JP3498395B2 - Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets - Google Patents

Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets

Info

Publication number
JP3498395B2
JP3498395B2 JP32076494A JP32076494A JP3498395B2 JP 3498395 B2 JP3498395 B2 JP 3498395B2 JP 32076494 A JP32076494 A JP 32076494A JP 32076494 A JP32076494 A JP 32076494A JP 3498395 B2 JP3498395 B2 JP 3498395B2
Authority
JP
Japan
Prior art keywords
lubricant
alloy powder
alloy
atomic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32076494A
Other languages
Japanese (ja)
Other versions
JPH08170103A (en
Inventor
芳久 岸本
雅一 大北
信茂 平石
渉 高橋
裕 松浦
尚幸 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP32076494A priority Critical patent/JP3498395B2/en
Publication of JPH08170103A publication Critical patent/JPH08170103A/en
Application granted granted Critical
Publication of JP3498395B2 publication Critical patent/JP3498395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属、B、Fe
(またはFeとCo) を主成分とする、高性能の希土類・鉄
系焼結永久磁石の製造方法と、この製造方法に用いるプ
レス成形用の材料とに関する。
The present invention relates to rare earth metals, B and Fe.
The present invention relates to a method for producing a high-performance rare earth / iron-based sintered permanent magnet containing (or Fe and Co) as a main component, and a press-molding material used in this production method.

【0002】[0002]

【従来の技術】永久磁石は、一般家庭の各種電気製品か
ら大型コンピューターの周辺端末機器まで、幅広い分野
で使用されている重要な電気・電子材料の一つである。
最近の電気・電子機器の小型化、高機能化の要求に伴
い、永久磁石にもますます高性能化が求められている。
2. Description of the Related Art Permanent magnets are one of the important electric and electronic materials used in a wide range of fields from various household electric appliances to peripheral terminals for large computers.
With the recent demand for miniaturization and high functionality of electric and electronic devices, permanent magnets are required to have higher performance.

【0003】従来の代表的な永久磁石材料は、アルニ
コ、ハードフェライト、および希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴い、コバ
ルトを20〜30wt%含有するアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが永
久磁石材料の主流を占めるようになった。
Typical conventional permanent magnet materials are alnico, hard ferrite, and rare earth cobalt magnets. Due to the destabilization of the raw material situation of cobalt in recent years, the demand for alnico magnets containing 20 to 30 wt% of cobalt has decreased,
Inexpensive hard ferrite, which is mainly composed of iron oxide, has become the mainstream of permanent magnet materials.

【0004】一方、希土類コバルト磁石は、コバルトを
50〜60wt%も含むうえ、希土類鉱石中にあまり含まれて
いないSmを使用するため非常に高価であるが、他の磁石
に比べて磁石特性が格段に高いため、主として小型で付
加価値の高い磁気回路に多用されるようになった。
On the other hand, rare earth cobalt magnets contain cobalt.
It is very expensive because it contains Sm that is not contained in rare earth ores in addition to 50 to 60 wt%, but it is mainly small in size and has high added value because it has much higher magnetic characteristics than other magnets. It has become widely used in magnetic circuits.

【0005】より安価で、高い磁石特性を示す永久磁石
材料として、高価なSmやCoを必ずしも含有する必要のな
い、希土類・鉄系磁石が開発された。具体的には、希土
類金属−Fe−Bの磁気異方性焼結体からなる永久磁石が
特開昭59−46008 号公報に、Feの一部をCoで置換するこ
とにより生成合金のキュリー点を上昇させて温度特性を
改善した希土類金属−Fe−Co−Bの磁気異方性焼結体か
らなる永久磁石が特開昭59−64733 号公報にそれぞれ記
載されている。
As a cheaper permanent magnet material exhibiting high magnet characteristics, a rare earth / iron magnet which does not necessarily contain expensive Sm or Co has been developed. Specifically, a permanent magnet made of a magnetic anisotropic sintered body of rare earth metal-Fe-B is disclosed in JP-A-59-46008, and the Curie point of the alloy produced by substituting a part of Fe with Co. JP-A-59-64733 discloses a permanent magnet made of a magnetically anisotropic sintered body of rare earth metal-Fe-Co-B whose temperature characteristic is improved by increasing the temperature.

【0006】本発明では、この希土類金属−Fe−B系お
よび希土類金属−Fe−Co−B系を総称して、R−Fe−B
系という。ここで、Rは、Yを含む希土類元素から選ば
れた少なくとも1種の金属であり、Feの一部はCoで置換
されていてもよい。この磁気異方性のR−Fe−B系永久
磁石は、特定方向において、前記の希土類コバルト磁石
を凌ぐ優れた磁石特性を示す。
In the present invention, the rare earth metal-Fe-B system and the rare earth metal-Fe-Co-B system are collectively referred to as R-Fe-B.
System. Here, R is at least one kind of metal selected from rare earth elements including Y, and part of Fe may be replaced by Co. This R-Fe-B permanent magnet having magnetic anisotropy exhibits excellent magnet characteristics in a specific direction over the rare earth cobalt magnet.

【0007】このR−Fe−B系焼結永久磁石は、一般に
次のような工程により製造される。まず、成分金属また
は合金(例、フェロボロン)を所定組成となるように混
合して溶融させ、得られた溶湯を鋳造して、R−Fe−B
系合金の鋳塊 (インゴット)を調製する。この鋳塊を、
平均粒径20〜500 μm程度まで粗粉砕した後、さらに平
均粒径1〜20μmまで微粉砕して、焼結原料となる合金
粉末を得る。
This R-Fe-B system sintered permanent magnet is generally manufactured by the following steps. First, component metals or alloys (eg, ferroboron) are mixed and melted so as to have a predetermined composition, the resulting molten metal is cast, and R-Fe-B is cast.
An ingot of a base alloy is prepared. This ingot
After coarsely pulverizing to an average particle size of about 20 to 500 μm, further pulverizing to an average particle size of 1 to 20 μm to obtain an alloy powder as a sintering raw material.

【0008】別の方法として、希土類金属酸化物粉末、
鉄粉、フェロボロン粉を粒状Caを用いて還元し、次いで
副生したCa酸化物を水を用いて分離するという還元拡散
法により、R−Fe−B系合金を粉末状で直接得ることが
できる。この場合には、必要によりさらに平均粒径1〜
20μmまで微粉砕する。
As another method, rare earth metal oxide powder,
An R-Fe-B alloy can be directly obtained in powder form by a reduction diffusion method in which iron powder and ferroboron powder are reduced by using granular Ca, and then by-produced Ca oxide is separated by using water. . In this case, if necessary, the average particle size 1 to
Finely grind to 20 μm.

【0009】こうして得られたR−Fe−B系合金は主相
が正方晶であるため、粉砕により微細で粒度が比較的均
一な合金粉末を容易に得ることができる。得られた合金
粉末を、磁気異方性を付与するために磁場中でプレス成
形し、成形体を焼結し、焼結体を時効処理する。必要に
より、耐食性を付与するために、時効処理した焼結体を
Niめっき等の防食膜で被覆してもよい。
Since the main phase of the R-Fe-B type alloy thus obtained is tetragonal, it is possible to easily obtain fine alloy powder having a relatively uniform grain size by pulverization. The obtained alloy powder is press-molded in a magnetic field to impart magnetic anisotropy, the molded body is sintered, and the sintered body is aged. If necessary, in order to impart corrosion resistance, the aged sintered body
It may be covered with an anticorrosion film such as Ni plating.

【0010】特開昭63−317643号公報および特開平5−
295490号公報には、R−Fe−B系合金の溶湯を双ロー
ル、単ロール等により急冷凝固して微細結晶 (結晶粒径
3〜30μm) を有する0.05〜3mm厚の薄板または薄片と
し、これを微粉砕して得た合金粉末をプレス成形に用い
ると、磁石特性、特に(BH)max がさらに向上した焼結永
久磁石が得られることが記載されている。
JP-A-63-317643 and JP-A-5-
JP-A-295490 discloses that a molten alloy of R-Fe-B alloy is rapidly solidified by twin rolls, single rolls, etc. to form thin plates or flakes with a thickness of 0.05 to 3 mm and having fine crystals (crystal grain size 3 to 30 μm). It is described that when an alloy powder obtained by pulverizing is used for press molding, a sintered permanent magnet with further improved magnet characteristics, particularly (BH) max, can be obtained.

【0011】合金粉末のプレス成形は、磁場中での成形
時に合金粉末の流動性を確保し、同時に金型からの離型
を容易にするために、少量の潤滑剤を添加して行うのが
普通である。成形時に合金粉末の流動性がないと、成形
時の粉末と金型(ダイス壁面等)との摩擦によりダイス
面や成形体表面に疵、剥がれ、割れ等が発生することが
あり、また配向 (各粉末粒子の磁化容易方向を磁場方向
に合わせて磁気異方性を発現させる) のための合金粉末
の回転が阻害される。
Press molding of the alloy powder is carried out by adding a small amount of a lubricant in order to secure the fluidity of the alloy powder during the molding in a magnetic field and at the same time facilitate the mold release from the mold. It is normal. If the alloy powder does not have fluidity during molding, scratches, peeling, cracks, etc. may occur on the die surface and the surface of the molded product due to friction between the powder and the mold (die wall surface, etc.) during molding, and the orientation ( The rotation of the alloy powder for the purpose of exhibiting magnetic anisotropy by matching the easy magnetization direction of each powder particle with the magnetic field direction) is hindered.

【0012】永久磁石用合金粉末のプレス成形に使用す
る潤滑剤として、これまでに各種の物質が提案されてい
る。例えば、オレイン酸、ステアリン酸などの高級脂肪
酸類およびその塩もしくはビスアミド (特開昭63−1387
06号、特開平4−214803号各公報) 、高級アルコール、
ポリエチレングリコール (特開平4−191302号公報)、
ポリオキシエチレンソルビタン脂肪酸エステル、ポリオ
キシエチレンソルビトール脂肪酸エステル等のポリオキ
シエチレン誘導体 (特開平4−124202号公報)、パラフ
ィンとソルビタン脂肪酸エステルもしくはグリセリン脂
肪酸エステルとの混合物 (特開平4−52203 号公報)
、固形パラフィン、ショウノウ (特開平4−214804号
公報) などがある。
Various substances have been proposed so far as lubricants used for press molding of alloy powder for permanent magnets. For example, higher fatty acids such as oleic acid and stearic acid and their salts or bisamides (Japanese Patent Laid-Open No. 63-1387).
No. 06, JP-A-4-214803), higher alcohols,
Polyethylene glycol (Japanese Patent Laid-Open No. 4-191302),
Polyoxyethylene sorbitan fatty acid ester, polyoxyethylene derivative such as polyoxyethylene sorbitol fatty acid ester (JP-A-4-124202), a mixture of paraffin and sorbitan fatty acid ester or glycerin fatty acid ester (JP-A-4-52203)
, Solid paraffin, camphor (Japanese Patent Laid-Open No. 4-214804) and the like.

【0013】特開平4−191392号公報には、R−Fe−B
系永久磁石合金の微粉砕時に潤滑剤(高級脂肪酸または
ポリエチレングリコール) を添加し、磁石粉末に潤滑剤
を乾式被覆することが記載されている。
Japanese Patent Laid-Open No. 4-191392 discloses R-Fe-B.
It is described that a lubricant (higher fatty acid or polyethylene glycol) is added at the time of finely pulverizing a system permanent magnet alloy, and the magnet powder is dry-coated with the lubricant.

【0014】[0014]

【発明が解決しようとする課題】しかし、従来の潤滑剤
は、潤滑効果がさほど高くないため、成形時のダイス面
および成形体表面のきず、剥がれ、割れ等を防止するに
は、別に金型に離型剤や離型油等(例、脂肪酸エステル
類等)を塗布するか、或いは合金粉末に潤滑剤を大量に
添加することが必要であった。金型への離型剤等の塗布
は、成形作業を煩雑にし、磁石の連続大量生産の生産性
を阻害する。また、潤滑剤を大量に添加すると、焼結後
の残留炭素が増加し、得られる磁石の固有保磁力(iHc)
、最大磁気エネルギー積[(BH)max] 等の磁石特性が低
下する上、潤滑剤は凝集性が極めて高く、混合後も凝集
粒子として存在するため、焼結後に大きな空孔となり、
最終工程の防食膜の被覆時に膜のピンホール発生の原因
となる。さらに、潤滑効果が不十分であると、磁場中で
の成形時に合金粉末の回転が阻害される結果、良好な配
向度が得られず、残留磁束密度(Br)が不十分となる。
However, since the conventional lubricants do not have a very high lubricating effect, in order to prevent flaws, peeling, cracks, etc. on the die surface and the molded body surface during molding, a separate mold is used. It has been necessary to apply a release agent, a release oil or the like (eg, fatty acid esters, etc.) to or to add a large amount of a lubricant to the alloy powder. Application of a release agent or the like to the mold complicates the molding operation and hinders the productivity of continuous mass production of magnets. Also, when a large amount of lubricant is added, the residual carbon after sintering increases, and the intrinsic coercive force (iHc) of the obtained magnet is increased.
, The magnetic properties such as the maximum magnetic energy product [(BH) max] decrease, and the lubricant has extremely high cohesiveness and exists as agglomerated particles even after mixing, resulting in large pores after sintering,
This causes pinholes in the film when the anticorrosion film is coated in the final step. Further, if the lubrication effect is insufficient, the rotation of the alloy powder is obstructed during molding in a magnetic field, so that a good degree of orientation cannot be obtained and the residual magnetic flux density (Br) becomes insufficient.

【0015】本発明の目的は、合金粉末に潤滑剤を少量
添加しただけで、金型に離型剤を塗布せずに、十分な磁
石特性を有するR−Fe−B系焼結永久磁石を生産性よく
大量製造することが可能な方法と、この方法に用いるR
−Fe−B系焼結永久磁石製造用成形材料を提供すること
である。
An object of the present invention is to provide an R-Fe-B system sintered permanent magnet having sufficient magnet characteristics by only adding a small amount of a lubricant to an alloy powder and without applying a release agent to a mold. A method capable of mass-producing with high productivity and R used in this method
-To provide a molding material for producing a Fe-B based sintered permanent magnet.

【0016】[0016]

【課題を解決するための手段】本発明者らは、ほう酸エ
ステル系化合物が、R−Fe−B系合金粉末に対して、少
量の添加で粉末内に均一に分散すると同時に、ダイス面
と合金粉末および合金粉末間の摩擦に対する低減効果が
極めて高く、しかも成形後の焼結過程でこれらの化合物
は極めて容易に揮散するので、上記目的を達成するため
の潤滑剤として最適であることを見出した。この潤滑剤
を合金粉末に配合すると、金型への離型剤を塗布せずに
合金粉末の連続的な大量成形が可能となり、かつ焼結後
に残留磁束密度(Br)、固有保磁力(iHc) 、および最大磁
気エネルギー積[(BH)max] に優れたR−Fe−B系永久磁
石が得られる。
Means for Solving the Problems The present inventors have found that a boric acid ester-based compound disperses uniformly in an R-Fe-B-based alloy powder with a small amount of addition, and at the same time, a die surface and an alloy. It was found that the effect of reducing the friction between the powder and the alloy powder is extremely high, and since these compounds volatilize very easily during the sintering process after molding, they are optimal as lubricants for achieving the above object. . When this lubricant is mixed with the alloy powder, continuous mass forming of the alloy powder is possible without applying a mold release agent to the mold, and after the sintering, the residual magnetic flux density (Br) and the intrinsic coercive force (iHc ) And the maximum magnetic energy product [(BH) max] are excellent, and an R-Fe-B system permanent magnet is obtained.

【0017】 本発明の要旨は、R:10〜30原子% (但
し、RはYを含む希土類元素から選ばれた少なくとも1
種) 、B:2〜28原子%、Fe:65〜82原子% (但し、こ
のFe量の50原子%まではCoで置換することができる) を
主成分とする合金粉末と、潤滑剤として下記 (a) (f)
から選ばれた少なくとも1種のほう酸エステル系化合物
との混合物からなる、R−Fe−B系焼結永久磁石製造用
の成形材料である。
The gist of the present invention is that R: 10 to 30 atomic% (provided that R is at least 1 selected from rare earth elements including Y).
Seed), B: 2 to 28 atomic%, Fe: 65 to 82 atomic% (however, up to 50 atomic% of this Fe content can be replaced by Co) as the main component, and as a lubricant Following (a) ~ (f)
A molding material for producing an R-Fe-B system sintered permanent magnet, which is composed of a mixture with at least one boric acid ester compound selected from the following.

【化学式2】 この成形材料をプレス成形した後、焼結し、必要により
時効処理と防食膜の被覆を行うと、磁石特性に優れたR
−Fe−B系焼結永久磁石が製造される。
[Chemical formula 2] After this molding material is press-molded, it is sintered, and if necessary, an aging treatment and a coating of an anticorrosion film are applied, it is possible to obtain excellent R characteristics.
A —Fe—B based sintered permanent magnet is manufactured.

【0018】[0018]

【作用】本発明で用いるR−Fe−B系合金粉末は、R:
10〜30原子%、B:2〜28原子%、Fe:65〜82原子%の
組成を有する、R2Fe14B結晶粒を主体とする合金粉末
である。
The R-Fe-B system alloy powder used in the present invention has R:
An alloy powder mainly composed of R 2 Fe 14 B crystal grains having a composition of 10 to 30 atomic%, B: 2 to 28 atomic%, and Fe: 65 to 82 atomic%.

【0019】希土類元素Rは、イットリウム (Y) を包
含し、軽希土類 (LaからEuまで) と重希土類 (GdからLu
まで) の両者を含む希土類元素である。Rとしては軽希
土類だけで十分であり、特にNdおよびPrが好ましい。通
例、Rは1種だけでよいが、原料入手上その他の理由に
より、安価な2種以上の希土類元素の混合物 (ミッシュ
メタル、ジジム等) を使用することもできる。Sm、Y、
La、Ce、Gd等はNdおよび/またはPr等との混合物として
用いることが好ましい。
The rare earth element R includes yttrium (Y) and includes light rare earths (from La to Eu) and heavy rare earths (Gd to Lu).
It is a rare earth element including both As R, a light rare earth alone is sufficient, and Nd and Pr are particularly preferable. Usually, only one type of R is required, but an inexpensive mixture of two or more types of rare earth elements (Misch metal, didymium, etc.) can be used due to other reasons such as availability of raw materials. Sm, Y,
La, Ce, Gd and the like are preferably used as a mixture with Nd and / or Pr and the like.

【0020】Rは純希土類元素である必要はなく、工業
上入手可能な純度のものでよい。即ち、製造上不可避な
不純物が混入していても差し支えない。
R does not have to be a pure rare earth element, and may be of industrially available purity. That is, there is no problem even if impurities that are unavoidable in manufacturing are mixed.

【0021】希土類元素Rの割合が10原子%未満では、
α−Fe相が析出し、粉砕に悪影響を与える上、高磁石特
性、特に高い固有保磁力(iHc) が得られない。Rが30原
子%を越えると残留磁束密度(Br)が低下する。Bの割合
が2原子%未満では高い固有保磁力が得られず、28原子
%を越えると残留磁束密度が低下する。Feの割合が65原
子%未満では残留磁束密度が不足し、82原子%を越える
と高い固有保磁力得られない。
When the ratio of the rare earth element R is less than 10 atomic%,
The α-Fe phase precipitates and adversely affects the pulverization, and high magnet characteristics, particularly high intrinsic coercive force (iHc) cannot be obtained. When R exceeds 30 atomic%, the residual magnetic flux density (Br) decreases. If the proportion of B is less than 2 atomic%, a high intrinsic coercive force cannot be obtained, and if it exceeds 28 atomic%, the residual magnetic flux density decreases. If the proportion of Fe is less than 65 atomic%, the residual magnetic flux density is insufficient, and if it exceeds 82 atomic%, a high intrinsic coercive force cannot be obtained.

【0022】Feの一部はCoで置換することができる。そ
れにより、合金のキュリー点が上昇し、永久磁石の温度
特性が向上する。しかし、CoがFeより多くなると高い固
有保磁力(iHc) が得られなくなるので、Feの一部をCoで
置換する場合、CoはFe+Coの合計量の50原子%を上限と
する。従って、Coの上限は41原子%である。Coを添加す
る場合、その添加効果を十分に得るには、5原子%以上
の量で添加することが好ましい。好ましいCoの添加量は
5〜25原子%の範囲である。
A part of Fe can be replaced by Co. This raises the Curie point of the alloy and improves the temperature characteristics of the permanent magnet. However, when Co is larger than Fe, a high intrinsic coercive force (iHc) cannot be obtained. Therefore, when replacing a part of Fe with Co, the upper limit of Co is 50 atomic% of the total amount of Fe + Co. Therefore, the upper limit of Co is 41 atom%. When Co is added, it is preferable to add it in an amount of 5 atomic% or more in order to sufficiently obtain the effect of addition. The preferred amount of Co added is in the range of 5 to 25 atomic%.

【0023】高い残留磁束密度と高い固有保磁力をとも
に有する優れた永久磁石を得るには、合金粉末の組成を
R:10〜25原子%、B:4〜26原子%、Fe:65〜82原子
%の範囲とすることが好ましい。より好ましくは、R:
12〜20原子%、B:4〜24原子%、Fe:65〜82原子%で
ある。
In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high intrinsic coercive force, the composition of the alloy powder is R: 10 to 25 atomic%, B: 4 to 26 atomic%, Fe: 65 to 82. It is preferably in the range of atomic%. More preferably, R:
It is 12 to 20 atomic%, B: 4 to 24 atomic%, Fe: 65 to 82 atomic%.

【0024】本発明で用いる合金粉末には、R、B、Fe
(またはFe+Co) の他に、製造工程で不可避的に混入す
る不純物、或いは低価格化、特性改善などの目的で意図
的に混入した元素も少量であれば共存させることができ
る。
The alloy powder used in the present invention includes R, B and Fe.
In addition to (or Fe + Co), impurities that are inevitably mixed in the manufacturing process, or elements intentionally mixed for the purpose of cost reduction and characteristic improvement can be made to coexist in a small amount.

【0025】例えば、Bの一部を、4.0 原子%以下の
C、4.0 原子%以下のSi、3.5 原子%以下のP、2.5 原
子%以下のS、3.5 原子%以下のCuのうちの少なくとも
1種、合計量で4.0 原子%以下で置換することにより、
合金粉末の生産性改善、低価格化が可能となる。
For example, part of B is at least 1 of C at 4.0 atomic% or less, Si at 4.0 atomic% or less, P at 3.5 atomic% or less, S at 2.5 atomic% or less, and Cu at 3.5 atomic% or less. By substituting the species and total amount of 4.0 atomic% or less,
It is possible to improve the productivity of alloy powder and reduce the cost.

【0026】また、9.5 原子%以下のAl、4.5 原子%以
下のTi、9.5 原子%以下のV、8.5原子%以下のCr、8.0
原子%以下のMn、5原子%以下のBi、12.5原子%以下
のNb、10.5原子%以下のTa、9.5 原子%以下のMo、9.5
原子%以下のW、2.5 原子%以下のSb、7原子%以下の
Ge、3.5 原子%以下のSn、5.5 原子%以下のZr、5.5原
子%以下のHf、5.5 原子%以下のMg、5.5 原子%以下の
Ga、のうち少なくとも1種を添加して合金中に含有させ
ることにより、永久磁石の固有保磁力 (iHc)を一層向上
させることが可能となる。
Also, 9.5 atomic% or less of Al, 4.5 atomic% or less of Ti, 9.5 atomic% or less of V, 8.5 atomic% or less of Cr, 8.0
Mn less than atomic%, Bi less than 5 atomic%, Nb less than 12.5 atomic%, Ta less than 10.5 atomic%, Mo less than 9.5 atomic%, 9.5
W at atomic% or less, Sb at 2.5 atomic% or less, at 7 atomic% or less
Ge, 3.5 atomic% or less Sn, 5.5 atomic% or less Zr, 5.5 atomic% or less Hf, 5.5 atomic% or less Mg, 5.5 atomic% or less
By adding at least one of Ga and making it contained in the alloy, it becomes possible to further improve the intrinsic coercive force (iHc) of the permanent magnet.

【0027】本発明で原料粉末として用いるR−Fe−B
系合金粉末の製造方法は特に制限されない。例えば、前
述した一般的な方法で合金粉末を製造することができ
る。この方法によれば、高周波炉、アーク炉などを用い
て真空または不活性雰囲気中で所定の合金組成となるよ
うに出発原料(成分金属または合金)を溶解し、得られ
たR−Fe−B系合金の溶湯を水冷鋳型に鋳造して合金イ
ンゴットを得る。
R-Fe-B used as a raw material powder in the present invention
The method for producing the base alloy powder is not particularly limited. For example, the alloy powder can be manufactured by the general method described above. According to this method, the starting raw material (component metal or alloy) is melted in a vacuum or an inert atmosphere in a high-frequency furnace, an arc furnace or the like so as to have a predetermined alloy composition, and the obtained R-Fe-B is obtained. The molten alloy is cast in a water-cooled mold to obtain an alloy ingot.

【0028】次いで、この合金インゴットをスタンプミ
ル、ジョークラッシャー、ブラウンミル等を用いて、平
均粒径が20〜500 μm程度になるまで機械的に粗粉砕し
た後、さらにジェットミル、振動ミル、ボールミル等に
より平均粒径が1〜20μmになるように微粉砕して原料
の合金粉末を得る。
Next, this alloy ingot is mechanically coarsely pulverized by a stamp mill, a jaw crusher, a brown mill or the like until the average particle size becomes about 20 to 500 μm, and then further jet mill, vibration mill, ball mill. Finely pulverized so as to have an average particle size of 1 to 20 μm to obtain a raw material alloy powder.

【0029】別の方法として、上記のようにして得たR
−Fe−B系合金を水素ガス中に保持して希土類水素化
物、Fe2B、Feに分解させ、次いで水素圧を下げて希土類
水素化物から水素を解離させてR−Fe−B系合金粉末を
得る水素化粉砕法によって粗粉砕を行うこともできる。
水素化粉砕法により粗粉砕を行うと、その後に行う微粉
砕における破砕性が良好となる。
As another method, R obtained as described above is used.
-Fe-B alloy is held in hydrogen gas to decompose into rare earth hydrides, Fe 2 B and Fe, and then hydrogen pressure is lowered to dissociate hydrogen from the rare earth hydrides to form R-Fe-B alloy powder. It is also possible to perform coarse pulverization by a hydrogenation pulverization method for obtaining
When the coarse pulverization is performed by the hydrogenation pulverization method, the crushability in the fine pulverization performed thereafter becomes good.

【0030】使用する合金粉末の粒度は、平均粒径(空
気透過法で求めた値)で1〜20μmであればよく、特に
2〜10μmの範囲が好ましい。平均粒径が20μmを越え
ると、永久磁石とした後に優れた磁石特性、とりわけ高
い固有保磁力が得られない。平均粒径が1μm未満で
は、永久磁石の作製工程 (即ち、プレス成形、焼結、時
効処理工程) における合金の酸化が著しく、優れた磁石
特性が得られない。
The particle size of the alloy powder used may be 1 to 20 μm in terms of average particle size (value determined by the air permeation method), and particularly preferably 2 to 10 μm. If the average particle size exceeds 20 μm, excellent magnet characteristics, especially high intrinsic coercive force cannot be obtained after forming a permanent magnet. When the average particle size is less than 1 μm, the alloy is remarkably oxidized in the manufacturing process of the permanent magnet (that is, press molding, sintering, aging treatment process), and excellent magnet characteristics cannot be obtained.

【0031】R−Fe−B系合金の別の製造方法として、
特開昭63−317643号公報および特開平5−295490号公報
に記載の急冷凝固法を採用することもでき、それによ
り、磁石特性がさらに優れた焼結永久磁石を得ることが
できる。
As another method for producing an R-Fe-B type alloy,
The rapid solidification method described in JP-A-63-317643 and JP-A-5-295490 can also be adopted, whereby a sintered permanent magnet having more excellent magnet characteristics can be obtained.

【0032】急冷凝固法によれば、上記のようにして調
製したR−Fe−B系合金の溶湯を、単ロール法 (1方向
凝固) または双ロール法 (2方向凝固) により急冷凝固
させることによって、平均結晶粒径3〜30μmの均質な
組織を有し、厚さ0.05〜3mmの薄板または薄片 (鱗片)
状の急冷凝固合金材を得る。急冷凝固法としては、単ロ
ール法の方が効率と品質安定性に優れており、好まし
い。薄板または薄片の厚みが0.05mmより薄いと、急冷効
果が過大となって、結晶粒径が3μmより小さくなる確
率が高くなり、焼結磁石の磁石特性が劣化する。逆に、
厚みが3mmより厚いと、冷却速度が遅くなりすぎ、α−
Fe相が生成して、結晶粒径が30μmを越えるようにな
り、磁石特性が劣化する。好ましくは、厚み0.15〜0.4m
m 、平均結晶粒径4〜15μmである。
According to the rapid solidification method, the melt of the R-Fe-B alloy prepared as described above is rapidly solidified by the single roll method (one-way solidification) or the twin roll method (two-way solidification). Has a uniform structure with an average crystal grain size of 3 to 30 μm and a thickness of 0.05 to 3 mm.
To obtain a rapidly solidified alloy material. As the rapid solidification method, the single roll method is preferable because it is superior in efficiency and quality stability. If the thickness of the thin plate or flakes is less than 0.05 mm, the rapid cooling effect becomes excessive, the probability that the crystal grain size becomes smaller than 3 μm increases, and the magnet characteristics of the sintered magnet deteriorate. vice versa,
If the thickness is thicker than 3 mm, the cooling rate will be too slow and α-
The Fe phase is generated, the crystal grain size exceeds 30 μm, and the magnet characteristics deteriorate. Preferably, thickness 0.15-0.4m
m, average crystal grain size 4 to 15 μm.

【0033】R−Fe−B系合金の結晶粒径とは、急冷に
より生成したR2Fe14B柱状結晶粒の幅 (長軸方向に垂
直な方向の長さ) を意味する。結晶粒径は、急冷凝固で
得た薄板または薄片状合金材を柱状結晶粒の長軸方向と
ほぼ平行な断面が露出するように切断および研磨し、こ
の断面の電子顕微鏡写真において、ランダムに選んだ約
100 個の柱状結晶粒の幅を測定し、その平均値として求
める。
The crystal grain size of the R-Fe-B system alloy means the width (length in the direction perpendicular to the major axis direction) of the R 2 Fe 14 B columnar crystal grains produced by quenching. The crystal grain size is cut and polished so that a thin plate or flaky alloy material obtained by rapid solidification is exposed so that a cross section substantially parallel to the long axis direction of the columnar crystal grain is exposed, and randomly selected in an electron micrograph of this cross section. About
The width of 100 columnar crystal grains is measured, and the average value is obtained.

【0034】急冷凝固で得た薄板または薄片を、上記と
同様に粗粉砕および微粉砕して合金粉末を得る。急冷凝
固法で得たR−Fe−B系合金の薄板は、粉砕性に優れて
おり、平均粒径3〜4μmで粒度分布幅の狭い微粉末を
容易に得ることができる。
The thin plate or thin piece obtained by rapid solidification is roughly pulverized and finely pulverized in the same manner as described above to obtain an alloy powder. The thin plate of the R—Fe—B alloy obtained by the rapid solidification method has excellent pulverizability, and fine powder having an average particle size of 3 to 4 μm and a narrow particle size distribution width can be easily obtained.

【0035】本発明によれば、このR−Fe−B系合金粉
末に、潤滑剤として少なくとも1種のほう酸エステル系
化合物を添加し、合金粉末と均一に混合して、焼結永久
磁石製造時のプレス成形工程に成形材料として使用す
る。潤滑剤の添加時期は、微粉砕前、微粉砕中、または
微粉砕後の何れであってもよい。
According to the present invention, at least one borate ester compound as a lubricant is added to the R-Fe-B alloy powder and mixed uniformly with the alloy powder to produce a sintered permanent magnet. It is used as a molding material in the press molding process. The lubricant may be added before pulverization, during pulverization, or after pulverization.

【0036】本発明において、ほう酸エステル系化合物
とは、ほう酸 (オルトほう酸H3BO3とメタほう酸HBO2
含む) または無水ほう酸 (B2O3) を1種もしくは2種以
上の1価または多価アルコールと反応させてエステル化
することにより得られる、ほう酸トリエステル型の化合
物を意味する。
In the present invention, the boric acid ester-based compound means one or more monovalent or more than one boric acid (including orthoboric acid H 3 BO 3 and metaboric acid HBO 2 ) or boric anhydride (B 2 O 3 ). It means a boric acid triester type compound obtained by reacting with a polyhydric alcohol to esterify.

【0037】ほう酸または無水ほう酸のエステル化に使
用できる1価または多価アルコールとしては、下記(1)
〜(4) の化合物が例示される。
The monohydric or polyhydric alcohol which can be used for the esterification of boric acid or boric anhydride is as follows (1)
The compounds (4) to (4) are exemplified.

【0038】(1) 一般式:R1−OHで示される1価アル
コール、(2) 下記一般式で示されるジオール、
(1) General formula: monohydric alcohol represented by R 1 —OH, (2) diol represented by the following general formula,

【0039】[0039]

【化学式3】 [Chemical formula 3]

【0040】(3) グリセリンまたは置換グリセリンとそ
れらのモノまたはジエステル、(4) 上記(2) および(3)
以外の多価アルコールならびにそのエステルもしくはア
ルキレンオキサイド付加物。
(3) Glycerin or substituted glycerin and their mono- or diesters, (4) above (2) and (3)
Other polyhydric alcohols and their esters or alkylene oxide adducts.

【0041】上記一般式において、R1は炭素数3〜22の
脂肪族、芳香族または複素環式の飽和または不飽和有機
基を意味し;R2、R3、R4、R5は、同一でも異なるもので
よく、それぞれHまたは炭素数1〜15の脂肪族または芳
香族の飽和または不飽和1価有機基を意味し、R6は、単
結合、−O−、−S−、−SO2 −、−CO−、または炭素
数1〜20の脂肪族もしくは芳香族の飽和もしくは不飽和
有機2価基を意味する。
In the above general formula, R 1 means an aliphatic, aromatic or heterocyclic saturated or unsaturated organic group having 3 to 22 carbon atoms; R 2 , R 3 , R 4 and R 5 are They may be the same or different and each is H or an aliphatic or aromatic saturated or unsaturated monovalent organic group having 1 to 15 carbon atoms, and R 6 is a single bond, —O—, —S—, — SO 2 −, —CO—, or an aliphatic or aromatic saturated or unsaturated organic divalent group having 1 to 20 carbon atoms is meant.

【0042】(1) の1価アルコールとしては、例えばn
−ブタノール、 iso−ブタノール、n−ペンタノール、
n−ヘキサノール、n−ヘプタノール、n−オクタノー
ル、2−エチルヘキサノール、ノナノール、デカノー
ル、ウンデカノール、ドデカノール、トリデカノール、
テトラデカノール、ペンタデカノール、ヘキサデカノー
ル、ヘプタデカノール、オクタデカノール、ノナデカノ
ール等が挙げられ、好ましくは炭素数3〜18のアルコー
ルである。そのほか、アリルアルコール、クロチルアル
コール、プロパルギルアルコール等の脂肪族不飽和アル
コール、シクロペンタノール、シクロヘキサノール等の
脂環式アルコール、ベンジルアルコール、シンナミルア
ルコール等の芳香族アルコール、フルフリルアルコール
等の複素環式アルコールも使用できる。炭素原子数2以
下の1価アルコール (メタノール、エタノール) とのほ
う酸エステル系化合物は沸点が低く、R−Fe−B系合金
粉末と混合した後に揮散する可能性があるので、好まし
くない。また、炭素数22以上の1価アルコールとのほう
酸エステル系化合物は、融点が高く、均一混合性にやや
劣る上、焼結後に残炭として残存する可能性がある。
Examples of the monohydric alcohol (1) include n
-Butanol, iso-butanol, n-pentanol,
n-hexanol, n-heptanol, n-octanol, 2-ethylhexanol, nonanol, decanol, undecanol, dodecanol, tridecanol,
Examples thereof include tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, and the like, and alcohols having 3 to 18 carbon atoms are preferable. In addition, aliphatic unsaturated alcohols such as allyl alcohol, crotyl alcohol and propargyl alcohol, alicyclic alcohols such as cyclopentanol and cyclohexanol, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, and complex compounds such as furfuryl alcohol. Cyclic alcohols can also be used. A boric acid ester compound with a monohydric alcohol (methanol, ethanol) having 2 or less carbon atoms has a low boiling point and may volatilize after being mixed with the R—Fe—B alloy powder, which is not preferable. Further, a borate ester compound having a carbon number of 22 or more with a monohydric alcohol has a high melting point, is slightly inferior in uniform mixing property, and may remain as residual carbon after sintering.

【0043】(2) のジオール (2価アルコール) の例と
しては、エチレングリコール、プロピレングリコール、
1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタ
ンジオール、2-メチル-2,4- ペンタンジオール、ネオペ
ンチルグリコール、1,6-ヘキサンジオール、1,7-ヘプタ
ンジオール、1,8-オクタンジオール、1,9-ノナンジオー
ル、1,10- デカンジオール、その他のα, ω−グリコー
ル、ピナコール、ヘキサン-1,2- ジオール、オクタン-
1,2- ジオール、ブタノイル−α−グリコール、その他
の対称α−グリコールが挙げられる。総炭素数が10以下
で、融点が比較的低いジオールが、合成が容易でコスト
的にも有利であることから好ましい。
Examples of the diol (dihydric alcohol) of (2) include ethylene glycol, propylene glycol,
1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, other α, ω-glycol, pinacol, hexane-1,2-diol, octane-
1,2-diol, butanoyl-α-glycol, and other symmetrical α-glycols. A diol having a total carbon number of 10 or less and a relatively low melting point is preferable because it is easy to synthesize and is advantageous in cost.

【0044】(3) のグリセリン類の例としては、グリセ
リンそれ自体、ならびにグリセリンと炭素数8〜18の脂
肪酸とのモノエステルまたはジエステルが挙げられる。
これらのエステルの代表例はラウリン酸モノおよびジグ
リセライド、オレイン酸モノおよびジグリセライド等で
ある。また、置換グリセリン (例、ブタン-1,2,3- トリ
オール、2-メチルプロパン-1,2,3- トリオール、ペンタ
ン-2,3,4- トリオール、2-メチルブタン-1,2,3- トリオ
ール、ヘキサン-2,3,4- トリオール等) それ自体、なら
びにそれらと炭素数8〜18の脂肪酸とのモノエステルま
たはジエステルも使用できる。
Examples of the glycerins of (3) include glycerin itself and monoesters or diesters of glycerin and fatty acids having 8 to 18 carbon atoms.
Representative examples of these esters are lauric acid mono- and diglycerides, oleic acid mono- and diglycerides and the like. In addition, substituted glycerin (e.g., butane-1,2,3-triol, 2-methylpropane-1,2,3-triol, pentane-2,3,4-triol, 2-methylbutane-1,2,3- (Triol, hexane-2,3,4-triol, etc.) per se, and monoesters or diesters thereof with fatty acids having 8 to 18 carbon atoms can also be used.

【0045】(4) の多価アルコールの例としては、トリ
メチロールプロパン、ペンタエリトリット、アラビッ
ト、ソルビット、ソルビタン、マンニット、マンニタン
などが挙げられる。また、これらの多価アルコールと炭
素数8〜18の脂肪酸とのモノエステル、ジエステルまた
はトリエステル等のエステル化物 (但し、少なくとも1
個のOH基が残留) 、ならびにこれらの多価アルコール
にアルキレンオキサイド(エチレンオキサイド、プロピ
レンオキサイド等) を1〜20モル、好ましくは4〜18モ
ル付加させたエーテル型の付加物も使用できる。
Examples of the polyhydric alcohol of (4) include trimethylolpropane, pentaerythritol, arabite, sorbit, sorbitan, mannitol and mannitan. Further, ester compounds such as monoesters, diesters or triesters of these polyhydric alcohols and fatty acids having 8 to 18 carbon atoms (provided that at least 1
OH groups remain), and ether-type adducts obtained by adding 1 to 20 mol, preferably 4 to 18 mol of alkylene oxide (ethylene oxide, propylene oxide, etc.) to these polyhydric alcohols can also be used.

【0046】ほう酸または無水ほう酸と上記アルコール
とのエステル化反応は、これらの反応成分を単に一緒に
加熱するだけで容易に進行する。反応温度はアルコール
の種類によっても異なるが、通常は 100〜180 ℃程度で
ある。反応成分は、ほぼ化学量論比で反応させることが
好ましい。得られたほう酸エステル系化合物の室温での
性状は一般に液体もしくは固体である。
The esterification reaction between boric acid or boric anhydride and the above-mentioned alcohol easily proceeds by simply heating the reaction components together. The reaction temperature varies depending on the type of alcohol, but is usually about 100 to 180 ° C. The reaction components are preferably reacted in a substantially stoichiometric ratio. The properties of the obtained borate ester compound at room temperature are generally liquid or solid.

【0047】潤滑剤のほう酸エステル系化合物の合金粉
末への混合方法は、合金粉末と潤滑剤との均一混合が達
成される限り特に制限されず、乾式混合と、液体媒質を
用いた湿式混合のいずれも可能である。潤滑剤の混合時
の温度は、潤滑剤の融点にもよるが、一般には室温〜50
℃が適当である。
The method of mixing the borate ester compound of the lubricant with the alloy powder is not particularly limited as long as uniform mixing of the alloy powder and the lubricant is achieved, and dry mixing and wet mixing using a liquid medium are performed. Both are possible. The temperature at the time of mixing the lubricant depends on the melting point of the lubricant, but is generally room temperature to 50
℃ is suitable.

【0048】例えば、合金粉末の微粉砕を湿式粉砕によ
り行う場合には、湿式微粉砕工程中またはその前後のス
ラリー状態の合金粉末に、ほう酸エステル系化合物から
なる潤滑剤を添加して混合することにより、本発明の成
形材料を得ることができる。湿式混合に用いる液体媒質
としては、トルエンなどの芳香族炭化水素、炭素数6〜
18の脂肪族炭化水素などが適当である。
For example, when the fine pulverization of the alloy powder is carried out by the wet pulverization, a lubricant comprising a borate ester compound is added to and mixed with the alloy powder in a slurry state before or after the wet fine pulverization step. Thus, the molding material of the present invention can be obtained. As a liquid medium used for wet mixing, an aromatic hydrocarbon such as toluene, a carbon number of 6 to
18 aliphatic hydrocarbons and the like are suitable.

【0049】しかし、一般にはR−Fe−B系合金粉末の
微粉砕は、乾式微粉砕、中でもジェットミルを用いて行
うのが普通であるので、合金粉末と潤滑剤のほう酸エス
テル系化合物との混合も乾式で行う方が好ましい。具体
的な乾式混合方法を次に例示するが、これらに限られる
ものではない。
However, in general, the fine pulverization of the R-Fe-B type alloy powder is usually performed by dry fine pulverization, especially by using a jet mill. Therefore, the alloy powder and the borate ester type compound of the lubricant are mixed. It is preferable to carry out the mixing also in a dry system. Specific dry mixing methods are illustrated below, but the dry mixing methods are not limited to these.

【0050】微粉砕前の添加:機械的に粗粉砕した、
または水素化粉砕法で製造された合金粉末を、ロッキン
グミル、V型混合機、万能混合攪拌機などの適当な乾式
混合装置に入れ、これに所定量の潤滑剤を添加して、合
金粉末と混合する。その後、混合粉末をジェットミル等
の微粉砕機により微粉砕すると、本発明の成形材料が得
られる。
Addition before fine grinding: mechanically coarse grinding,
Alternatively, the alloy powder produced by the hydro-grinding method is put in an appropriate dry mixing device such as a rocking mill, a V-type mixer, a universal mixing stirrer, and a predetermined amount of lubricant is added to the mixture to mix with the alloy powder. To do. Thereafter, the mixed powder is finely pulverized by a fine pulverizer such as a jet mill to obtain the molding material of the present invention.

【0051】微粉砕中の添加:ジェットミル、振動ミ
ル、ボールミルなどの微粉砕機で乾式微粉砕中の合金粉
末に、所定量の潤滑剤を添加し、微粉砕を続けて、潤滑
剤を微粉砕粉末に混合する。微粉砕中の合金粉末への潤
滑剤の添加は、ガス導入管の先端にノズルを設けた噴射
装置を使用し、N2ガスなどの不活性ガスと一緒に潤滑剤
を微粉砕機内に噴霧することにより実施できる。必要に
より、微粉砕後に適当な乾式混合機に移して、乾式混合
してもよい。
Addition during fine pulverization: A predetermined amount of lubricant is added to the alloy powder during dry fine pulverization with a fine pulverizer such as a jet mill, a vibration mill, and a ball mill, and fine pulverization is continued to finely disperse the lubricant. Mix with ground powder. To add the lubricant to the alloy powder during fine pulverization, use a sprayer equipped with a nozzle at the tip of the gas introduction pipe, and spray the lubricant into the fine pulverizer together with an inert gas such as N 2 gas. It can be implemented by If necessary, it may be transferred to an appropriate dry mixer after fine pulverization and dry mixed.

【0052】微粉砕後の添加:微粉砕終了後の粉末回
収容器内で、或いはロッキングミル、V型混合機、万能
混合攪拌機などの適当な乾式混合装置に移してから、微
粉砕した合金粉末に所定量の潤滑剤を添加し、乾式混合
すると、本発明の成形材料が得られる。
Addition after fine pulverization: In a powder recovery container after completion of fine pulverization, or after transferring to a suitable dry mixing device such as a rocking mill, V-type mixer, universal mixing agitator, etc., finely pulverized alloy powder is obtained. When a predetermined amount of lubricant is added and dry mixing is performed, the molding material of the present invention is obtained.

【0053】との場合の潤滑剤の添加も、で述べ
たような噴射装置を用いた噴霧により行うこともでき
る。
The addition of the lubricant in the cases of and can also be performed by spraying using the injection device as described in.

【0054】の微粉砕前の添加は、粒径が20〜500 μ
mと比較的大きい合金粉末に潤滑剤を添加するため、添
加混合時の合金粉末の酸化が少なく、添加も容易であ
る。また、添加後に合金粉末を微粉砕するので、この微
粉砕時に潤滑剤がさらに均一に粉末表面に被覆されるた
め、潤滑剤を最も均一に合金粉末と混合することができ
る。しかし、潤滑剤の添加から微粉砕するまでの間、お
よび微粉砕中に、潤滑剤が気化し、潤滑剤が失われる。
気化による潤滑剤の損失量は、微粉砕の条件や潤滑剤と
して用いたほう酸エステル系化合物の沸点によっても異
なるが、大まかには約半分程度である。従って、気化に
よる損失量を見越して、例えば、最終的に成形材料に含
有させたい潤滑剤量の約 1.5〜2倍量の潤滑剤を添加す
る必要がある。
The addition of finely crushed powder of 20 to 500 μm
Since the lubricant is added to the alloy powder having a relatively large value of m, oxidation of the alloy powder during addition and mixing is small and addition is easy. Further, since the alloy powder is finely pulverized after the addition, the lubricant is more evenly coated on the powder surface during the fine pulverization, so that the lubricant can be mixed with the alloy powder most uniformly. However, the lubricant is vaporized and the lubricant is lost during the period from the addition of the lubricant to the fine grinding and during the fine grinding.
The amount of loss of the lubricant due to vaporization varies depending on the conditions of fine pulverization and the boiling point of the borate ester compound used as the lubricant, but is roughly about half. Therefore, it is necessary to add, for example, about 1.5 to 2 times the amount of the lubricant to be finally contained in the molding material in anticipation of the loss due to vaporization.

【0055】これに対して、の微粉砕後の潤滑剤の添
加は、潤滑剤の気化による損失がほとんどないので、損
失量を見越して余分に潤滑剤を添加する必要がなく、経
済的である。また、潤滑剤の添加後の混合を十分に行え
ば、微粉砕した合金粉末に潤滑剤を実質的に均一に混合
することができる。これに関して、実際にの方法で潤
滑剤を混合した後、混合粉末のC量を分析した時に、位
置によるC量のばらつきが少ないことで、均一混合が達
成されていることを確認した。
On the other hand, the addition of the lubricant after fine pulverization is economical because there is almost no loss due to vaporization of the lubricant, and it is not necessary to add an extra lubricant in anticipation of the amount of loss. . Further, if the mixing after the addition of the lubricant is sufficiently performed, the lubricant can be substantially uniformly mixed with the finely pulverized alloy powder. In this regard, when the C content of the mixed powder was analyzed after the lubricant was mixed by the actual method, it was confirmed that uniform mixing was achieved because there was little variation in the C content depending on the position.

【0056】の微粉砕中の混合の場合は、との中
間であると言える。従って、微粉砕中の潤滑剤の添加時
期によっては潤滑剤の気化による損失が多少起こるの
で、その分だけ余分に潤滑剤を添加することになる。
In the case of mixing during fine pulverization of, it can be said that it is in the middle of. Therefore, some loss due to vaporization of the lubricant occurs depending on the timing of addition of the lubricant during fine pulverization, and the lubricant is added accordingly.

【0057】本発明の成形材料における潤滑剤のほう酸
エステル系化合物の量は、最終的に微粉砕したR−Fe−
B系合金粉末の粒度、ダイスと成形体の形状、寸法およ
び摩擦面積、プレス条件等に応じて、所期の効果が達成
されるように適宜選定すればよい。ほう酸エステル系化
合物は、従来の潤滑剤とは異なり、0.01重量%程度の少
量で著しい成形性改善効果がある。
The amount of the boric acid ester compound of the lubricant in the molding material of the present invention is such that the final finely ground R-Fe-
It may be appropriately selected depending on the particle size of the B-based alloy powder, the shapes and dimensions of the die and the compact, the friction area, the pressing conditions, etc. so that the desired effect is achieved. Unlike conventional lubricants, boric acid ester-based compounds have a remarkable effect of improving moldability even in a small amount of about 0.01% by weight.

【0058】潤滑剤量の増大とともに抜き圧力が低減
し、成形性は向上するが、多量に添加しすぎると、プレ
ス成形体の圧粉体強度が低下し、次工程のハンドリング
時に割れ、欠け等による歩留まりの低下を引き起こす恐
れがある上、焼結工程において焼結体に炭素が残留して
磁石特性が低下するようになる。この現象は特に潤滑剤
の量が2.0 重量%を超えると顕著になる。
With the increase of the amount of lubricant, the drawing pressure is reduced and the formability is improved, but if too much is added, the green compact strength of the press-molded product is reduced, and cracks, chips, etc., occur during the handling in the next step. In addition to the possibility that the yield may be reduced due to the above, carbon will remain in the sintered body in the sintering process and the magnet characteristics will be deteriorated. This phenomenon becomes remarkable especially when the amount of the lubricant exceeds 2.0% by weight.

【0059】以上より、成形材料中の潤滑剤の量は、合
金粉末に対して0.01〜2重量%の範囲内が好ましい。た
だし、前述のように、微粉砕中に潤滑剤の気化による損
失が見込まれる場合には、添加量はその分だけ多くす
る。即ち、のように微粉砕前に潤滑剤を添加する場合
には、損失分を補うためにほぼ倍量の潤滑剤を添加す
る。成形材料中の潤滑剤の量は、より好ましくは 0.1〜
1重量%である。
From the above, the amount of the lubricant in the molding material is preferably within the range of 0.01 to 2% by weight with respect to the alloy powder. However, as described above, when a loss due to vaporization of the lubricant is expected during the fine pulverization, the addition amount is increased accordingly. That is, in the case of adding the lubricant before the fine pulverization as described above, an almost double amount of the lubricant is added to make up for the loss. The amount of lubricant in the molding material is more preferably 0.1-
It is 1% by weight.

【0060】潤滑剤として使用するほう酸エステル系化
合物が、混合温度で比較的低粘度の液体であるか、また
は固体であって、合金粉末との均一混合が困難な場合に
は、潤滑剤を適当な溶媒で希釈して用いることができ
る。希釈溶媒は特に制限されないが、好ましいのはパラ
フィン系炭化水素等である。それにより、ほう酸エステ
ル系化合物が均一に混ざった潤滑剤希釈液が得られ、潤
滑剤と合金粉末との均一混合が容易となる。希釈度は、
容易に合金粉末との均一混合が可能な希釈液が得られる
限り、特に制限されない。しかし、希釈度があまりに高
いと、多量の溶媒が必要になり経済的ではないので、通
常は希釈液中の潤滑剤濃度を10重量%以上とすることが
望ましい。
When the boric acid ester compound used as the lubricant is a liquid having a relatively low viscosity at the mixing temperature or is a solid and it is difficult to uniformly mix it with the alloy powder, a suitable lubricant is used. It can be used after diluting with a suitable solvent. The diluent solvent is not particularly limited, but paraffin hydrocarbons and the like are preferable. Thereby, a lubricant diluting liquid in which the borate ester compound is uniformly mixed is obtained, and uniform mixing of the lubricant and the alloy powder is facilitated. The degree of dilution is
There is no particular limitation as long as a diluting liquid that can be easily mixed with the alloy powder is obtained. However, if the degree of dilution is too high, a large amount of solvent is required and it is not economical, so it is usually desirable to set the lubricant concentration in the diluent to 10% by weight or more.

【0061】このように潤滑剤を溶媒で希釈して添加す
る場合には、希釈液の添加量が合金粉末に対して0.05重
量%以上あることが、均一混合を確保する意味で好まし
い。また、希釈液の添加量があまりに多量になると、R
−Fe−B系合金粉末がマクロ的に凝集し易く、均一混合
がかえって困難となり、この粉末を使用して永久磁石を
製造すると、C偏析による磁石特性の低下が発生し易
い。この現象は、の微粉砕前の添加では希釈液の添加
量が4重量%を超えてから、の微粉砕後の添加では希
釈液の添加量が3重量%を超えてから顕著となるので、
添加時期に応じて、希釈液の添加量は3〜4重量%を超
えないように制限することが好ましい。
When the lubricant is diluted with a solvent and added as described above, the amount of the diluent added is preferably 0.05% by weight or more based on the alloy powder in order to ensure uniform mixing. Also, if the amount of diluent added is too large, R
The —Fe—B alloy powder easily aggregates macroscopically, which makes uniform mixing rather difficult, and when a permanent magnet is manufactured using this powder, deterioration of magnet characteristics due to C segregation easily occurs. This phenomenon becomes remarkable after the addition amount of the diluting liquid exceeds 4% by weight in the addition before fine pulverization and after the addition amount of the diluting liquid exceeds 3% by weight in the addition after fine pulverization.
Depending on the time of addition, it is preferable to limit the addition amount of the diluent so as not to exceed 3 to 4% by weight.

【0062】R−Fe−B系合金粉末に潤滑剤のほう酸エ
ステル系化合物が均一に混合した本発明の焼結永久磁石
製造用の成形材料から、従来法と同様にプレス成形、焼
結および時効処理を行うとR−Fe−B系焼結永久磁石が
製造される。
From the molding material for producing the sintered permanent magnet of the present invention, in which the boric acid ester compound of the lubricant is uniformly mixed with the R-Fe-B alloy powder, press molding, sintering and aging are performed in the same manner as in the conventional method. When the treatment is performed, an R-Fe-B system sintered permanent magnet is manufactured.

【0063】プレス成形 (圧縮成形) は、通常の粉末冶
金法に従って実施できる。プレス成形時に磁場を印加す
れば磁気異方性の、磁場を印加しなければ磁気等方性の
永久磁石となる。通常は、より高い磁石特性を得るため
に、磁場中でプレス成形を行う。磁場の強度は8 kOe以
上、特に10 kOe以上が好ましく、成形圧力は 0.5〜3t/
cm2の範囲内が好ましい。
The press molding (compression molding) can be carried out according to a usual powder metallurgy method. If a magnetic field is applied during press molding, a magnetic anisotropic magnet is obtained, and if a magnetic field is not applied, a magnetic isotropic permanent magnet is obtained. Usually, press molding is performed in a magnetic field in order to obtain higher magnetic properties. The strength of the magnetic field is 8 kOe or more, especially 10 kOe or more, and the molding pressure is 0.5 to 3 t /
A range of cm 2 is preferred.

【0064】本発明によれば、R−Fe−B系合金粉末に
少量で高い潤滑性能を示すほう酸エステル系化合物を添
加して成形することにより、粉末の滑り性が向上し、各
粉末粒子が磁場印加下での成形時に容易に回転できるよ
うになる。そのため、各粒子の磁化容易方向が磁場方向
に揃い易く、配向性(磁化容易方向の整列度)が飛躍的
に向上する。しかも、潤滑剤の揮散性が高く、その配合
量が少なくてすむため、残炭量が低下し、高い磁石特性
が得られる。
According to the present invention, the R-Fe-B alloy powder is added with a boric acid ester compound having a high lubricating performance in a small amount to be molded, whereby the slipperiness of the powder is improved and each powder particle is It becomes possible to easily rotate during molding under the application of a magnetic field. Therefore, the easy magnetization direction of each particle is easily aligned with the magnetic field direction, and the orientation (alignment degree in the easy magnetization direction) is dramatically improved. Moreover, the volatility of the lubricant is high and the amount of the lubricant required is small, so that the amount of residual coal is reduced and high magnet characteristics can be obtained.

【0065】また、上記潤滑剤だけで十分な成形性(摩
擦低減、離型性)の改善効果が得られるため、金型への
離型剤の塗布工程を省略しても粉末と金型との摩擦によ
る疵、割れ、剥がれ等の発生を有効に防止できる。その
ため、工程が簡略化されて生産性が約20%向上し、成形
金型の寿命が長くなり、プレス成形を工業的に安定して
連続的かつ大量に実施することができるようになる。
Further, since only the above-mentioned lubricant can sufficiently improve the moldability (friction reduction, mold release property), even if the mold release agent coating step is omitted, the powder and the mold can be removed. It is possible to effectively prevent the occurrence of flaws, cracks, peeling, and the like due to the friction of. Therefore, the process is simplified, the productivity is improved by about 20%, the life of the molding die is extended, and the press molding can be industrially stably carried out continuously and in large quantities.

【0066】プレス成形後の焼結は、アルゴン等の不活
性雰囲気または真空雰囲気中、1000〜1100℃で1〜8時
間程度行うのが普通である。さらに、この後に行う保磁
力向上のための時効処理は、不活性または真空雰囲気
中、 500〜600 ℃で1〜6時間程度行うのが普通であ
る。得られた焼結永久磁石は、必要に応じて腐食から保
護するために、Niめっきなどによる防食膜で被覆しても
よい。
Sintering after press molding is usually carried out in an inert atmosphere such as argon or a vacuum atmosphere at 1000 to 1100 ° C. for about 1 to 8 hours. Further, the aging treatment for improving the coercive force after this is usually performed at 500 to 600 ° C. for about 1 to 6 hours in an inert or vacuum atmosphere. The obtained sintered permanent magnet may be covered with an anticorrosion film by Ni plating or the like in order to protect it from corrosion if necessary.

【0067】本発明の方法で製造された磁気異方性のR
−Fe−B系焼結永久磁石は、固有保磁力(iHc) ≧ 1 kO
e、残留磁束密度(Br)>4kGを示す。最大エネルギー積
[(BH)max]はハードフェライトと同等以上となる。特
に、合金粉末がR:12〜20原子%、B:4〜24原子%、
Fe:65〜82原子%の好ましい組成範囲内であって、Rの
50原子%以上を軽希土類が占める場合に、最もすぐれた
磁石特性が得られ、中でも軽希土類金属がNdの場合に
は、 (iHc)≧10 kOe、(Br)≧10 kG 、(BH)max ≧35 MGO
e の磁石特性を得ることができる。
R of magnetic anisotropy produced by the method of the present invention
-Fe-B system sintered permanent magnet has an intrinsic coercive force (iHc) ≥ 1 kO
e, residual magnetic flux density (Br)> 4 kG. Maximum energy product
[(BH) max] is equal to or higher than that of hard ferrite. In particular, the alloy powder contains R: 12 to 20 atom%, B: 4 to 24 atom%,
Fe: within a preferable composition range of 65 to 82 atomic%,
When the light rare earth occupies 50 atomic% or more, the best magnet characteristics are obtained. Among them, when the light rare earth metal is Nd, (iHc) ≧ 10 kOe, (Br) ≧ 10 kG, (BH) max ≧ 35 MGO
The magnet characteristic of e can be obtained.

【0068】原料合金粉末を上記の急冷凝固法により製
造した場合には、磁石特性はさらに向上し、特に固有保
磁力(iHc) と最大エネルギー積(BH)max が一層向上した
焼結永久磁石を得ることができる。
When the raw material alloy powder is produced by the above-mentioned rapid solidification method, the magnet characteristics are further improved, and in particular, a sintered permanent magnet having further improved intrinsic coercive force (iHc) and maximum energy product (BH) max is obtained. Obtainable.

【0069】Feの一部 (最大で50原子%) をCoで置換し
た場合には、得られる磁気異方性の焼結永久磁石は、上
記と同等の磁石特性を示すと同時に、残留磁束密度の温
度係数が0.1 %/℃以下となり、温度特性が改善され
る。
When a part of Fe (up to 50 atomic%) is replaced with Co, the obtained magnetically anisotropic sintered permanent magnet exhibits the same magnetic characteristics as described above, and at the same time, the residual magnetic flux density is increased. Has a temperature coefficient of 0.1% / ° C or less, improving the temperature characteristics.

【0070】[0070]

【実施例】以下の実施例により本発明をさらに具体的に
説明する。なお、実施例中、%は特に指定のない限り重
量%である。
The present invention will be described in more detail with reference to the following examples. In the examples,% is% by weight unless otherwise specified.

【0071】実施例で使用したR−Fe−B系合金粉末の
製造原料は、純度99.9%の電解Fe、Bを19.4%含有し残
部はFeおよびC等の不純物からなるフェロボロン合金、
純度99.7%以上のNd、純度99.7%以上のDy、純度99.9%
以上のCoであった。
The raw material for producing the R--Fe--B alloy powder used in the examples is a ferroboron alloy containing 99.9% pure electrolytic Fe, 19.4% B, and the balance Fe and C impurities.
Nd with purity 99.7% or higher, Dy with purity 99.7% or higher, purity 99.9%
The above was Co.

【0072】(実施例1)原子%で15%Nd−8%B−77%
Feの組成になるように原料を配合し、Ar雰囲気中で高周
波炉により溶解した後、水冷銅鋳型に鋳造し、合金鋳塊
を得た。この合金鋳塊をスタンプミルにより35メッシュ
以下まで粗粉砕し、次に湿式ボール・ミルにより微粉砕
して、平均粒径3.3 μmのNd−Fe−B合金粉末を得た。
(Example 1) 15% Nd-8% B-77% in atomic%
The raw materials were mixed so as to have a composition of Fe, melted in a high-frequency furnace in an Ar atmosphere, and then cast in a water-cooled copper mold to obtain an alloy ingot. This alloy ingot was roughly pulverized to a size of 35 mesh or less by a stamp mill and then finely pulverized by a wet ball mill to obtain Nd-Fe-B alloy powder having an average particle size of 3.3 μm.

【0073】潤滑剤として、n−ブタノールとほう酸を
3:1のモル比で 110℃において4時間加熱して縮合反
応させることにより得た、下記構造のほう酸エステル系
化合物(a) を使用した。
As the lubricant, a borate ester compound (a) having the following structure was used, which was obtained by heating n-butanol and boric acid at a molar ratio of 3: 1 at 110 ° C. for 4 hours to cause a condensation reaction.

【0074】[0074]

【化学式4】 [Chemical formula 4]

【0075】万能混合攪拌機に上記合金粉末とその0.1
%の量のほう酸エステル系化合物とを添加し、常温で乾
式混合して合金粉末中に均一に分散させることにより成
形材料を得た。
Add the above alloy powder and its 0.1 to a universal mixing stirrer.
% Boric acid ester-based compound was added, dry mixed at room temperature, and uniformly dispersed in the alloy powder to obtain a molding material.

【0076】この成形材料を用いて、金型への離型剤塗
布工程を行わずに、10 kOeの縦磁場を印加しながら1.5
t/cm2 の成形圧力でプレス成形を連続50回行い、直径29
mm×厚さ10mmのディスク型の圧粉体を得た。得られた圧
粉体をアルゴン中1070℃で4時間加熱して焼結後、550
℃で2時間加熱の時効処理を行い、磁気異方性を示すR
−Fe−B系焼結永久磁石を得た。このときの連続プレス
成形性 (成形体の傷、割れ、剥がれ等の有無、成形時の
異音等) 、圧粉体密度、焼結・時効処理後の残炭量、磁
石特性{残留磁束密度(Br)、固有保磁力(iHc) 、最大エ
ネルギー積 [(BH)max]}の試験結果を、表1にまとめて
示す。
Using this molding material, a vertical magnetic field of 10 kOe was applied to the mold without applying a mold release agent coating step to the mold.
Press molding was performed 50 times continuously at a molding pressure of t / cm 2 to obtain a diameter of 29
A disk-shaped green compact with a size of mm × 10 mm was obtained. The green compact thus obtained was heated in argon at 1070 ° C. for 4 hours for sintering, and then 550
R showing magnetic anisotropy after aging treatment by heating at ℃ for 2 hours
A —Fe—B based sintered permanent magnet was obtained. Continuous press formability at this time (presence or absence of cracks, cracks, peeling, etc. of molded body, abnormal noise during molding, etc.), green compact density, amount of residual coal after sintering and aging treatment, magnet characteristics {residual magnetic flux density Table 1 shows the test results of (Br), intrinsic coercive force (iHc), and maximum energy product [(BH) max]}.

【0077】(実施例2〜6)潤滑剤として、代表的には
下記構造で示されるホウ酸エステル系化合物(b) 〜(f)
をそれぞれ使用して、実施例1と同様に成形材料の調
製、プレス成形および焼結・時効処理を行った。試験結
果を表1に併せて示す。
(Examples 2 to 6) As a lubricant, borate ester compounds (b) to (f) represented by the following structures are typically used.
Using each of the above, preparation of a molding material, press molding, and sintering / aging treatment were performed in the same manner as in Example 1. The test results are also shown in Table 1.

【0078】[0078]

【化学式5】 [Chemical formula 5]

【0079】なお、各ホウ酸エステルは、ホウ酸1モル
に対して下記の原料を縮合反応させることにより合成し
たものである。
Each boric acid ester was synthesized by subjecting 1 mol of boric acid to the condensation reaction of the following raw materials.

【0080】(b) ネオペンチルグリコール1モル、トリ
デカノール1モル (c) オレイン酸モノグリセライド1モル、n−ブタノー
ル1モル (d) ペンタエリトリットジオクタン酸エステル1モル、
2−エチルヘキサノール1モル (e) ネオペンチルグリコール1.5 モル (ホウ酸2モルに
対して3モル) (f) ベンジルアルコール3モル。
(B) 1 mol of neopentyl glycol, 1 mol of tridecanol (c) 1 mol of oleic acid monoglyceride, 1 mol of n-butanol (d) 1 mol of pentaerythritol dioctanoic acid ester,
2-Ethylhexanol 1 mole (e) Neopentyl glycol 1.5 moles (3 moles to boric acid 2 moles) (f) Benzyl alcohol 3 moles.

【0081】(実施例7)合金粉末と潤滑剤との混合を湿
式で実施した以外は、実施例1と同様に成形材料の調
製、プレス成形、焼結・時効処理を実施した。湿式混合
は、磁石合金粉末とその0.1 %の量の実施例1で用いた
ほう酸エステル系化合物(a) とをトルエンを媒質として
混合した後、乾燥してトルエンを除去することにより行
った。試験結果を表1に併せて示す。
(Example 7) Preparation of a molding material, press molding, sintering and aging treatment were carried out in the same manner as in Example 1 except that the alloy powder and the lubricant were mixed by a wet method. The wet mixing was performed by mixing the magnet alloy powder and the borate ester compound (a) used in Example 1 in an amount of 0.1% in toluene as a medium and then drying to remove the toluene. The test results are also shown in Table 1.

【0082】(比較例1、2)実施例1で用いた合金粉末
を用いて、合金粉末中に潤滑剤を添加せずに金型に離型
剤 (オリゴステアリルアクリレート) を塗布した場合
(比較例1) 、および塗布しない場合 (比較例2) の結
果を表1に併記する。
(Comparative Examples 1 and 2) Using the alloy powder used in Example 1 and applying a release agent (oligostearyl acrylate) to the mold without adding a lubricant to the alloy powder.
The results of (Comparative Example 1) and without coating (Comparative Example 2) are also shown in Table 1.

【0083】(比較例3)従来の代表的な潤滑剤として、
高級脂肪酸であるラウリン酸を合金粉末に対して0.1 %
の割合で用いた以外は実施例1と同様に成形材料の調
製、プレス成形、焼結・時効処理を実施した。この場合
の試験結果も表1に併記する。
Comparative Example 3 As a typical conventional lubricant,
0.1% of lauric acid, a higher fatty acid, to the alloy powder
Preparation of molding material, press molding, sintering and aging treatment were carried out in the same manner as in Example 1 except that the ratio was used. The test results in this case are also shown in Table 1.

【0084】[0084]

【表1】 [Table 1]

【0085】表1の結果からわかるように、比較例1の
ように、従来と同様に金型潤滑 (金型への離型剤の塗
布) を行えば、良好な成形性は得られるものの、圧粉体
密度は実施例に比べて低く、また合金粉末間の摩擦が大
きくなることから、磁場印加時の配向性が低下した結
果、磁石特性の残留磁束密度(Br)が実施例に比べて低下
した。
As can be seen from the results in Table 1, as in Comparative Example 1, when mold lubrication (application of a mold release agent to the mold) is performed as in the conventional case, good moldability can be obtained. The green compact density is lower than that of the example, and the friction between the alloy powders is large.As a result, the orientation property when a magnetic field is applied is decreased, and the residual magnetic flux density (Br) of the magnet characteristics is higher than that of the example. Fell.

【0086】一方、比較例2に示したように、潤滑剤の
添加と金型潤滑を行わない場合には、2ストローク目で
焼付きが発生してプレス成形が不可能となり、ダイスに
傷が発生した。
On the other hand, as shown in Comparative Example 2, when the lubricant was not added and the mold was not lubricated, seizure occurred at the second stroke, press molding became impossible, and the die was scratched. Occurred.

【0087】また、比較例3で従来の潤滑剤を使用して
連続プレス成形を行ったところ、最初の3回はプレス成
形が可能であったが、それ以降は金型焼付きが見られ、
金型潤滑なしでは連続プレス成形は不可能となった。
When continuous press molding was performed using a conventional lubricant in Comparative Example 3, press molding was possible the first three times, but die seizure was observed after that.
Continuous press molding became impossible without die lubrication.

【0088】これに対し、本発明に従って、ほう酸エス
テル系化合物を潤滑剤としてR−Fe−B系合金粉末に混
合しておくと、ごく少量の潤滑剤の添加にもかかわら
ず、金型潤滑を行わずに連続プレス成形が可能な、優れ
た成形性が合金粉末に付与され、成形体の傷、割れ、欠
けの発生はほとんどなかった。金型潤滑工程の省略によ
り、連続プレス成形に要する時間は大幅に短縮された。
On the other hand, according to the present invention, when the boric acid ester compound is mixed as the lubricant with the R-Fe-B alloy powder, the mold lubrication is performed despite the addition of a very small amount of the lubricant. The alloy powder was provided with excellent formability capable of continuous press-forming without performing, and there were almost no scratches, cracks, or chips in the formed body. By omitting the mold lubrication process, the time required for continuous press molding was greatly shortened.

【0089】比較例1の金型潤滑方式と比べて、ほう酸
エステル系化合物の潤滑効果により加圧時の圧力伝達が
向上した結果、圧粉体密度は増大した。また、焼結体の
残炭量は従来と同等であり、ほう酸エステル系化合物は
揮散性に優れ、焼結時にほぼ完全に揮散することが分か
った。
Compared with the die lubrication system of Comparative Example 1, the pressure transmission during pressurization was improved by the lubrication effect of the borate ester compound, and as a result, the green compact density was increased. It was also found that the amount of residual carbon in the sintered body was the same as that of the conventional one, that the borate compound was excellent in volatility and almost completely volatilized during sintering.

【0090】また、この潤滑剤の作用により、磁場印加
下での合金粉末の流動性が向上し、配向性が高くなるこ
とから、優れた磁石特性を示す磁気異方性の焼結永久磁
石が得られた。即ち、固有保磁力(iHc) がほとんど低下
せずに、残留磁束密度(Br)と最大エネルギー積[(BH)ma
x] が向上した。
Further, due to the action of this lubricant, the fluidity of the alloy powder under the application of a magnetic field is improved and the orientation is enhanced, so that a magnetically anisotropic sintered permanent magnet exhibiting excellent magnet characteristics is obtained. Was obtained. That is, the remanent magnetic flux density (Br) and the maximum energy product [(BH) ma
x] has been improved.

【0091】(実施例8)原子%で15%Nd−8%B−77
%Feの組成になるように原料を配合し、Ar雰囲気中で高
周波炉により溶解した後、水冷銅鋳型に鋳造し、合金鋳
塊を得た。この合金鋳塊をジョークラッシャーにより機
械的に粉砕して35メッシュ以下まで粗粉砕し、次にジェ
ットミルにより微粉砕して、平均粒径3.5 μmのNd−Fe
−B系合金粉末を得た。
(Example 8) 15% Nd-8% B-77 in atomic%
The raw materials were mixed so as to have a composition of% Fe, melted in a high frequency furnace in an Ar atmosphere, and then cast in a water-cooled copper mold to obtain an alloy ingot. This alloy ingot is mechanically crushed with a jaw crusher to coarsely crush to 35 mesh or less, then finely crushed with a jet mill to obtain Nd-Fe with an average particle size of 3.5 μm.
-B system alloy powder was obtained.

【0092】潤滑剤として、実施例1で使用したほう酸
エステル系化合物(a) を使用し、ジェットミルでの微粉
砕後の粉末回収容器内の合金粉末に対して、このほう酸
エステルを0.1 重量%の割合で添加した後、ロッキング
ミキサー容器に移し替えてロッキングミキサーにより30
分間の乾式混合を行った。次いで、ミキサー容器から混
合粉末を取り出し、3カ所よりサンプリングを行い、ほ
う酸エステル系化合物の均一混合性を評価するためにC
分析をした。結果を表2に示す。
The borate ester compound (a) used in Example 1 was used as a lubricant, and 0.1% by weight of this borate ester was added to the alloy powder in the powder recovery container after fine pulverization with a jet mill. After adding it at a ratio of
Dry mixing for 1 minute was performed. Then, the mixed powder was taken out from the mixer container, sampled from three locations, and in order to evaluate the uniform mixing property of the borate ester compound, C
I did an analysis. The results are shown in Table 2.

【0093】この混合粉末を成形材料として、実施例1
に記載のように、金型への離型剤塗布工程を省略してプ
レス成形を連続50回行い、ディスク型の圧粉体を得た。
得られた圧粉体を実施例1と同様に加熱して焼結・時効
処理させ、磁気異方性を示すR−Fe−B系焼結永久磁石
を得た。このときの連続プレス成形性、焼結・時効処理
後の残炭量、磁石特性の結果も表2にまとめて示す。
Using this mixed powder as a molding material, Example 1
As described in (1), the step of applying the release agent to the mold was omitted and press molding was performed 50 times continuously to obtain a disk-shaped green compact.
The obtained green compact was heated and sintered / aged in the same manner as in Example 1 to obtain an R-Fe-B sintered permanent magnet exhibiting magnetic anisotropy. Table 2 also shows the results of the continuous press formability, the amount of residual coal after sintering and aging treatment, and the magnetic properties at this time.

【0094】(実施例9〜13)実施例8に記載のように
してR−Fe−B系合金粉末の調製、潤滑剤との混合、お
よび混合粉末のプレス成形と焼結を行った。ただし、使
用した潤滑剤と添加混合方法は下記に示す通りであっ
た。混合粉末のC分析結果と連続プレス成形性、焼結・
時効処理後の残炭量、磁石特性の結果を表2にまとめて
示す。
(Examples 9 to 13) As described in Example 8, the R-Fe-B alloy powder was prepared, mixed with the lubricant, and the mixed powder was press-molded and sintered. However, the lubricant used and the addition and mixing method were as shown below. C analysis result of mixed powder and continuous press formability, sintering
Table 2 shows the results of the amount of residual coal and the magnetic properties after the aging treatment.

【0095】実施例9:ほう酸エステル系化合物(b) を
パラフィン系炭化水素で20%濃度に希釈した希釈液を、
ロッキングミキサー容器内の微粉砕した合金粉末に対し
て0.05% (潤滑剤量は0.01%) の量で添加し、60分間乾
式混合した。
Example 9 : A diluted solution prepared by diluting the borate compound (b) with a paraffinic hydrocarbon to a concentration of 20% was prepared.
0.05% (the amount of lubricant was 0.01%) was added to the finely pulverized alloy powder in the rocking mixer container, and the mixture was dry mixed for 60 minutes.

【0096】実施例10:ほう酸エステル系化合物(f) を
パラフィン系炭化水素で50%濃度に希釈した希釈液を、
ロッキングミキサー容器内の微粉砕した合金粉末に対し
て1.0% (潤滑剤量は0.5 %) の量で添加し、20分間乾
式混合した。
Example 10 : A boric ester compound (f) was diluted with paraffinic hydrocarbon to a concentration of 50%,
It was added in an amount of 1.0% (the amount of lubricant was 0.5%) to the finely pulverized alloy powder in the rocking mixer container, and dry-mixed for 20 minutes.

【0097】実施例11:ジェットミル粉砕機で微粉砕中
の合金粉末に、ほう酸エステル系化合物(c) をパラフィ
ン系炭化水素で60%濃度に希釈した希釈液を合金粉末に
対して3.0 % (潤滑剤量は1.8 %) の量で添加した。添
加は、微粉砕工程の途中に10回に分けて等間隔に先端に
ノズルを設けた噴射装置からN2ガスと共に噴霧すること
により行った。その後、得られた微粉砕合金粉末をロッ
キングミキサー容器に移し替え、60分間乾式混合した。
Example 11 : A diluting solution prepared by diluting borate ester compound (c) with paraffin hydrocarbon to a concentration of 60% was added to alloy powder being finely pulverized by a jet mill pulverizer to 3.0% (based on the alloy powder). The amount of lubricant was 1.8%). The addition was performed by spraying together with N 2 gas from an injection device having a nozzle at the tip at equal intervals in 10 steps during the fine pulverization process. Then, the obtained finely pulverized alloy powder was transferred to a rocking mixer container and dry-mixed for 60 minutes.

【0098】実施例12:ほう酸エステル系化合物(e) を
パラフィン系炭化水素で10%濃度に希釈した希釈液を、
万能混合攪拌機の容器内の微粉砕した合金粉末に対して
0.2 %(潤滑剤量は0.02%) の量で添加し、20分間混合
した。
Example 12 : A boric acid ester compound (e) was diluted with paraffinic hydrocarbon to a concentration of 10%.
For finely pulverized alloy powder in the container of universal mixer
0.2% (lubricant amount 0.02%) was added and mixed for 20 minutes.

【0099】実施例13:ほう酸エステル系化合物(d) を
パラフィン系炭化水素で50%濃度に希釈した希釈液を、
万能混合攪拌機の容器内の微粉砕した合金粉末に対して
2.0 %(潤滑剤量は1.0 %) の量で添加し、60分間混合
した。
Example 13 : A diluted solution prepared by diluting the borate compound (d) with a paraffin hydrocarbon to a concentration of 50% was prepared.
For finely pulverized alloy powder in the container of universal mixer
2.0% (lubricant amount 1.0%) was added and mixed for 60 minutes.

【0100】(比較例4)実施例8に記載のようにしてR
−Fe−B系合金粉末の調製、潤滑剤との混合、および混
合粉末のプレス成形と焼結・時効処理を行った。ただ
し、潤滑剤として高級脂肪酸であるラウリン酸をロッキ
ングミキサー容器中の微粉砕した合金粉末に1.0 %の割
合で添加し、ロッキングミキサーで60分間の乾式混合を
行った。この混合粉末のC分析結果と連続プレス成形
性、焼結・時効処理後の残炭量、磁石特性の結果を表2
にまとめて示す。
Comparative Example 4 R as described in Example 8
Preparation of —Fe—B alloy powder, mixing with a lubricant, press molding of the mixed powder, sintering and aging treatment were performed. However, lauric acid, which is a higher fatty acid, was added as a lubricant to the finely pulverized alloy powder in a rocking mixer container at a ratio of 1.0%, and dry mixing was performed for 60 minutes with the rocking mixer. Table 2 shows the results of C analysis results, continuous press formability, amount of residual carbon after sintering and aging treatment, and magnet characteristics of this mixed powder.
Are shown together.

【0101】[0101]

【表2】 [Table 2]

【0102】表2からわかるように、微粉砕後または微
粉砕中に潤滑剤を混合することで、合金粉末に潤滑剤を
実質的に均一に混合することができ、固有保磁力(iHc)
、残留磁束密度(Br)、最大エネルギー積[(BH)max] の
いずれにも優れた焼結永久磁石を得ることができた。
As can be seen from Table 2, by mixing the lubricant after or during the fine grinding, the lubricant can be mixed substantially uniformly in the alloy powder, and the intrinsic coercive force (iHc)
, The residual magnetic flux density (Br) and the maximum energy product [(BH) max] were all excellent.

【0103】(実施例14)原子%で15%Nd−8%B−
77%Feの組成になるように原料を配合し、Ar雰囲気中で
高周波炉により溶解した後、水冷銅鋳型に鋳造し、合金
鋳塊を得た。この合金鋳塊をジョークラッシャーにより
機械的に粉砕して35メッシュ以下まで粗粉砕し、得られ
た合金粗粉末をロッキングミキサーの容器内に移し替え
た後、この容器に潤滑剤を添加した。
(Example 14) 15% Nd-8% B-at atomic%
The raw materials were mixed so as to have a composition of 77% Fe, melted in a high-frequency furnace in an Ar atmosphere, and then cast in a water-cooled copper mold to obtain an alloy ingot. This alloy ingot was mechanically crushed by a jaw crusher to coarsely crush to 35 mesh or less, and the obtained alloy coarse powder was transferred into a container of a rocking mixer, and then a lubricant was added to this container.

【0104】使用した潤滑剤は、実施例1で用いたほう
酸エステル系化合物(a) であり、この潤滑剤を粗粉砕し
た合金粉末に対して0.1 %の量で添加した後、ロッキン
グミキサーで30分間乾式混合した。この混合粉末を次い
でジェットミルにより微粉砕して、潤滑剤を含有する平
均粒径3.5 μmのNd−Fe−B系合金粉末を得た。ジェッ
トミルから取り出した合金粉末について3カ所よりサン
プリングを行い、ほう酸エステル系化合物の均一混合性
を評価するためにC分析をした。結果を表3に示す。
The lubricant used was the borate ester compound (a) used in Example 1. This lubricant was added in an amount of 0.1% to the roughly crushed alloy powder, and then added with a rocking mixer. Mix dry for minutes. This mixed powder was then finely pulverized by a jet mill to obtain a Nd-Fe-B based alloy powder containing a lubricant and having an average particle size of 3.5 μm. The alloy powder taken out from the jet mill was sampled from three locations, and C analysis was performed to evaluate the uniform mixing property of the borate ester compound. The results are shown in Table 3.

【0105】この潤滑剤を混合した合金粉末を成形材料
として、実施例1に記載のように、金型への離型剤塗布
工程を省略してプレス成形を連続50回行い、ディスク型
の圧粉体を得た。得られた圧粉体を実施例1と同様に加
熱して焼結・時効処理して、磁気異方性を示すNd−Fe−
B系焼結永久磁石を得た。このときの連続プレス成形
性、焼結・時効処理後の残炭量、磁石特性の結果も表3
にまとめて示す。
As described in Example 1, the alloy powder mixed with the lubricant was used as a molding material, and the step of applying the mold release agent to the mold was omitted, and the press molding was continuously performed 50 times. A powder was obtained. The obtained green compact was heated in the same manner as in Example 1 to be sintered and aged to obtain Nd-Fe- showing magnetic anisotropy.
A B type sintered permanent magnet was obtained. Table 3 also shows the results of continuous press formability, amount of residual coal after sintering and aging, and magnet characteristics.
Are shown together.

【0106】(実施例15〜19)実施例14に記載のよ
うにしてNd−Fe−B系合金粉末の調製と粉砕、微粉砕前
の潤滑剤の添加混合、および混合粉末のプレス成形と焼
結・時効処理を行った。ただし、粗粉砕した合金粉末に
添加した潤滑剤の種類と添加量、混合方法と時間、およ
び微粉砕後の合金粉末の平均粒径は下記に示す通りであ
った。混合粉末のC分析結果と連続プレス成形性、焼結
・時効処理後の残炭量、磁石特性の結果を表3にまとめ
て示す。
(Examples 15 to 19) Preparation and pulverization of Nd-Fe-B alloy powder as described in Example 14, addition and mixing of lubricant before fine pulverization, and press molding and firing of mixed powder. It was set and aged. However, the type and amount of the lubricant added to the coarsely pulverized alloy powder, the mixing method and time, and the average particle size of the alloy powder after fine pulverization were as shown below. Table 3 shows the results of C analysis of the mixed powder, continuous press formability, amount of residual carbon after sintering and aging treatment, and magnet characteristics.

【0107】実施例15:ほう酸エステル系化合物(b) パ
ラフィン系炭化水素で20%濃度に希釈した希釈液を粗粉
砕合金粉末に対して0.10% (潤滑剤量は0.02%) の量で
添加し、ロッキングミキサーで60分間乾式混合した。微
粉砕後に平均粒径3.5 μmの合金粉末を得た。
Example 15 : Boric acid ester compound (b) 0.10% (lubricant amount was 0.02%) of a diluted liquid diluted with paraffinic hydrocarbon to a concentration of 20% was added to the coarsely ground alloy powder. Dry mixing was performed for 60 minutes on a rocking mixer. After pulverization, an alloy powder having an average particle size of 3.5 μm was obtained.

【0108】実施例16:ほう酸エステル系化合物(f) を
パラフィン系炭化水素で50%濃度に希釈した希釈液を粗
粉砕合金粉末に対して2.0.% (潤滑剤量は1.0 %) の量
で添加し、ロッキングミキサーで30分間乾式混合した。
微粉砕後に平均粒径4.0 μmの合金粉末を得た。
Example 16 : A boric acid ester compound (f) was diluted with paraffinic hydrocarbon to a concentration of 50% to obtain a diluted solution of 2.0.% (Lubricant amount was 1.0%) with respect to the coarsely ground alloy powder. Add and dry mix for 30 minutes on a rocking mixer.
After pulverization, an alloy powder having an average particle size of 4.0 μm was obtained.

【0109】実施例17:ほう酸エステル系化合物(c) を
パラフィン系炭化水素で70%濃度に希釈した希釈液を粗
粉砕合金粉末に対して4.0 % (潤滑剤量は2.8 %) の量
で添加し、ロッキングミキサーで60分間乾式混合した。
微粉砕後に平均粒径4.0 μmの合金粉末を得た。
Example 17 : A boric acid ester compound (c) diluted with paraffinic hydrocarbon to a concentration of 70% was added to the coarsely ground alloy powder in an amount of 4.0% (the amount of lubricant was 2.8%). Then, the mixture was dry-mixed for 60 minutes with a rocking mixer.
After pulverization, an alloy powder having an average particle size of 4.0 μm was obtained.

【0110】実施例18:ほう酸エステル系化合物(e) を
パラフィン系炭化水素で10%濃度に希釈した希釈液を粗
粉砕合金粉末に対して0.5 % (潤滑剤量は0.05%) の量
で添加し、V型混合機で20分間混合した。微粉砕後に平
均粒径4.0 μmの合金粉末を得た。
Example 18 : A boric acid ester compound (e) was diluted with paraffinic hydrocarbon to a concentration of 10%, and the diluted solution was added in an amount of 0.5% (lubricant amount was 0.05%) with respect to the coarsely ground alloy powder. And mixed in a V-type mixer for 20 minutes. After pulverization, an alloy powder having an average particle size of 4.0 μm was obtained.

【0111】実施例19:ほう酸エステル系化合物(d) を
パラフィン系炭化水素で50%濃度に希釈した希釈液を粗
粉砕合金粉末に対して4.0 % (潤滑剤量は2.0 %) の量
で添加し、V型混合機で60分間混合した。微粉砕後に平
均粒径4.0 μmの合金粉末を得た。
Example 19 : A boric ester compound (d) was diluted with paraffinic hydrocarbon to a concentration of 50% and added to the coarsely pulverized alloy powder in an amount of 4.0% (the amount of lubricant was 2.0%). And mixed in a V-type mixer for 60 minutes. After pulverization, an alloy powder having an average particle size of 4.0 μm was obtained.

【0112】(比較例5)実施例14に記載のようにしてNd
−Fe−B系合金粉末の調製、潤滑剤との混合、および混
合粉末のプレス成形と焼結・時効処理を行った。ただ
し、潤滑剤として高級脂肪酸であるラウリン酸をロッキ
ングミキサー容器中の粗粉砕した合金粉末に2.0 %の量
で添加し、ロッキングミキサーで60分間の乾式混合を行
い、ジェットミルで微粉砕して平均粒径4.0 μmのNd−
Fe−B系合金粉末を得た。
Comparative Example 5 Nd as described in Example 14
Preparation of —Fe—B alloy powder, mixing with a lubricant, press molding of the mixed powder, sintering and aging treatment were performed. However, lauric acid, which is a higher fatty acid as a lubricant, is added to the roughly crushed alloy powder in the rocking mixer container in an amount of 2.0%, dry mixed for 60 minutes with a rocking mixer, finely crushed with a jet mill and averaged. Nd− with a particle size of 4.0 μm
Fe-B type alloy powder was obtained.

【0113】[0113]

【表3】 [Table 3]

【0114】表3からわかるように、微粉砕前に潤滑剤
を混合することでも、合金粉末に潤滑剤を実質的に均一
に混合することができ、固有保磁力(iHc) 、残留磁束密
度(Br)、最大エネルギー積[(BH)max] のいずれにも優れ
た焼結永久磁石を得ることができた。
As can be seen from Table 3, by mixing the lubricant before the fine pulverization, the lubricant can be mixed in the alloy powder substantially uniformly, and the intrinsic coercive force (iHc) and the residual magnetic flux density ( A sintered permanent magnet excellent in both Br) and maximum energy product [(BH) max] could be obtained.

【0115】(実施例20)原子%で14.0%Nd−0.6 %Dy
−6.1 %B−2.8 %Co−76.5%Feの組成を持つ合金溶湯
から下記方法でR−Fe−B系合金A〜Cを製造した。
(Example 20) 14.0% Nd-0.6% Dy in atomic%
R-Fe-B type alloys A to C were produced from the molten alloy having the composition of -6.1% B-2.8% Co-76.5% Fe by the following method.

【0116】A) 合金溶湯をAr雰囲気中で単ロール法に
より冷却し、厚さ0.3 mm、最大幅200mmの鱗片状合金を
製造した。冷却条件はロール径が300 mm、周速が2m/s
であった。
A) The molten alloy was cooled in an Ar atmosphere by a single roll method to produce a flaky alloy having a thickness of 0.3 mm and a maximum width of 200 mm. The cooling conditions are a roll diameter of 300 mm and a peripheral speed of 2 m / s.
Met.

【0117】B)合金溶湯をAr雰囲気中で双ロール法に
より冷却し、厚さ0.5 mm、最大幅150mmの鱗片状合金を
製造した。冷却条件はロール径が300 mm、周速が2m/s
であった。
B) The molten alloy was cooled in an Ar atmosphere by the twin roll method to produce a scale-like alloy having a thickness of 0.5 mm and a maximum width of 150 mm. The cooling conditions are a roll diameter of 300 mm and a peripheral speed of 2 m / s.
Met.

【0118】C) 合金溶湯をキャビティ幅50 mm の水冷
鋳型に注湯して、インゴット合金を鋳造した。
C) A molten alloy was poured into a water-cooled mold having a cavity width of 50 mm to cast an ingot alloy.

【0119】単ロール法および双ロール法で得た鱗片状
合金AおよびBの板幅方向3ヶ所の柱状結晶粒の結晶平
均粒径 (各々100 個の結晶粒の平均) はいずれも3〜10
μmであり、インゴット合金Cの平均結晶粒径は50μm
以上であった。
The average crystal grain size (average of 100 crystal grains) of the columnar crystal grains at three locations in the plate width direction of the flaky alloys A and B obtained by the single roll method and the twin roll method was 3 to 10 in all.
μm, and the average crystal grain size of ingot alloy C is 50 μm
That was all.

【0120】これらの合金を通常の水素化粉砕法で粗粉
砕した後、ジェットミルで微粉砕し、A〜Cの各合金に
ついて平均粒径が約3〜4μm の合金粉末を得た。さら
に、これらの各合金粉末について、潤滑剤を混合したも
のと、混合しないものの、2種類を成形材料を調製し
た。
These alloys were roughly pulverized by a usual hydrogenation pulverization method and then finely pulverized by a jet mill to obtain alloy powders having an average particle size of about 3 to 4 μm for each of the alloys A to C. Furthermore, for each of these alloy powders, two types of molding materials were prepared, one with a lubricant mixed and one without.

【0121】本実施例で用いた潤滑剤は、上記ホウ酸エ
ステル系化合物(a) であり、潤滑剤の混合は、上記の微
粉砕した各合金粉末100 部に対して0.1 部の割合で潤滑
剤を添加し、万能混合攪拌機により常温で30分間乾式混
合することにより行った。
The lubricant used in this example was the above borate ester compound (a), and the lubricant was mixed at a ratio of 0.1 part to 100 parts of each of the above-mentioned finely pulverized alloy powders. The agent was added and dry mixing was carried out at room temperature for 30 minutes using a universal mixing stirrer.

【0122】これらの成形材料を用いて、10 kOeの縦磁
場を印加しながら1.5 t/cm2 の成形圧力でプレス成形を
連続50回行って、直径29 mm ×厚さ10 mm のディスク型
の圧粉体を得た。このプレス成形において、成形材料に
潤滑剤を混合した内部潤滑の場合には、金型潤滑を省略
した。一方、成形材料が潤滑剤を含有しない場合には、
離型潤滑剤として脂肪酸エステルを金型に塗布して金型
潤滑を行った。得られた圧粉体を、アルゴン中1070℃で
4時間加熱して焼結させ、冷却後にアルゴン中500℃で
1時間の時効処理を行って、磁気異方性を示すR−Fe−
B系焼結永久磁石を得た。
Using these molding materials, press molding was continuously carried out 50 times at a molding pressure of 1.5 t / cm 2 while applying a longitudinal magnetic field of 10 kOe to obtain a disk-shaped mold having a diameter of 29 mm and a thickness of 10 mm. A green compact was obtained. In this press molding, die lubrication was omitted in the case of internal lubrication in which a molding material was mixed with a lubricant. On the other hand, when the molding material contains no lubricant,
A fatty acid ester as a release lubricant was applied to the mold to perform mold lubrication. The green compact thus obtained was heated in argon at 1070 ° C. for 4 hours to be sintered, cooled and then subjected to an aging treatment in argon at 500 ° C. for 1 hour to show R-Fe- showing magnetic anisotropy.
A B type sintered permanent magnet was obtained.

【0123】このときの連続プレス成形性 (成形体の
疵、割れ、剥がれ等の有無、成形時の異音等) 、圧粉体
のグリーン密度、焼結後の残炭量、磁石特性の結果を表
4にまとめて示す。
Results of continuous press formability at this time (presence or absence of flaws, cracks, peeling, etc. of molded body, abnormal noise during molding, etc.), green density of green compact, amount of residual carbon after sintering, magnet characteristics Are summarized in Table 4.

【0124】[0124]

【表4】 [Table 4]

【0125】母合金が急冷凝固材AまたはBであると、
本発明に従ってホウ酸エステル系化合物を潤滑剤として
合金粉末に混合してプレス成形することにより、iHc 、
(BH)max が一層向上した焼結永久磁石を得ることができ
た。
When the mother alloy is the rapidly solidified material A or B,
According to the present invention, the borate compound is mixed with the alloy powder as a lubricant and press-molded, iHc,
It was possible to obtain a sintered permanent magnet with further improved (BH) max.

【0126】(実施例21〜25)潤滑剤としてそれぞれ
ホウ酸エステル系化合物(b) 〜(f) を使用して、実施例
1と同様に、単ロール法で冷却した急冷凝固材の母合金
Aから得た微粉砕粉末に潤滑剤を混合し、得られた成形
材料から金型潤滑を行わずにR−Fe−B系焼結永久磁石
を作製した。合金粉末100 部当たりのホウ酸エステル系
化合物の添加量は、表5に示す通りであり、その他の条
件は実施例20と同様であった。なお、ほう酸エステル系
化合物(b) 〜(e) はそのまま添加し、ほう酸エステル系
化合物(f)はn−ドデカンで50%濃度に希釈して添加し
た。
(Examples 21 to 25) A mother alloy of a rapidly solidified material cooled by a single roll method in the same manner as in Example 1 except that the borate compounds (b) to (f) were used as lubricants. The finely pulverized powder obtained from A was mixed with a lubricant, and an R-Fe-B system sintered permanent magnet was produced from the obtained molding material without performing mold lubrication. The amount of the borate ester compound added per 100 parts of the alloy powder was as shown in Table 5, and the other conditions were the same as in Example 20. The boric acid ester compounds (b) to (e) were added as they were, and the boric acid ester compound (f) was diluted with n-dodecane to a 50% concentration and added.

【0127】(実施例26)実施例1で用いたホウ酸エス
テル系化合物(a) を、単ロール法急冷凝固材の母合金A
の微粉砕粉末にトルエンを媒質として湿式混合した後、
乾燥してトルエンを除去することにより、成形材料を調
製し、この成形材料からも同様に焼結永久磁石を作製し
た。
(Example 26) The borate ester compound (a) used in Example 1 was used as a mother alloy A for a single roll rapid solidification material.
After wet mixing the finely pulverized powder of with toluene as a medium,
A molding material was prepared by drying and removing toluene, and a sintered permanent magnet was similarly produced from this molding material.

【0128】(比較例6、7)単ロール法急冷凝固母合金
Aの微粉砕粉末を用い、従来の代表的な潤滑剤であるラ
ウリン酸を用いた以外は実施例1と同じ条件で (比較例
6) 、または潤滑剤を添加せず、金型潤滑も行わない無
潤滑で (比較例7) 、プレス成形した。
(Comparative Examples 6 and 7) Under the same conditions as in Example 1 except that the finely pulverized powder of the single roll method rapidly solidified mother alloy A was used and lauric acid which was a typical conventional lubricant was used (Comparative Examples 6 and 7). Example 6) or press-molding was performed without adding a lubricant and without lubrication of a mold (Comparative Example 7).

【0129】実施例21〜26および比較例6、7における
連続プレス成形性、圧粉体のグリーン密度、焼結後の残
炭量、磁石特性の結果を、潤滑剤の添加量とともに、表
5にまとめて示す。
The results of continuous press formability, green density of green compacts, amount of residual carbon after sintering, and magnet characteristics in Examples 21 to 26 and Comparative Examples 6 and 7 are shown in Table 5 together with the amount of lubricant added. Are shown together.

【0130】[0130]

【表5】 [Table 5]

【0131】表5からわかるように、急冷凝固材の母合
金Aの微粉砕粉末でも、インゴット合金の微粉砕粉末の
場合 (比較例2、3)と同様に、無潤滑ではプレス成形
が初回から金型との焼付により不可能であり、従来の潤
滑剤を混合した場合には、初回のプレス成形は可能であ
るが、9回目ごろから焼付が起こり、連続プレス成形は
不可能であった。一方、本発明により潤滑剤としてホウ
酸エステル系化合物を混合すると、ホウ酸エステルの種
類によらず、いずれの場合も連続プレス成形が可能で、
しかも磁石特性が優れていた。
As can be seen from Table 5, even with the finely pulverized powder of the mother alloy A of the rapidly solidified material, as in the case of the finely pulverized powder of the ingot alloy (Comparative Examples 2 and 3), press molding was performed from the first time without lubrication. This is impossible due to baking with a mold, and when a conventional lubricant is mixed, the first press molding is possible, but baking occurs from around the ninth time, and continuous press molding was impossible. On the other hand, when a borate compound is mixed as a lubricant according to the present invention, continuous press molding is possible in any case regardless of the type of borate ester,
Moreover, the magnet characteristics were excellent.

【0132】(実施例27)実施例20で調製した合金溶湯
より、単ロール法により板厚が2、3、4mmの薄板状合
金材を作成し、これを実施例20と同様に、粗粉砕および
微粉砕し、潤滑剤としてホウ酸エステル系化合物(a) を
微粉砕合金粉末に混合し、プレス成形、焼結および時効
処理して、R−Fe−B系焼結永久磁石を得た。板厚と結
晶粒径および(BH)max との関係を表6に示す。
Example 27 A thin plate-like alloy material having a plate thickness of 2, 3, and 4 mm was prepared from the molten alloy prepared in Example 20 by the single roll method, and was coarsely crushed in the same manner as in Example 20. Then, the boric acid ester compound (a) as a lubricant was mixed with the finely ground alloy powder, followed by press molding, sintering and aging treatment to obtain an R-Fe-B based sintered permanent magnet. Table 6 shows the relationship between the plate thickness, the crystal grain size, and (BH) max.

【0133】[0133]

【表6】 [Table 6]

【0134】表6と表4からわかるように、板厚が増大
すると、冷却速度が低下するため結晶粒径も増大する
が、板厚が3mmまでは、結晶粒径が30μm以下であっ
て、(BH)max は高水準に保持された。しかし、板厚が3
mmを超えると結晶粒径が30μmより大きくなり、(BH)ma
x が著しく低下した。
As can be seen from Tables 6 and 4, when the plate thickness increases, the cooling rate decreases and the crystal grain size also increases. However, up to the plate thickness of 3 mm, the crystal grain size is 30 μm or less, (BH) max remained high. However, the plate thickness is 3
When it exceeds mm, the crystal grain size becomes larger than 30 μm, and (BH) ma
x is significantly reduced.

【0135】[0135]

【発明の効果】本発明によれば、R−Fe−B系合金粉末
に、潤滑剤としてほう酸エステル系化合物を少量添加し
て均一混合した混合粉末を成形材料とすることにより、
プレス成形時の金型潤滑剤塗布工程を省略しても、磁石
特性に優れた焼結永久磁石を連続的に大量に製造するこ
とが可能となる。それにより、プレス成形工程において
は、成形金型の長寿命化が可能となり、作業時間が短縮
される。また、合金粉末間の摩擦も低減し、粉末の流動
性が向上する結果、磁場印加下での成形時に配向性が向
上し、磁気異方性の焼結永久磁石の磁石特性が改善され
る。さらに、ほう酸エステル系化合物は揮散性にも優
れ、磁石特性に悪影響のある残炭量の増大は起こらな
い。
According to the present invention, a small amount of a borate ester compound as a lubricant is added to an R-Fe-B alloy powder and uniformly mixed to obtain a molding material.
Even if the die lubricant application step at the time of press molding is omitted, it becomes possible to continuously manufacture a large amount of sintered permanent magnets having excellent magnet characteristics. As a result, in the press molding process, the life of the molding die can be extended and the working time can be shortened. Further, the friction between the alloy powders is also reduced and the fluidity of the powders is improved. As a result, the orientation is improved during molding under the application of a magnetic field, and the magnetic properties of the magnetically anisotropic sintered permanent magnet are improved. Furthermore, the borate ester compound is also excellent in volatility, and does not cause an increase in the amount of residual coal which adversely affects the magnet characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 渉 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (72)発明者 松浦 裕 大阪府三島郡島本町江川2丁目15−17 住友特殊金属株式会社山崎製作所内 (72)発明者 石垣 尚幸 大阪府三島郡島本町江川2丁目15−17 住友特殊金属株式会社山崎製作所内 (56)参考文献 特開 平5−59402(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 3/02 C22C 33/02 C22C 38/00 303 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Wataru Takahashi 4-53-3 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries, Ltd. (72) Yutaka Matsuura 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Naoyuki Ishigaki 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (56) Reference JP-A-5-59402 (JP, A) ) (58) Fields investigated (Int.Cl. 7 , DB name) B22F 3/02 C22C 33/02 C22C 38/00 303

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R:10〜30原子% (但し、RはYを含む
希土類元素から選ばれた少なくとも1種) 、B:2〜28
原子%、Fe:65〜82原子% (但し、このFe量の50原子%
まではCoで置換することができる) を含む合金粉末と、
潤滑剤として下記 (a) (f) から選ばれた少なくとも1
種のほう酸エステル系化合物との混合物からなる、希土
類・鉄系焼結永久磁石製造用の成形材料。 【化1】
1. R: 10 to 30 atomic% (provided that R is at least one selected from rare earth elements including Y), B: 2 to 28
Atomic%, Fe: 65 to 82 at% (however, 50 at% of this Fe content
Can be replaced by Co) up to the alloy powder containing
At least selected from the following (a) ~ (f) as a lubricant 1
A molding material for the production of rare earth / iron-based sintered permanent magnets, which is composed of a mixture of various borate ester compounds. [Chemical 1]
【請求項2】 前記合金粉末が、合金溶湯を単ロール法
または双ロール法により厚さ0.05〜3mm、結晶粒径3〜
30μmの組織を有する薄板または薄片に鋳造し、これを
粗粉砕および微粉砕して得たものである、請求項1記載
の成形材料。
2. The alloy powder is made of molten alloy by a single roll method or a twin roll method and has a thickness of 0.05 to 3 mm and a crystal grain size of 3 to 3.
The molding material according to claim 1, which is obtained by casting into a thin plate or flakes having a structure of 30 μm, and coarsely and finely grinding this.
【請求項3】 請求項1または2記載の成形材料をプレ
ス成形し、得られた圧粉体を焼結することからなる、R
−Fe−B系焼結永久磁石の製造方法。
3. R comprising a press molding of the molding material according to claim 1 or 2 and sintering the green compact obtained.
-The manufacturing method of a Fe-B system sintered permanent magnet.
【請求項4】 焼結後、得られた焼結体を時効処理する
工程をさらに含む請求項3記載の方法。
4. The method according to claim 3, further comprising a step of aging the obtained sintered body after sintering.
JP32076494A 1993-12-28 1994-12-22 Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets Expired - Lifetime JP3498395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32076494A JP3498395B2 (en) 1993-12-28 1994-12-22 Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP33540693 1993-12-28
JP5-335406 1993-12-28
JP25390494 1994-10-19
JP6-253904 1994-10-19
JP32076494A JP3498395B2 (en) 1993-12-28 1994-12-22 Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets

Publications (2)

Publication Number Publication Date
JPH08170103A JPH08170103A (en) 1996-07-02
JP3498395B2 true JP3498395B2 (en) 2004-02-16

Family

ID=27334275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32076494A Expired - Lifetime JP3498395B2 (en) 1993-12-28 1994-12-22 Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets

Country Status (1)

Country Link
JP (1) JP3498395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285208A (en) * 2001-03-27 2002-10-03 Sumitomo Special Metals Co Ltd Method for preparing rare earth alloy powder material, and method for manufacturing rare earth alloy sintered compact using the same
CN113571280B (en) * 2021-07-23 2024-02-13 包头天和磁材科技股份有限公司 Neodymium-iron-boron magnet coarse powder auxiliary agent, preparation method and application thereof, and preparation method of magnet

Also Published As

Publication number Publication date
JPH08170103A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
KR100771676B1 (en) Rare earth sintered magnet and method for manufacturing the same
KR100187611B1 (en) Powder mixture for use in pressing to prepare rare earth/iron-based sintered permanent magnet
CN112136192B (en) Method for producing rare earth sintered permanent magnet
JPWO2006043348A1 (en) Rare earth permanent magnet material and manufacturing method thereof
WO1999062081A1 (en) Nitride type rare-earth permanent magnet material and bonded magnet using the same
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
CN112119475B (en) Method for producing rare earth sintered permanent magnet
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP3498395B2 (en) Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JPH08316016A (en) Manufacture of rare earth element-iron-boron sintered permanent magnet and sintering raw material
JPH11307330A (en) Manufacture of r-fe-b system magnet
JP4057563B2 (en) Granule, sintered body
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JPH08316017A (en) Manufacture of rare earth element-iron-boron sintered permanent magnet and molding material
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4057561B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JPH093504A (en) Molding material for production of sintered permanent magnet of rare earth-iron-boron system
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP4671024B2 (en) Manufacturing method of rare earth sintered magnet
JP2022174820A (en) Rare earth sintered magnet and method for producing rare earth sintered magnet
JPH0480961B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

EXPY Cancellation because of completion of term