形態の素子構
造に加えてさらに、補助領域のp型低濃度層11の下部
領域にp- 型層14を形成している。
In the present embodiment, in addition to the device structure of the first embodiment, a p type layer 14 is formed in the lower region of the p type low concentration layer 11 in the auxiliary region.

【0038】本実施形態によれば、p- 型層14がそれ
よりも高不純物濃度のp型低濃度層11より早く空乏化
されるので、p型ベース層3と同電位の領域が入り込ま
ない。その結果、電界が緩和されてより高耐圧を維持す
ることが可能となる。
According to this embodiment, the p -type layer 14 is depleted earlier than the p-type low-concentration layer 11 having a higher impurity concentration, so that the region having the same potential as the p-type base layer 3 does not enter. . As a result, the electric field is alleviated, and a higher breakdown voltage can be maintained.

【0039】なお、図に示した例では、p型低濃度層は
二つの濃度領域としているが、下層側に行くにしたがっ
て不純物濃度が低くなるような3以上の濃度領域を設け
るようにしてもよい。
In the example shown in the figure, the p-type low concentration layer has two concentration regions, but three or more concentration regions may be provided so that the impurity concentration becomes lower toward the lower layer side. Good.

【0040】また、図に示した例では、n型低濃度層1
0は均一濃度となるように形成されているが、p型低濃
度層11の濃度変化に合わせて、下層側に行くにしたが
って低濃度になるようにしてもよい。
In the example shown in the figure, the n-type low concentration layer 1
Although 0 is formed to have a uniform concentration, the concentration may be decreased toward the lower layer side according to the concentration change of the p-type low concentration layer 11.

【0041】このような構成によれば、数回のエピタキ
シャル成長によって素子を形成する際に、高温に晒され
る時間が長く熱拡散によるQの変動量の大きな補助領域
下部が低濃度に、高温に晒される時間が短くQの変動量
の小さな補助領域上部が高濃度に形成されるので、オン
抵抗を低く保ったまま高耐圧化をはかることが可能とな
る。
According to this structure, when the element is formed by epitaxial growth several times, the lower part of the auxiliary region, which is exposed to a high temperature for a long time and has a large fluctuation amount of Q due to thermal diffusion, is exposed to a low concentration and a high temperature. Since the upper part of the auxiliary region having a short period of time and a small Q variation amount is formed at a high concentration, it is possible to increase the breakdown voltage while keeping the on-resistance low.

【0042】(第3の実施形態)図3は、本発明の第3
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
Vertical super junction MOSF according to the embodiment
It is sectional drawing which showed the element structure of ET.

【0043】本実施形態では、n+ 型ドレイン層1と補
助領域との間に、n+ 型ドレイン層よりも低濃度のn型
バッファ層15が形成されている。
In this embodiment, the n-type buffer layer 15 having a lower concentration than that of the n + -type drain layer is formed between the n + -type drain layer 1 and the auxiliary region.

【0044】本実施形態によれば、p型ベース層3及び
p型低濃度層11をアノード層とし、n+ 型ドレイン層
1及びn型低濃度層10をカソード層とする内蔵逆導通
ダイオードの逆回復特性を、ソフトリカバリにすること
ができる。また、p型低濃度層11だけでなくn型バッ
ファ層15内部にも空乏層が広がるので、電界が緩和さ
れ、素子耐圧を向上させることが可能となる。
According to this embodiment, a built-in reverse conducting diode having the p-type base layer 3 and the p-type low concentration layer 11 as the anode layers and the n + -type drain layer 1 and the n-type low concentration layer 10 as the cathode layers is provided. The reverse recovery characteristic can be soft recovery. In addition, since the depletion layer spreads not only in the p-type low concentration layer 11 but also in the n-type buffer layer 15, the electric field is alleviated, and the breakdown voltage of the device can be improved.

【0045】本発明に係るスーパージャンクションMO
SFETでは、Qp>Qnとしたために逆回復電流が大
きくなり、ダイオードの電圧が回復する際に、電流減少
率に比例する電圧の跳ね上がりが発生して、電圧振動を
引き起こすという問題を生じやすい。このような場合で
も、n型バッファ層15を形成することによってキャリ
アが蓄積され、逆回復時のテール領域での電流減少率が
減少して電圧の跳ね上がりが低減されるという効果があ
る。
Superjunction MO according to the present invention
In the SFET, since Qp> Qn, the reverse recovery current becomes large, and when the voltage of the diode recovers, a voltage jump proportional to the current decrease rate occurs, which easily causes a problem of voltage oscillation. Even in such a case, the formation of the n-type buffer layer 15 has the effect of accumulating carriers, reducing the current reduction rate in the tail region during reverse recovery, and reducing the voltage jump.

【0046】なお、キャリア蓄積の観点からは、n型バ
ッファ層15の厚さをキャリアの拡散長以上に設定する
ことが望ましい。例えば、n型バッファ層15の厚さ
は、耐圧4500Vの素子では75μm程度となるよう
にする。
From the viewpoint of carrier accumulation, it is desirable to set the thickness of the n-type buffer layer 15 to be equal to or more than the diffusion length of carriers. For example, the thickness of the n-type buffer layer 15 is set to about 75 μm for a device having a withstand voltage of 4500V.

【0047】(第4の実施形態)図4は、本発明の第4
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Fourth Embodiment) FIG. 4 shows a fourth embodiment of the present invention.
Vertical super junction MOSF according to the embodiment
It is sectional drawing which showed the element structure of ET.

【0048】本実施形態では、第3の実施形態の素子構
造に加えてさらに、p- 型層14が形成されている。す
なわち、本実施形態は、第2の実施形態と第3の実施形
態を併せたような構造を有しており、したがって、第2
の実施形態及び第3の実施形態で得られるそれぞれの効
果を得ることができる。
In this embodiment, a p -- type layer 14 is further formed in addition to the element structure of the third embodiment. That is, the present embodiment has a structure in which the second embodiment and the third embodiment are combined, and accordingly, the second embodiment
The respective effects obtained in the embodiment and the third embodiment can be obtained.

【0049】(第5の実施形態)図5は、本発明の第5
の実施形態に係る縦型スーパージャンクションMOSF
ETの素子構造を示した断面図である。
(Fifth Embodiment) FIG. 5 shows the fifth embodiment of the present invention.
Vertical super junction MOSF according to the embodiment
It is sectional drawing which showed the element structure of ET.

【0050】本実施形態では、第2の実施形態の素子構
造に加えてさらに、n型バッファ層15が形成されてお
り、本実施形態によっても、第2の実施形態及び第3の
実施形態で得られる効果と同様の効果を得ることができ
る。
In the present embodiment, an n-type buffer layer 15 is further formed in addition to the element structure of the second embodiment. Also in this embodiment, the n-type buffer layer 15 is also formed in the second and third embodiments. The same effect as that obtained can be obtained.

【0051】(第6の実施形態)図6は、本発明の第6
の実施形態に係る横型スーパージャンクションMOSF
ETの素子構造を示した斜視図である。
(Sixth Embodiment) FIG. 6 shows a sixth embodiment of the present invention.
Lateral super junction MOSF according to the embodiment
It is the perspective view which showed the element structure of ET.

【0052】なお、基本的な原理については図1等に示
した縦型スーパージャンクションMOSFETと同様で
あり、図1等に示した構成要素に対応する構成要素につ
いては同一の参照番号を付している。
The basic principle is the same as that of the vertical super junction MOSFET shown in FIG. 1 and the like, and the same reference numerals are attached to the components corresponding to the components shown in FIG. There is.

【0053】第1〜第5の実施形態で説明した縦型スー
パージャンクションMOSFETでは、ドレイン電極6
を半導体基板の一方の主面側に、ソース電極7を半導体
基板の他方の主面側にそれぞれ形成した構造であった
が、本実施形態の横型スーパージャンクションMOSF
ETでは、ドレイン電極6及びソース電極7は半導体基
板の同一主面側に形成されている。
In the vertical type super junction MOSFET described in the first to fifth embodiments, the drain electrode 6
Was formed on one main surface side of the semiconductor substrate, and the source electrode 7 was formed on the other main surface side of the semiconductor substrate.
In ET, the drain electrode 6 and the source electrode 7 are formed on the same main surface side of the semiconductor substrate.

【0054】このような横型スーパージャンクションM
OSFETにおいても、縦型スーパージャンクションM
OSFETと同様、補助領域におけるp型低濃度層11
のキャリア積分量Qpとn型低濃度層10のキャリア積
分量Qnとの関係をQp>Qnとなるように設定すると
ともに、p型低濃度層11とn+ 型ドレイン層1との間
にn- 型層13を設けることにより、縦型スーパージャ
ンクションMOSFETと同様の効果を得ることが可能
となる。
Such a horizontal super junction M
Also in OSFET, vertical super junction M
Similar to the OSFET, the p-type low concentration layer 11 in the auxiliary region
N of the relation between carrier integrated amount Qn of the carrier integral quantity Qp and the n-type low-concentration layer 10 and sets such that Qp> Qn, between the p-type low concentration layer 11 and the n + -type drain layer 1 - by providing the mold layer 13, it is possible to obtain the same effect as the vertical superjunction MOSFET.

【0055】なお、図6に示した横型スーパージャンク
ションMOSFETは、図1に示した第1の実施形態の
縦型スーパージャンクションMOSFETに対応する構
造となっているが、その他の実施形態において説明した
縦型スーパージャンクションMOSFETに対応する構
造を横型スーパージャンクションMOSFETに適用す
ることも可能である。
The horizontal superjunction MOSFET shown in FIG. 6 has a structure corresponding to the vertical superjunction MOSFET of the first embodiment shown in FIG. 1, but the vertical superjunction MOSFET has the vertical structure described in the other embodiments. It is also possible to apply the structure corresponding to the type super junction MOSFET to the lateral type super junction MOSFET.

【0056】以上、本発明の実施形態を説明したが、本
発明は上記実施形態に限定されるものではない。例え
ば、上記実施形態では、基本となる素子構造をMOSF
ETとしたが、SITなど他の素子構造に対して適用す
ることも可能である。その他、本発明はその趣旨を逸脱
しない範囲内において種々変形して実施することが可能
である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, in the above embodiment, the basic element structure is a MOSF.
Although ET is used, it can also be applied to other element structures such as SIT. In addition, the present invention can be variously modified and implemented within a range not departing from the gist thereof.

【0057】[0057]

【発明の効果】本発明によれば、補助領域の一方の半導
体層のキャリア積分量Q1と他方の半導体層のキャリア
積分量Q2との関係がQ2>Q1となるようにしたの
で、ターンオフの際に他方の半導体層に非空乏化領域が
残存し、この非空乏化領域を通って電流が排出されるこ
とになり、ターンオフを高速化することが可能となる。
また、ドレイン側の高不純物濃度領域と補助領域との間
に低不純物濃度領域を設けることにより、空乏層が低不
純物濃度領域に広がって電界を緩和するため、高耐圧化
をはかることが可能となる。
According to the present invention, the relation between the carrier integration amount Q1 of one semiconductor layer in the auxiliary region and the carrier integration amount Q2 of the other semiconductor layer is Q2> Q1. In addition, the non-depleted region remains in the other semiconductor layer, and the current is discharged through this non-depleted region, so that the turn-off can be speeded up.
Further, by providing a low impurity concentration region between the high impurity concentration region on the drain side and the auxiliary region, the depletion layer spreads to the low impurity concentration region and relaxes the electric field, so that it is possible to increase the breakdown voltage. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 1 is a cross-sectional view showing a device structure of a vertical super junction MOSFET according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 2 is a sectional view showing an element structure of a vertical super junction MOSFET according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 3 is a sectional view showing an element structure of a vertical superjunction MOSFET according to a third embodiment of the present invention.

【図4】本発明の第4の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 4 is a cross-sectional view showing an element structure of a vertical super junction MOSFET according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施形態に係る縦型スーパージ
ャンクションMOSFETの素子構造を示した断面図。
FIG. 5 is a sectional view showing an element structure of a vertical super junction MOSFET according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施形態に係る横型スーパージ
ャンクションMOSFETの素子構造を示した斜視図。
FIG. 6 is a perspective view showing an element structure of a lateral super junction MOSFET according to a sixth embodiment of the present invention.

【図7】従来技術に係る縦型スーパージャンクションM
OSFETの素子構造を示した断面図。
FIG. 7 is a vertical super junction M according to the related art.
Sectional drawing which showed the element structure of OSFET.

【符号の説明】[Explanation of symbols]

1…n+ 型ドレイン層(第1の半導体領域) 3…p型ベース層(第2の半導体領域) 4…n+ 型ソース層 5…p+ 型層 6…ドレイン電極 7…ソース電極 8…ゲート電極 9…ゲート絶縁膜 10…n型低濃度層(第1の半導体層) 11…p型低濃度層(第2の半導体層) 13…n- 型層(第4の半導体領域) 14…p- 型層 15…n型バッファ層(第4の半導体領域)1 ... N + type drain layer (first semiconductor region) 3 ... P type base layer (second semiconductor region) 4 ... N + type source layer 5 ... P + type layer 6 ... Drain electrode 7 ... Source electrode 8 ... Gate electrode 9 ... Gate insulating film 10 ... N-type low concentration layer (first semiconductor layer) 11 ... P-type low concentration layer (second semiconductor layer) 13 ... N - type layer (fourth semiconductor region) 14 ... p type layer 15 ... n type buffer layer (fourth semiconductor region)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 和敏 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (56)参考文献 特開 平7−7154(JP,A) 特開 平10−223896(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazutoshi Nakamura 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Research and Development Center Co., Ltd. (56) Reference JP-A-7-7154 (JP, A) JP-A-10-223896 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 29/78 H01L 21/336

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の不純物が含有された第1の半
導体領域と、 前記第1の半導体領域と離間して形成され第2導電型の
不純物が含有された第2の半導体領域と、 前記第1の半導体領域と前記第2の半導体領域との間に
設けられ、第1導電型の不純物が含有された第1の半導
体層と第2導電型の不純物が含有された第2の半導体層
とが前記第1の半導体領域と第2の半導体領域とが対向
する方向と交差する方向に交互に繰り返し配置された第
3の半導体領域と、 を有する半導体装置であって、 交互に繰り返し配置された前記第1の半導体層及び第2
の半導体層の繰り返し方向のキャリア積分量が、第2の
半導体層の方が第1の半導体層よりも大きくなるように
構成され、 前記第1の半導体領域と前記第2の半導体層との間に前
記第1の半導体領域よりも第1導電型の不純物濃度の低
い第4の半導体領域が選択的に形成され、前記第1の半
導体領域と前記第1の半導体層とが接していることを特
徴とする半導体装置。
1. A first semiconductor region containing an impurity of a first conductivity type, and a second semiconductor region formed apart from the first semiconductor region and containing an impurity of a second conductivity type. A first semiconductor layer provided between the first semiconductor region and the second semiconductor region and containing a first conductivity type impurity; and a second semiconductor layer containing a second conductivity type impurity. A semiconductor device having a third semiconductor region in which a semiconductor layer is alternately and repeatedly arranged in a direction intersecting a direction in which the first semiconductor region and the second semiconductor region are opposed to each other, and the semiconductor device is alternately repeated. The arranged first semiconductor layer and second
Of the semiconductor layer of the second semiconductor layer is larger than that of the first semiconductor layer, and the carrier integration amount in the repeating direction of the second semiconductor layer is between the first semiconductor region and the second semiconductor layer. A fourth semiconductor region having an impurity concentration of the first conductivity type lower than that of the first semiconductor region is selectively formed in the first semiconductor region;
A semiconductor device , wherein a conductor region is in contact with the first semiconductor layer .
【請求項2】第1導電型の不純物が含有された第1の半
導体領域と、 前記第1の半導体領域と離間して形成され第2導電型の
不純物が含有された第2の半導体領域と、 前記第1の半導体領域と前記第2の半導体領域との間に
設けられ、第1導電型の不純物が含有された第1の半導
体層と第2導電型の不純物が含有された第2の半導体層
とが前記第1の半導体領域と第2の半導体領域とが対向
する方向と交差する方向に交互に繰り返し配置された第
3の半導体領域と、 を有する半導体装置であって、 交互に繰り返し配置された前記第1の半導体層及び第2
の半導体層の繰り返し方向のキャリア積分量が、第2の
半導体層の方が第1の半導体層よりも大きくなるように
構成され、 前記第1の半導体領域と前記第3の半導体領域の少なく
とも第2の半導体層との間に前記第1の半導体領域より
も第1導電型の不純物濃度の低い第4の半導体領域が形
成され、 前記第3の半導体領域の第2の半導体層は、前記第1の
半導体領域側の方が前記第2の半導体領域側よりも不純
物濃度が低くなるように構成された複数の半導体層から
なることを特徴とする半導体装置
2. A first half containing impurities of the first conductivity type.
A conductive region and a second conductive type that are formed apart from the first semiconductor region.
Between a second semiconductor region containing an impurity and the first semiconductor region and the second semiconductor region
A first semiconductor which is provided and contains impurities of a first conductivity type
Body layer and second semiconductor layer containing impurities of the second conductivity type
And the first semiconductor region and the second semiconductor region face each other.
Which are alternately arranged repeatedly in the direction intersecting
A semiconductor device having three semiconductor regions, the first semiconductor layer and the second semiconductor layer being alternately and repeatedly arranged.
The carrier integration amount in the repeating direction of the semiconductor layer of
So that the semiconductor layer is larger than the first semiconductor layer
It consists less of said first semiconductor region and the third semiconductor region
Between the first semiconductor region and the second semiconductor layer
Also has a fourth semiconductor region of the first conductivity type having a low impurity concentration.
A plurality of semiconductor layers of the second semiconductor layer of the third semiconductor region, the impurity concentration of which is lower on the first semiconductor region side than on the second semiconductor region side. A semiconductor device comprising:
JP27825599A 1999-09-30 1999-09-30 Semiconductor device Expired - Lifetime JP3507732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27825599A JP3507732B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27825599A JP3507732B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001102577A JP2001102577A (en) 2001-04-13
JP3507732B2 true JP3507732B2 (en) 2004-03-15

Family

ID=17594796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27825599A Expired - Lifetime JP3507732B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3507732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231903A (en) * 2018-01-24 2018-06-29 重庆大学 A kind of soft superjunction power MOSFET for restoring body diode of band

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924781B2 (en) * 1999-10-13 2012-04-25 株式会社豊田中央研究所 Vertical semiconductor device
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
JP2002246595A (en) * 2001-02-19 2002-08-30 Shindengen Electric Mfg Co Ltd Transistor
US6878989B2 (en) 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
JPWO2003065459A1 (en) 2002-01-28 2005-05-26 三菱電機株式会社 Semiconductor device
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
JP3634848B2 (en) 2003-01-07 2005-03-30 株式会社東芝 Power semiconductor device
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP2005175416A (en) * 2003-11-19 2005-06-30 Fuji Electric Device Technology Co Ltd Semiconductor device for use in space
KR100994719B1 (en) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 Superjunction semiconductor device
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
JP2006186145A (en) 2004-12-28 2006-07-13 Toshiba Corp Semiconductor device and manufacturing method thereof
WO2006108011A2 (en) 2005-04-06 2006-10-12 Fairchild Semiconductor Corporation Trenched-gate field effect transistors and methods of forming the same
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
JP5315058B2 (en) * 2006-12-07 2013-10-16 新電元工業株式会社 Semiconductor device and manufacturing method thereof
WO2009039441A1 (en) 2007-09-21 2009-03-26 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
CN102138206B (en) * 2008-09-01 2014-03-12 罗姆股份有限公司 Semiconductor device and manufacturing method thereof
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP6221436B2 (en) 2013-07-10 2017-11-01 富士電機株式会社 Superjunction MOSFET, manufacturing method thereof, and composite semiconductor device in which diodes are connected in parallel
CN105122458B (en) 2013-09-18 2018-02-02 富士电机株式会社 Semiconductor device and its manufacture method
CN104779296B (en) * 2015-04-24 2018-10-12 无锡同方微电子有限公司 A kind of asymmetric super node MOSFET structure and preparation method thereof
JP7257423B2 (en) * 2019-01-21 2023-04-13 日産自動車株式会社 Semiconductor device and its manufacturing method
CN113851542B (en) * 2021-09-24 2024-04-12 电子科技大学重庆微电子产业技术研究院 Super junction MOSFET with soft reverse recovery characteristic
CN116741812A (en) * 2023-08-11 2023-09-12 深圳天狼芯半导体有限公司 N-BAL-based super junction Schottky diode for improving current density and preparation method thereof
CN116722033A (en) * 2023-08-11 2023-09-08 深圳天狼芯半导体有限公司 Super junction schottky diode with improved P column and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231903A (en) * 2018-01-24 2018-06-29 重庆大学 A kind of soft superjunction power MOSFET for restoring body diode of band
CN108231903B (en) * 2018-01-24 2020-06-02 重庆大学 Super junction power MOSFET with soft recovery body diode

Also Published As

Publication number Publication date
JP2001102577A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JP3507732B2 (en) Semiconductor device
US7531871B2 (en) Power semiconductor switching element
JP3799888B2 (en) Superjunction semiconductor device and method for manufacturing the same
US9825127B2 (en) Super junction semiconductor device with field extension zones
JP2000040822A (en) Superjunction semiconductor element and its manufacture
US20030235942A1 (en) Semiconductor device
JP2004511910A (en) Trench double diffused metal oxide semiconductor transistor incorporating trench Schottky rectifier
JP2003101022A (en) Power semiconductor device
JP2002314099A (en) Schottky diode and its manufacturing method
JP2008258443A (en) Semiconductor device for power and method for manufacturing the same
JPH08306937A (en) High-breakdown strength semiconductor device
JPH0457110B2 (en)
JPH10178174A (en) Semiconductor device and power converting device using the same
KR100194668B1 (en) Power insulated gate bipolar transistor
US7470960B1 (en) High-voltage power semiconductor device with body regions of alternating conductivity and decreasing thickness
JP2000269518A (en) Powering semiconductor device and method for forming semiconductor layer
JP2000509916A (en) Semiconductor device controllable by electric field effect
JP2001127285A (en) Vertical field-effect transistor
JPH0878668A (en) Semiconductor device for power
JP4770009B2 (en) Superjunction Schottky diode
JP2009105219A (en) Semiconductor device
JPH0620141B2 (en) Conduction modulation type MOSFET
JPH0992826A (en) Semiconductor device and its simulation method
KR100505562B1 (en) Insulated Gate Bipolar Transistor with Multi-Layer Buffer Structure and Manufacturing Method Thereof
EP0107773B1 (en) Thyristor with turn-off capability

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

R151 Written notification of patent or utility model registration

Ref document number: 3507732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

EXPY Cancellation because of completion of term