JP3503358B2 - Laser beam absorber - Google Patents

Laser beam absorber

Info

Publication number
JP3503358B2
JP3503358B2 JP25109396A JP25109396A JP3503358B2 JP 3503358 B2 JP3503358 B2 JP 3503358B2 JP 25109396 A JP25109396 A JP 25109396A JP 25109396 A JP25109396 A JP 25109396A JP 3503358 B2 JP3503358 B2 JP 3503358B2
Authority
JP
Japan
Prior art keywords
heat exchange
laser beam
exchange surface
flow rate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25109396A
Other languages
Japanese (ja)
Other versions
JPH1096567A (en
Inventor
洋之 林川
隆之 山下
聡 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP25109396A priority Critical patent/JP3503358B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to EP97110646A priority patent/EP0817338B1/en
Priority to DE69737538T priority patent/DE69737538T2/en
Priority to EP04018242A priority patent/EP1475867B1/en
Priority to US08/885,101 priority patent/US6078604A/en
Priority to DE69738632T priority patent/DE69738632T2/en
Priority to EP04018241A priority patent/EP1475866B1/en
Priority to DE69731029T priority patent/DE69731029T2/en
Publication of JPH1096567A publication Critical patent/JPH1096567A/en
Priority to US09/182,538 priority patent/US6266352B1/en
Priority to US09/182,539 priority patent/US6021151A/en
Application granted granted Critical
Publication of JP3503358B2 publication Critical patent/JP3503358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はレーザビームを受光
かつ吸収し、冷媒との間で熱交換を行うレーザビーム吸
収装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser beam absorber which receives and absorbs a laser beam and exchanges heat with a refrigerant.

【0002】[0002]

【従来の技術】従来例1のレーザビーム吸収装置を図7
に沿って説明する。従来例1において、円錐状内筒1の
片面には受光面2と熱交換面3をそれぞれ表裏に設けて
あり、また円錐状内筒1と外筒4との間に冷媒循環路5
を設けたものである。円錐状内筒1は銅、アルミニウム
などの熱伝導のよい金属材料からなっており、また受光
面2にはレーザビーム6の波長に応じ、吸収率の高い材
料でコーティングされている。受光面2に照射されたレ
ーザビーム6は、すみやかに吸収され、その熱は円錐状
内筒1の内部を伝導し、熱交換面3に伝わる。一方冷媒
循環路5へ冷媒入口8より導入された冷媒7は、前記熱
交換面3で熱交換を行い、冷媒出口9より排出される。
2. Description of the Related Art FIG.
Follow along. In Conventional Example 1, a light receiving surface 2 and a heat exchange surface 3 are provided on one surface of the conical inner cylinder 1, and the refrigerant circulation path 5 is provided between the conical inner cylinder 1 and the outer cylinder 4.
Is provided. The conical inner cylinder 1 is made of a metal material having good thermal conductivity such as copper or aluminum, and the light receiving surface 2 is coated with a material having a high absorptivity according to the wavelength of the laser beam 6. The laser beam 6 with which the light receiving surface 2 is irradiated is immediately absorbed, and the heat thereof is conducted inside the conical inner cylinder 1 and is transmitted to the heat exchange surface 3. On the other hand, the refrigerant 7 introduced into the refrigerant circulation path 5 from the refrigerant inlet 8 exchanges heat with the heat exchange surface 3 and is discharged from the refrigerant outlet 9.

【0003】また図7では、受光面2は、入射したレー
ザビーム6を外へ逃がさないよう、レーザビームの入射
軸に対して30度以下となる角度を持たせた円錐状とな
っているが、これでは必然的にレーザビームの入射軸方
向に対して大形化してしまうため、図8,図9にそれぞ
れ示す従来例2,3のように、受光面2を30度以下の
角度のまま折り返した形状にして小型化を図る構造にし
ている。
In FIG. 7, the light receiving surface 2 has a conical shape with an angle of 30 degrees or less with respect to the incident axis of the laser beam so that the incident laser beam 6 does not escape to the outside. However, this inevitably increases the size in the direction of the incident axis of the laser beam, so that the light-receiving surface 2 remains at an angle of 30 degrees or less as in Conventional Examples 2 and 3 shown in FIGS. 8 and 9, respectively. The structure is designed to be folded back to reduce the size.

【0004】[0004]

【発明が解決しようとする課題】従来より、一般にレー
ザビームは中心付近においてエネルギ密度が最も高く、
周辺部へいくにつれエネルギ密度は低くなっているた
め、受光面においても、その中心部で最も高いエネルギ
を受け、吸収することになる。受光面2で吸収されたエ
ネルギは、そのまま裏面の熱交換面へ伝導するため、熱
交換面は中心部が最も温度が高く、周辺部へ行くにつれ
温度は低くなっており、温度分布の偏りが大きい。
Conventionally, a laser beam generally has the highest energy density near the center,
Since the energy density becomes lower toward the peripheral portion, the center portion of the light receiving surface also receives and absorbs the highest energy. Since the energy absorbed by the light-receiving surface 2 is directly transferred to the heat exchange surface on the back surface, the heat exchange surface has the highest temperature in the central part and the temperature decreases as it goes to the peripheral part, and the temperature distribution is uneven. large.

【0005】ところが従来例1ないし3のレーザビーム
吸収装置は、冷媒は熱交換面3の温度分布の偏りに関係
なく流れているため、温度の高い熱交換面3の中心部で
は冷媒の流量が足りず、温度の低い熱交換面3の周辺部
では必要以上の冷媒が流れることになり、全体として熱
交換が不均一となってしまう。
However, in the laser beam absorbers of the conventional examples 1 to 3, since the refrigerant flows regardless of the deviation of the temperature distribution of the heat exchange surface 3, the flow rate of the refrigerant in the central portion of the heat exchange surface 3 having a high temperature. Insufficient refrigerant flows more than necessary in the peripheral portion of the heat exchange surface 3 having a low temperature, resulting in non-uniform heat exchange as a whole.

【0006】このため熱交換面3の中心部、すなわち受
光面2の中心部は、冷却不足のために温度が上昇し、経
時的な損傷が激しく、長期的な品質に関して問題があっ
た。また熱交換後の冷媒の温度についても、熱交換面3
の中心部において異常に高くなり、時に冷媒の沸点を越
え、沸騰による振動が発生することもあった。
For this reason, the central portion of the heat exchange surface 3, that is, the central portion of the light receiving surface 2 has a temperature rise due to insufficient cooling and is severely damaged over time, and there is a problem in terms of long-term quality. Regarding the temperature of the refrigerant after the heat exchange, the heat exchange surface 3
In the central part of the, the temperature became abnormally high, sometimes the boiling point of the refrigerant was exceeded, and vibration due to boiling also occurred.

【0007】本発明は、上記従来の問題点を解決するた
めになされたもので、熱交換面3の全体にわたって温度
分布をより均一化し、安定したレーザビームの吸収を行
えるレーザビーム吸収装置を提供することを目的とす
る。
The present invention has been made in order to solve the above-mentioned conventional problems, and provides a laser beam absorption device which can make the temperature distribution more uniform over the entire heat exchange surface 3 and can stably absorb the laser beam. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明はレーザビームの受光面と熱交換面とを表裏
一体に設けた円錐状内筒と、前記円錐状内筒の熱交換面
との間に冷媒循環路を形成する外筒とを結合したレーザ
ビーム吸収装置であって、前記円錐状内筒の熱交換面の
中心部に冷媒が集中的に流れるような流量分布形成手段
を冷媒循環路内にのぞむように設け、前記流量分布形成
手段と熱交換面との接合部には熱伝導率10W/mK以
上の接合材により接合したものである。
In order to achieve this object, the present invention provides a conical inner cylinder having a laser beam receiving surface and a heat exchange surface integrally provided on the front and back sides, and heat exchange of the conical inner cylinder. A laser beam absorption device in which an outer cylinder forming a refrigerant circulation path between the surface and a surface is coupled, and a flow rate distribution forming means for concentrating the refrigerant in the central portion of the heat exchange surface of the conical inner cylinder. Is provided so as to look into the refrigerant circulation path, and the joining portion between the flow rate distribution forming means and the heat exchange surface is joined with a joining material having a thermal conductivity of 10 W / mK or more.

【0009】[0009]

【発明の実施の形態】上記構成により、本発明のレーザ
ビーム吸収装置は熱交換面の中心部に冷媒が集中的に流
れるような流量分布形成手段を冷媒循環路内にのぞむよ
うに設け、前記流量分布形成手段と熱交換面とを接合し
たことにより、最も温度の高い熱交換面の中心部での熱
交換を充分に行うことができる。
With the above structure, the laser beam absorption apparatus of the present invention is provided with a flow rate distribution forming means for allowing the refrigerant to flow in a central portion of the heat exchange surface so as to be seen in the refrigerant circulation path. By joining the flow rate distribution forming means and the heat exchange surface, it is possible to sufficiently perform heat exchange at the center of the heat exchange surface having the highest temperature.

【0010】またこの流量分布形成手段は、熱交換面と
熱伝導率10W/mK以上の接合材により接合されてい
るため、熱交換面の中心部に集中した熱量は、流量分布
形成手段の内部を伝導し周囲へ拡散され、熱交換面の中
心部の温度上昇は著しく緩和される。
Further, since the flow rate distribution forming means is joined to the heat exchange surface by the joining material having a thermal conductivity of 10 W / mK or more, the heat quantity concentrated in the central portion of the heat exchange surface is inside the flow rate distribution forming means. Is diffused to the surroundings and the temperature rise at the center of the heat exchange surface is remarkably alleviated.

【0011】また流量分布形成手段自体が熱交換面の延
長としての役割を果たすため、装置全体としての熱交換
面積を増やすことができ、熱交換能力が向上するもので
ある。
Further, since the flow rate distribution forming means itself serves as an extension of the heat exchange surface, the heat exchange area of the entire apparatus can be increased and the heat exchange capacity is improved.

【0012】この流量分布形成手段は、すくなくとも1
枚以上の平板状の静止翼を用いることにより充分に上述
の作用を発揮できるため、簡単な構造にて実現でき、コ
スト面でも有利である。
This flow rate distribution forming means is at least 1
Since the above-mentioned action can be sufficiently exhibited by using one or more flat plate stationary blades, it can be realized with a simple structure, and it is also advantageous in terms of cost.

【0013】本発明の実施の形態につき、図1ないし図
6に沿って説明する。 (実施の形態1)以下、実施の形態1につき、図1ない
し図4に沿って説明する。符号1ないし符号9は従来例
と同じであるので、説明を省略する。
An embodiment of the present invention will be described with reference to FIGS. (Embodiment 1) Hereinafter, Embodiment 1 will be described with reference to FIGS. Since the reference numerals 1 to 9 are the same as those in the conventional example, the description thereof will be omitted.

【0014】10は冷媒循環路5内に設けた流量分布形
成手段で、この流量分布形成手段10は平板状の静止翼
を用いたものである。
Reference numeral 10 denotes a flow rate distribution forming means provided in the refrigerant circulation path 5. The flow rate distribution forming means 10 uses a flat blade stationary blade.

【0015】そして、冷媒入口8から冷媒循環路5内に
導入された冷媒7は、流量分布形成手段10により遮ら
れ、熱交換面3の中心部に形成された中心部冷媒通路口
11を通過した後、冷媒出口9より排出される。
The refrigerant 7 introduced into the refrigerant circulation path 5 from the refrigerant inlet 8 is blocked by the flow rate distribution forming means 10 and passes through the central portion refrigerant passage opening 11 formed in the central portion of the heat exchange surface 3. After that, it is discharged from the refrigerant outlet 9.

【0016】12は熱交換面3と流量分布形成手段10
とをろう材などで接合した接合部で、接合材は熱伝導率
10W/mK以上としたものである。図2に示すよう
に、接合材の熱伝導率10W/mK以上の範囲では、受
光面中心温度はフラットな特性を示しており、逆に熱電
導率10W/mK未満となると急激に受光面中心温度が
上がっている。接合材に熱伝導材としての役目を持たせ
るためには、熱伝導率10W/mK以上が必要となる。
Reference numeral 12 denotes the heat exchange surface 3 and the flow rate distribution forming means 10.
A joint portion in which and are joined with a brazing material, and the joint material has a thermal conductivity of 10 W / mK or more. As shown in FIG. 2, in the range where the thermal conductivity of the bonding material is 10 W / mK or more, the center temperature of the light-receiving surface shows a flat characteristic. The temperature is rising. In order for the bonding material to serve as a heat conductive material, a thermal conductivity of 10 W / mK or more is required.

【0017】そして、受光面2に入射したレーザビーム
6は、受光面2に吸収され、その熱は円錐状内筒1の内
部を伝導し、熱交換面3に伝わる。この熱交換面3に伝
導した熱の一部、特に温度の高い中心部の熱は、接合部
12を通じて流量分布形成手段10へと伝導する。この
ことにより流量分布形成手段10そのものが、熱交換面
としての役割を果たすため、熱交換面3の中心部の温度
上昇は緩和される。
The laser beam 6 incident on the light receiving surface 2 is absorbed by the light receiving surface 2, and the heat thereof is conducted inside the conical inner cylinder 1 and is transmitted to the heat exchange surface 3. A part of the heat conducted to the heat exchange surface 3, particularly the heat of the central portion having a high temperature, is conducted to the flow rate distribution forming means 10 through the joint 12. As a result, the flow rate distribution forming means 10 itself serves as a heat exchange surface, so that the temperature rise in the central portion of the heat exchange surface 3 is moderated.

【0018】図4は円錐状内筒1の熱交換面3における
温度分布をサーモグラフィにより測定したもので、横軸
に熱交換面状の位置を、縦軸にその部分の温度(K)を
表したものである。本発明の場合は従来例に比較し、中
心部の温度が下がり、周辺部の温度が上がっていること
により熱交換面3の温度が平均化されていることがわか
る。
FIG. 4 shows the temperature distribution on the heat exchange surface 3 of the conical inner cylinder 1 measured by thermography. The horizontal axis shows the position of the heat exchange surface and the vertical axis shows the temperature (K) of that portion. It was done. In the case of the present invention, it can be seen that the temperature of the heat exchange surface 3 is averaged because the temperature of the central portion is lower and the temperature of the peripheral portion is higher than in the conventional example.

【0019】これは流量分布形成手段10の熱伝導によ
り、熱交換面3の中心部の熱を流量分布形成手段10上
へ拡散させることで、従来熱交換面3のみ上で行われて
いたものが、流量分布形成手段10の表面上においても
行えるようにし、かつ図1に示すように、冷媒7を中心
部冷媒通過口11に集中的に流し、熱交換面3の中心部
での熱交換能力を上げるという二重の効果により、全体
として安定した熱交換が行われるようになったものであ
る。
This is carried out only on the heat exchange surface 3 in the past by diffusing the heat of the central portion of the heat exchange surface 3 onto the flow distribution distribution forming means 10 by the heat conduction of the flow distribution forming means 10. However, as shown in FIG. 1, the refrigerant 7 is concentratedly flown to the central portion refrigerant passage port 11 to allow heat exchange at the central portion of the heat exchange surface 3. Due to the double effect of increasing the capacity, stable heat exchange is performed as a whole.

【0020】そして、受光面2は常にレーザビーム6の
照射にさらされているので、経時的な損傷は免れない
が、上記のように熱交換面3の温度を均一化すること
で、受光面2の温度も均一化し、特に中心部の温度上昇
が抑えられるため、受光面2の経時的な損傷は最小限に
抑えられ、長期に渡って安定した使用が可能になる。
Since the light-receiving surface 2 is always exposed to the irradiation of the laser beam 6, it is inevitable that it will be damaged by the passage of time. However, by making the temperature of the heat-exchange surface 3 uniform as described above, Since the temperature of 2 is also made uniform and the temperature rise of the central part is suppressed, damage to the light-receiving surface 2 with time is minimized, and stable use is possible for a long period of time.

【0021】(実施の形態2)図5および図6は本発明
の実施の形態2を示す縦断面図および平断面図である。
この実施の形態2では、2枚の平板状の静止翼を垂直に
交差させた流量分布形成手段10を冷媒循環路5にのぞ
むように配置することで、実施の形態1よりも接合部1
2での熱交換面3との接触面積および全体の熱交換面積
を増加し、より一層の熱伝導効果を得るようにしたもの
である。
(Second Embodiment) FIGS. 5 and 6 are a longitudinal sectional view and a plan sectional view showing a second embodiment of the present invention.
In the second embodiment, by arranging the flow rate distribution forming means 10 in which two flat plate-shaped stationary blades are vertically intersected with each other so as to look into the refrigerant circulation path 5, the joint portion 1 is provided as compared with the first embodiment.
The area of contact with the heat exchange surface 3 and the total area of heat exchange at 2 are increased to obtain a further heat conduction effect.

【0022】[0022]

【発明の効果】本発明によれば、円錐状内筒の熱交換面
の中心部に冷媒が集中的に流れるように流量分布形成手
段を冷媒循環路内にのぞむように設け、前記流量分布形
成手段と熱交換面との接合部には熱伝導率10W/mK
以上の接合材により接合したものでレーザビームの受光
面の温度分布を均一化し、長期にわたって安定したレー
ザビームの吸収が行える優れた効果を奏するものであ
る。
According to the present invention, the flow rate distribution forming means is provided so as to look into the refrigerant circulation passage so that the refrigerant flows in a concentrated manner at the center of the heat exchange surface of the conical inner cylinder, and the flow rate distribution is formed. The thermal conductivity is 10 W / mK at the joint between the means and the heat exchange surface.
By joining with the above joining material, the temperature distribution of the light receiving surface of the laser beam is made uniform, and the excellent effect of being able to absorb the laser beam stably over a long period of time is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1におけるレーザビーム吸
収装置の縦断面図
FIG. 1 is a vertical sectional view of a laser beam absorber according to a first embodiment of the present invention.

【図2】同実施の形態1を示す平断面図FIG. 2 is a plan sectional view showing the first embodiment.

【図3】同実施の形態1における接合材の熱伝導率と受
光面中心部温度との関係を示す温度特性図
FIG. 3 is a temperature characteristic diagram showing the relationship between the thermal conductivity of the bonding material and the temperature at the center of the light receiving surface in the first embodiment.

【図4】熱交換面における温度分布についての従来例と
本発明の実施の形態1との比較特性図
FIG. 4 is a comparative characteristic diagram between a conventional example of temperature distribution on a heat exchange surface and the first embodiment of the present invention.

【図5】同実施の形態2におけるレーザビーム吸収装置
の縦断面図
FIG. 5 is a vertical sectional view of a laser beam absorber according to the second embodiment.

【図6】同実施の形態2を示す平断面図FIG. 6 is a plan sectional view showing the second embodiment.

【図7】従来例1を示す縦断面図FIG. 7 is a vertical sectional view showing Conventional Example 1.

【図8】従来例2を示す縦断面図FIG. 8 is a vertical sectional view showing Conventional Example 2.

【図9】従来例3を示す縦断面図FIG. 9 is a vertical sectional view showing Conventional Example 3.

【符号の説明】[Explanation of symbols]

1 円錐状内筒 2 受光面 3 熱交換面 4 外筒 5 冷媒循環路 10 流量分布形成手段 11 中心部冷媒通過口 12 接合部 1 conical inner cylinder 2 Light receiving surface 3 heat exchange surface 4 outer cylinder 5 Refrigerant circuit 10 Flow rate distribution forming means 11 Central refrigerant passage 12 joints

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−128611(JP,A) 特開 平6−252484(JP,A) 特開 平4−165265(JP,A) 実公 平2−25597(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) F25B 27/00 F24J 2/04 H01S 3/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-128611 (JP, A) JP-A-6-252484 (JP, A) JP-A-4-165265 (JP, A) Jikkenhei 2- 25597 (JP, Y2) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 27/00 F24J 2/04 H01S 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザビームの受光面と熱交換面とを表裏
一体に設けた円錐状内筒と、前記円錐状内筒の熱変換面
との間に冷媒循環路を形成する外筒とを結合したレーザ
ビーム吸収装置であって、前記円錐状内筒の熱交換面の
中心部に冷媒が集中的に流れるような流量分布形成手段
を冷媒循環路内にのぞむように設け、前記流量分布形成
手段と熱交換面との接合部には熱伝導率10W/mK以
上の接合材により接合したレーザビーム吸収装置。
1. A conical inner cylinder having a laser beam receiving surface and a heat exchange surface integrally provided on the front and back sides, and an outer cylinder forming a refrigerant circulation path between the heat converting surface of the conical inner cylinder. In the combined laser beam absorption device, a flow rate distribution forming means is provided so as to concentrate the refrigerant in the central portion of the heat exchange surface of the conical inner cylinder so as to look into the refrigerant circulation path, and the flow rate distribution is formed. A laser beam absorbing device in which a joining material having a thermal conductivity of 10 W / mK or more is joined to the joining portion between the means and the heat exchange surface.
【請求項2】流量分布形成手段は、少なくとも1枚以上
の平板状の静止翼を用いた請求項1記載のレーザビーム
吸収装置。
2. The laser beam absorber according to claim 1, wherein the flow rate distribution forming means uses at least one flat blade stationary blade.
JP25109396A 1996-07-01 1996-09-24 Laser beam absorber Expired - Fee Related JP3503358B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP25109396A JP3503358B2 (en) 1996-09-24 1996-09-24 Laser beam absorber
DE69731029T DE69731029T2 (en) 1996-07-01 1997-06-30 laser device
EP04018242A EP1475867B1 (en) 1996-07-01 1997-06-30 Laser oscillation apparatus
US08/885,101 US6078604A (en) 1996-07-01 1997-06-30 Laser oscillation apparatus
DE69738632T DE69738632T2 (en) 1996-07-01 1997-06-30 laser device
EP04018241A EP1475866B1 (en) 1996-07-01 1997-06-30 Laser oscillation apparatus
EP97110646A EP0817338B1 (en) 1996-07-01 1997-06-30 Laser apparatus
DE69737538T DE69737538T2 (en) 1996-07-01 1997-06-30 laser device
US09/182,538 US6266352B1 (en) 1996-07-01 1998-10-29 Laser oscillation apparatus
US09/182,539 US6021151A (en) 1996-07-01 1998-10-29 Laser oscillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25109396A JP3503358B2 (en) 1996-09-24 1996-09-24 Laser beam absorber

Publications (2)

Publication Number Publication Date
JPH1096567A JPH1096567A (en) 1998-04-14
JP3503358B2 true JP3503358B2 (en) 2004-03-02

Family

ID=17217548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25109396A Expired - Fee Related JP3503358B2 (en) 1996-07-01 1996-09-24 Laser beam absorber

Country Status (1)

Country Link
JP (1) JP3503358B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ538663A (en) 2002-08-29 2006-02-24 Univ Temple Aryl and heteroaryl propene amides, derivatives thereof and therapeutic uses thereof

Also Published As

Publication number Publication date
JPH1096567A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
US4278829A (en) Solar energy conversion apparatus
US20080190414A1 (en) Absorber for a Thermal Solar Collector and Method for the Production of Said Absorber
JP2008524546A (en) Electromagnetic radiation concentrator
AU2008239566A1 (en) Single mirror solar concentrator with efficient electrical and thermal management
JP2003258291A (en) Light condensing photovoltaic power generator
JP5818813B2 (en) Multi-point cooling system for solar concentrator
WO2011130897A1 (en) Disc-shaped solid laser
JP2008524546A5 (en)
JP3503358B2 (en) Laser beam absorber
JP2005135908A5 (en)
KR20090021256A (en) Electromagnetic radiation collection device
KR100904666B1 (en) Solar power generator using thermoelectric generator
KR101039588B1 (en) Solar collector module and manufacturing method thereof
JPH07198284A (en) Heat exchanger
US5979439A (en) Solar receiver
JP2757649B2 (en) Laser processing head
JP3010602U (en) Electronic component cooler
CN104596125A (en) Cavity solar receiver with lighting cover
CN101636066B (en) Heat sink
CN104949080B (en) Honeycomb radiator and its processing technology
JPH09199749A (en) Concentration type solar cell apparatus
JPS5836258B2 (en) Taiyohoushiya Energy Capsule
JP2005166949A (en) Light receiving apparatus for light collecting solar power generating apparatus
JP3172138B2 (en) Heating element cooling structure
CN218722343U (en) Flat-plate solar collector based on micro-channel

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

LAPS Cancellation because of no payment of annual fees