JP3497089B2 - Method for selective separation of rare metal components from waste fluorescent material - Google Patents

Method for selective separation of rare metal components from waste fluorescent material

Info

Publication number
JP3497089B2
JP3497089B2 JP37630298A JP37630298A JP3497089B2 JP 3497089 B2 JP3497089 B2 JP 3497089B2 JP 37630298 A JP37630298 A JP 37630298A JP 37630298 A JP37630298 A JP 37630298A JP 3497089 B2 JP3497089 B2 JP 3497089B2
Authority
JP
Japan
Prior art keywords
fluorescent material
rare metal
mechanochemical treatment
ball mill
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37630298A
Other languages
Japanese (ja)
Other versions
JP2000192167A (en
Inventor
文良 齋藤
Original Assignee
文良 齋藤
協業組合 仙台清掃公社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 文良 齋藤, 協業組合 仙台清掃公社 filed Critical 文良 齋藤
Priority to JP37630298A priority Critical patent/JP3497089B2/en
Publication of JP2000192167A publication Critical patent/JP2000192167A/en
Application granted granted Critical
Publication of JP3497089B2 publication Critical patent/JP3497089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は各種レアメタルを含
有する廃棄された蛍光管からこれらを種類ごと大別して
分離する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of separating fluorescent lamps containing various rare metals from each other by classifying them.

【0002】[0002]

【従来の技術】レアメタル(希土類元素)は原子番号5
7のLa(ランタン)から原子番号71のLu(ルテチ
ウム)までの15元素と、化学的性質が類似するSc
(スカンジウム)とY(イットリウム)の2元素を加え
た17元素を総称するもので、三波長形蛍光管や触媒、
光学ガラス、ファインセラミックス、磁石など、いわゆ
る機能性材料の製造に欠かせない重要な元素である。そ
して、これらの元素は、通常、モナザイトやバストネサ
イト、ゼノタイムなどの鉱石を出発原料として高温度、
高濃度酸による抽出操作によって製造されているのが現
状である。
2. Description of the Related Art A rare metal (rare earth element) has an atomic number of 5
Sc with similar chemical properties to 15 elements from La (lanthanum) of 7 to Lu (lutetium) of atomic number 71
(Scandium) and Y (yttrium) are added to the 17 elements, which are three-wavelength fluorescent tubes, catalysts,
It is an important element essential for the production of so-called functional materials such as optical glass, fine ceramics and magnets. And these elements are usually high temperature starting from ores such as monazite, bastnasite, xenotime,
At present, it is manufactured by an extraction operation with a high-concentration acid.

【0003】これら増加するレアメタルの需要に応える
ために莫大な量のレアメタル鉱石が必要であるが、レア
メタル含有鉱石の産地は世界中でも主に中国、北米、ロ
シアなどに限定されており、しかも産出量が少ないの
で、レアメタルの入手をこれのみに依存していたのでは
早晩枯渇してしまうおそれがある。このように資源を鉱
石にのみ依存するには限界があり、将来の技術としても
廃棄物からのレアメタル回収法が望まれる。
To meet these increasing demands for rare metals, a huge amount of rare metal ores is required, but the places of production of rare metal-containing ores are limited mainly to China, North America, Russia, etc. in the world, and the production amount is high. Because there are few, there is a risk that exhaustion will occur sooner if you rely on this alone to obtain rare metals. In this way, there is a limit to relying only on ore for resources, and a method for recovering rare metals from wastes is desired as a future technology.

【0004】その有望なレアメタル回収対象物として大
量に廃棄される三波長高演色蛍光管が見込まれる。すな
わち、レアメタルが三波長高演色性蛍光管用蛍光材とし
て広く利用され、年々これを用いた蛍光管の需要が増大
するにともない、使用済みとなって廃棄される蛍光管の
量が増加の一途をたどっているので、廃棄される蛍光管
からレアメタルを分離回収し、再利用することが考えら
れている。蛍光管に使用される蛍光材にはYをはじめ、
La、Eu、Ce、Tbなど多くのレアメタルが含まれ
ている。従来の回収技術は高温度、高濃度酸による抽出
法であるので、作業環境上の問題があり、より温和な条
件下での回収法の確立が望まれていた。
As a promising rare metal recovery target, a three-wavelength high color rendering fluorescent tube is expected to be discarded in large quantities. In other words, rare metals are widely used as fluorescent materials for three-wavelength high color rendering fluorescent tubes, and as the demand for fluorescent tubes using them increases year by year, the amount of used fluorescent tubes to be discarded increases. Since it is being traced, it is considered to separate and collect rare metals from the fluorescent tubes to be discarded and reuse them. The fluorescent materials used for fluorescent tubes include Y,
It contains many rare metals such as La, Eu, Ce, and Tb. Since the conventional recovery technique is an extraction method using high temperature and high concentration acid, there is a problem in the working environment, and establishment of a recovery method under milder conditions has been desired.

【0005】本発明者は廃棄蛍光管を将来の有望なレア
メタルの都市資源と位置付け、さきにメカノケミカル処
理と室温下で弱酸性溶液を用いた抽出操作とを組み合わ
せ、よりマイルドな条件下での廃棄蛍光管からのレアメ
タルの抽出化の可能性を模索した結果、これら廃棄され
る蛍光材に対して乾式メカノケミカル処理をほどこした
うえ、室温で弱酸によるレアメタル浸出をおこなえば、
含有レアメタルのすべての種類が高収率で酸に溶解する
ことを見出している。
The present inventor positions the waste fluorescent tube as a promising rare metal city resource in the future, and combines the mechanochemical treatment with the extraction operation using a weakly acidic solution at room temperature under a milder condition. As a result of exploring the possibility of extracting rare metals from waste fluorescent tubes, if dry mechanochemical treatment is applied to these discarded fluorescent materials, if rare metal leaching with a weak acid is performed at room temperature,
It has been found that all types of contained rare metals are soluble in acids in high yields.

【0006】[0006]

【発明が解決しようとする課題】本発明は各種レアメタ
ルを含有する廃棄蛍光管からこれらの分離回収をより一
層容易にするため、これらを種類ごと大別して分離する
方法を提供せんとするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to provide a method for separating these fluorescent lamps containing various rare metals from each other by separating them into various types in order to further facilitate their separation and recovery. .

【0007】[0007]

【課題を解決するための手段】ここにおいて本発明者
は、レアメタル成分含有の廃棄蛍光材に対し、さきに度
合の低いメカノケミカル処理をほどこしてYおよびEu
成分を弱酸に溶出させ、あとで度合の高いメカノケミカ
ル処理をほどこしてLa、Ce、Tb成分を弱酸に溶出
させることを特徴とする廃棄蛍光材からレアメタル成分
を選択分離する方法を見出すにいたった。
The inventors of the present invention have heretofore conducted a low-degree mechanochemical treatment on a waste fluorescent material containing a rare metal component to obtain Y and Eu.
A method for selectively separating rare metal components from a waste fluorescent material, which is characterized in that the components are eluted in a weak acid and then a high degree of mechanochemical treatment is performed to elute the La, Ce, and Tb components in a weak acid, has been made. .

【0008】ここで、メカノケミカル処理の度合いの高
低はボ−ルミルによる回転速度と処理時間の大小であ
り、具体例として、ボ−ルミルの回転速度700rpm
で2時間処理に対する400rpmで20分の組合わせ
をその大小とすることができる。なお、レアメタル成分
の溶出に用いる弱酸は濃度1N以下の塩酸または硫酸が
好適である。
The degree of mechanochemical treatment depends on the rotation speed of the ball mill and the processing time. As a specific example, the rotation speed of the ball mill is 700 rpm.
The combination of 20 minutes at 400 rpm for 2 hours can be made large or small. The weak acid used for elution of the rare metal component is preferably hydrochloric acid or sulfuric acid having a concentration of 1N or less.

【0009】[0009]

【発明の実施の形態】メカノケミカルとは、一般に固体
物質に加えた機械的ネネルギ−、たとえば、せん断、圧
縮、衝撃、粉砕、曲げ延伸などによって、固体表面が物
理化学的変化をきたし、その周囲に存在する気体、液体
物質に化学的変化をもたらすか、あるいはそれらと固体
表面との化学的変化を直接誘起し、または促進するなど
して、化学的状態に影響をおよぼす現象として知られて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION Mechanochemical is a mechanical energy added to a solid substance, such as shearing, compression, impact, crushing, bending and stretching, which causes a physicochemical change on the solid surface and the surroundings. It is known as a phenomenon that affects the chemical state by causing a chemical change to the gas or liquid substance existing in the air, or directly inducing or promoting the chemical change between them and the solid surface. .

【0010】廃棄蛍光管からレアメタル成分を取出す際
は、予め金具と管内の水銀成分を除き、全体を粗砕して
レアメタル成分を機械的に分離してからこれを乾式メカ
ノケミカル処理にかけるのが望ましい。通常の蛍光管で
あれば二つ折り程度にすると蛍光材が一部剥離し、ガラ
ス破片も多少同伴する。さらに、折れた蛍光管に振動を
与えると蛍光材が95%以上剥離してくる。これをたと
えば200メッシュ(目開き74ミクロン)のふるいに
かけると、供給した70%程度にあたる蛍光材が殆ど回
収され、ガラス成分が分離される。しかし、ここで得ら
れた廃棄蛍光材は劣化しており、そのままでは蛍光材と
して再利用できないことが判明している。これはおそら
く酸化物としての固溶体でない形、すなわち単なる酸化
物の混合体に変化しているためではないかと推測され
る。なお、このようにして得られる蛍光材にガラス成分
の随伴は避けられないので、その場合の影響を調べたと
ころ、ガラス成分が多いとかえって乾式メカノケミカル
処理の効果が上がることが判明している。したがって、
本発明におけるレアメタル成分含有の廃棄蛍光材にはガ
ラス成分が共存する場合も包含されるものとする。
When the rare metal component is taken out from the waste fluorescent tube, the metal component and the mercury component in the tube are removed beforehand, the whole is roughly crushed to mechanically separate the rare metal component, and then this is subjected to dry mechanochemical treatment. desirable. In the case of an ordinary fluorescent tube, when it is folded in two, the fluorescent material partly peels off, and some glass fragments accompany it. Further, when vibration is applied to the broken fluorescent tube, 95% or more of the fluorescent material comes off. For example, when this is passed through a 200-mesh (74-micron opening) sieve, most of the supplied fluorescent material corresponding to about 70% is recovered, and the glass component is separated. However, it has been found that the waste fluorescent material obtained here is deteriorated and cannot be reused as it is as a fluorescent material. It is presumed that this is probably because the oxide is not in the form of a solid solution, that is, it is changed to a simple mixture of oxides. Since the fluorescent material thus obtained is unavoidably accompanied by a glass component, the influence in that case was investigated, and it was found that the effect of the dry mechanochemical treatment was increased when the glass component was large. . Therefore,
The waste fluorescent material containing a rare metal component in the present invention includes a case where a glass component coexists.

【0011】[0011]

【実施例】以下、実施例により本発明を具体的に説明す
る。 〔蛍光材〕廃棄される三波長高演色蛍光管に含まれる蛍
光材(以下、単に蛍光材という)は青色、緑色、赤色の
各単色蛍光体が混合された粉末体であり、下記4種類の
複合酸化物からなるものである。 青色蛍光体・・・BaMgAl1017:Eu2+(略称:
BAT) 緑色蛍光体・・・LaPO4 :Ce3+、Tb3+(略称:
LAP) 緑色蛍光体・・・CeMgAl1119:Tb3+(略称:
MAT) 赤色蛍光体・・・Y2 3 :Eu3+(略称:YOX)
EXAMPLES The present invention will be specifically described below with reference to examples. [Fluorescent Material] The fluorescent material (hereinafter simply referred to as fluorescent material) contained in the discarded three-wavelength high color rendering fluorescent tube is a powder body in which blue, green, and red monochromatic fluorescent materials are mixed, and the following four types are included. It is composed of a complex oxide. Blue phosphor: BaMgAl 10 O 17 : Eu 2+ (abbreviation:
BAT) Green phosphor: LaPO 4 : Ce 3+ , Tb 3+ (abbreviation:
LAP) Green phosphor ... CeMgAl 11 O 19 : Tb 3+ (abbreviation:
MAT) Red phosphor ... Y 2 O 3 : Eu 3+ (abbreviation: YOX)

【0012】〔乾式メカノケミカル処理〕蛍光材の乾式
メカノケミカル処理(以下、メカノケミカル処理とい
う)における高エネルギ−型粉砕機として、遊星ボ−ル
ミル(Fritsch社製、Planetary Mi
cro Ball,Pulverissete−7)を
用いた。この遊星ボ−ルミルは内容量50cm3 からな
る2個のジルコニア製ミルポットを回転方向が時計回り
で、回転半径70mmの回転円盤に取付けたもので、ミ
ルポット自身も回転方向が反時計回りで、回転円盤と同
じ速度で回転できるようになっている。ミルポットには
直径15mmのジルコニア製ボ−ル7個と蛍光材粉末5
gを装填し、ミル回転速度を変化させ、所定時間メカノ
ケミカル処理をおこなった。粉砕は回分法でおこない、
所定時間処理して得られた産物は全量回収した。最長処
理時間は2時間であり、とくに、ポット内の過度の発熱
を避けるため、15分運転後は30分停止して自然冷却
する操作をくりかえした。各粉砕処理時間後の産物は、
粒度分布測定(Seisin,Laser Micro
nSizer,LMS−30)、X線回析(XRD)
(Rigaku,RAD−Bsystem,Cu−K
α)、熱分析(Rigaku,TAS−200)などを
おこなって、メカノケミカル処理による粉体特性の変化
を評価した。
[Dry Mechanochemical Treatment] As a high energy type pulverizer for dry mechanochemical treatment (hereinafter referred to as mechanochemical treatment) of a fluorescent material, a planetary ball mill (Planetary Mi manufactured by Fritsch Co., Ltd.) is used.
cro Ball, Pulverissete-7) was used. In this planetary ball mill, two zirconia mill pots with an internal capacity of 50 cm 3 are mounted on a rotating disk with a rotating direction of 70 mm and a rotating radius of 70 mm. The mill pot itself rotates counterclockwise and rotates. It can rotate at the same speed as the disk. In the mill pot, 7 balls of zirconia with a diameter of 15 mm and fluorescent material powder 5
g was loaded, the mill rotation speed was changed, and mechanochemical treatment was performed for a predetermined time. The crushing is done by the batch method,
All the products obtained by treating for a predetermined time were collected. The maximum treatment time was 2 hours, and in particular, in order to avoid excessive heat generation in the pot, after 15 minutes of operation, operation was stopped for 30 minutes and natural cooling was repeated. The product after each crushing time is
Particle size distribution measurement (Seisin, Laser Micro
nSizer, LMS-30), X-ray diffraction (XRD)
(Rigaku, RAD-Bsystem, Cu-K
α), thermal analysis (Rigaku, TAS-200), etc. were performed to evaluate changes in powder properties due to mechanochemical treatment.

【0013】第1図に4種類の単色蛍光体とこれを12
0分メカノケミカル処理したもの(それぞれ上と下)の
XRDパタ−ンを示す。同図より、メカノケミカル処理
に対するこれら試料の結晶構造の安定性が異なることが
わかる。
FIG. 1 shows four types of monochromatic phosphors and 12
The XRD patterns of 0 minute mechanochemical treatment (upper and lower, respectively) are shown. From the figure, it can be seen that the stability of the crystal structure of these samples with respect to the mechanochemical treatment differs.

【0014】第2図にはボ−ルミルの回転速度を変化さ
せた場合におけるボ−ルミル処理時間によるYの収率の
変化を示す。同図よりYの収率はボ−ルミルの回転速度
が高いほど、また、処理時間が長いほど良好となる。
FIG. 2 shows changes in Y yield depending on the ball mill treatment time when the rotation speed of the ball mill was changed. From the figure, the yield of Y is better as the rotation speed of the ball mill is higher and the treatment time is longer.

【0015】とくに、ボ−ルミルの回転速度が400r
pm以上でYの収率が良好となることから、つぎに、4
00rpmという一定条件下で各レアメタルの収率の変
化を調べ、その結果を図3 に示す。同図より、ボ−ルミ
ルによる処理時間の経過とともに、YやEuの収率は急
激に増大するが、La、Ce、Tbの収率は、ボ−ルミ
ルによる処理時間5〜10分前後までは低く、それ以降
では徐々に増加する程度である。
Particularly, the rotation speed of the ball mill is 400r.
Since the yield of Y is good at pm or more, next, 4
The change in the yield of each rare metal was investigated under a constant condition of 00 rpm, and the results are shown in FIG. As shown in the figure, the yields of Y and Eu increase sharply with the passage of time in the ball mill, but the yields of La, Ce, and Tb increase until around 5 to 10 minutes in the ball mill. It is low and gradually increases after that.

【0016】したがって、たとえば、La、Ce、Tb
の収率を10%程度に抑制し、Y、Euの収率を80〜
90%にするには、ボ−ルの径15mmを使用してボ−
ルミルの回転速度を400rpmとし、その処理時間を
約20分に設定すればよいことがわかる。
Therefore, for example, La, Ce, Tb
The yield of Y and Eu is suppressed to about 10%,
To reach 90%, use a ball diameter of 15 mm
It can be seen that the rotation speed of the rumill is set to 400 rpm and the processing time is set to about 20 minutes.

【0017】これらの図より、各レアメタル間の収率比
の変化を求めることができる。たとえば、Laを基準と
すると、図3から図4が得られる。同図より収率比(R
e/La)(Re:Y,Ce,Tb,Eu)はボ−ルミ
ル処理時間の初期で大きく変化し、時間の経過とともに
一定になることがわかる。
From these figures, the change in the yield ratio between the rare metals can be obtained. For example, based on La, FIGS. 3 to 4 are obtained. From the figure, the yield ratio (R
It can be seen that e / La) (Re: Y, Ce, Tb, Eu) changes greatly at the beginning of the ball mill treatment time and becomes constant with the passage of time.

【0018】一方、図2から図5が得られ、同図より、
メカノケミカル処理した蛍光材の酸浸出特性を示す収率
比(Y/La)はボ−ルミル処理時間のみならず、ボ−
ルミルの回転速度によっても変化することがわかる。す
なわち、Y、Euを抽出したあとで、ボ−ルの径15m
mを用いてボ−ルミルの回転速度を700rpmとし、
ボ−ルミル処理時間を約120分に設定すれば、La、
Ce、Tbが抽出されることになる。
On the other hand, FIGS. 2 to 5 are obtained, and from FIG.
The yield ratio (Y / La) showing the acid leaching characteristics of the mechanochemically treated fluorescent material is not limited to the ball mill treatment time,
It can be seen that it also changes depending on the rotation speed of the rumill. That is, after extracting Y and Eu, the diameter of the ball is 15m.
The rotation speed of the ball mill is 700 rpm using m
If you set the ball mill processing time to about 120 minutes, La,
Ce and Tb will be extracted.

【0019】〔酸処理〕以上において、蛍光材をメカノ
ケミカル処理して得られたものからレアメタル成分を抽
出するにあたり、低濃度の酸として1Nの塩酸を用い
た。酸液25mlにメカノケミカル処理した蛍光材粉末
0.5gを投入し(固液重量比=1/50)、室温下で
1時間マグネチック・スタラ−で攪拌後、濾紙、No.
5Cで濾過して固液を分離し、濾液中の含有元素をIC
Pで分析するとともに、固体残渣はXRD法によって構
成成分を同定し評価した。なお、メカノケミカル処理し
ていない蛍光材粉末についても同様に酸浸出をおこな
い、同様な分析をおこなったが、酸浸出は殆ど認められ
なかった。
[Acid Treatment] In the above, 1N hydrochloric acid was used as a low-concentration acid in extracting the rare metal component from the fluorescent material obtained by the mechanochemical treatment. 0.5 g of the mechanochemically treated fluorescent material powder was added to 25 ml of the acid solution (solid / liquid weight ratio = 1/50), and the mixture was stirred with a magnetic stirrer at room temperature for 1 hour, and then filtered with a filter paper, No.
The solid and liquid are separated by filtration at 5C, and the elements contained in the filtrate are analyzed by IC.
The solid residue was analyzed by P and the components were identified and evaluated by the XRD method. Acid leaching was also performed on the fluorescent material powder that had not been subjected to mechanochemical treatment, and the same analysis was performed, but almost no acid leaching was observed.

【0020】〔ガラス破片混入の影響〕図6にはガラス
破片混入割合を変化させた蛍光材に対するボ−ルミルの
回転数700rpmによるメカノケミカル処理2時間の
場合のXRDパタ−ンを示す。同図より、ガラス破片を
含まないもの(0%表示)ではBATとYOXの回析ピ
−クが明瞭であるが、ガラス破片共存の混合体粉末では
BATならびにYOXのピ−クが低くなるか、あるいは
消滅していることがわかる。しかしながら、ガラス破片
含有蛍光材の場合はその含有率によるXRDパタ−ンの
変化が小さい。
[Effect of Glass Fragment Mixing] FIG. 6 shows an XRD pattern in the case of mechanochemical treatment for 2 hours with a ball mill rotating at 700 rpm for fluorescent materials having different glass fragment mixing ratios. From the figure, the diffraction peaks of BAT and YOX are clear in the glass containing no glass fragments (0% display), but the peaks of BAT and YOX are lower in the mixed powder containing glass fragments. , Or disappeared. However, in the case of the fluorescent material containing glass fragments, the change in XRD pattern due to the content is small.

【0021】図7にはボ−ルミルの回転数700rpm
によるメカノケミカル処理2時間の蛍光材からの1N塩
酸によるレアメタル成分浸出におよぼすガラス(シリ
カ)破片添加割合の影響を示す。同図より、Y、La、
Tbの収率はガラス破片の有無に無関係で、収率が約8
0%以上となっている。一方、Ceについてはガラス破
片が少ない場合60〜70%とガラス破片なしの場合よ
り低い。しかしながら、ガラス破片が30%以上になる
と、収率が90%に限りなく近づく傾向にある。ガラス
破片は廃棄蛍光管から蛍光材を分離する際に量の大小を
問わず必然的に混入するとみるべきであり、そのことか
ら、その共存による影響が懸念されたが、ガラス破片共
存蛍光材のメカノケミカル処理は、最終的なレアメタル
成分の酸浸出結果にさほど悪影響をおよぼさず、むし
ろ、ガラス破片がある程度以上含まれるとレアメタル成
分の浸出率が向上することがわかった。なお、図には示
していないが,EuについてはYと同じ傾向であり、約
5%低い収率を示した。その理由はBAT(Eu2+)が
溶解しにくいことによる。
The rotation speed of the ball mill is 700 rpm in FIG.
2 shows the influence of the glass (silica) debris addition ratio on the leaching of rare metal components from the fluorescent material by 1N hydrochloric acid for 2 hours of the mechanochemical treatment with. From the figure, Y, La,
The yield of Tb is about 8 regardless of the presence or absence of glass fragments.
It is over 0%. On the other hand, Ce is 60 to 70% when there are few glass fragments and lower than when there is no glass fragments. However, when the glass fragments are 30% or more, the yield tends to approach 90% without limit. It should be considered that the glass fragments are inevitably mixed in when separating the fluorescent material from the waste fluorescent tube regardless of the amount of the fluorescent material. It was found that the mechanochemical treatment did not adversely affect the final acid leaching result of the rare metal component, but rather the leaching rate of the rare metal component was improved when glass fragments were contained to some extent. Although not shown in the figure, Eu had the same tendency as Y, and the yield was about 5% lower. The reason is that BAT (Eu 2+ ) is difficult to dissolve.

【0022】なお、弱酸としてたとえば塩酸に浸出した
レアメタル成分が塩化物として溶解しているところから
レアメタル成分を析出させるには、溶液のpHを制御す
ることによって、水酸化物として取出し、さらに各成分
を分離するには、析出段階で他の硫酸イオンや硝酸イオ
ン等との反応における選択性を利用して逐次析出をおこ
ない、使用目的の形態に合わせて分離・回収することが
でき、析出物を焼成すれば各種レアメタルの酸化物を得
ることができる。レアメタル成分の内容が二分されてい
れば以上の分離操作が容易になる。
In order to precipitate the rare metal component from the place where the rare metal component leached in hydrochloric acid as a weak acid is dissolved as chloride, the pH of the solution is controlled to take out as a hydroxide, and each component is further extracted. In order to separate the product, it is possible to carry out successive precipitation by utilizing the selectivity in the reaction with other sulfate ion or nitrate ion in the precipitation stage, and to separate and collect it according to the intended purpose, and to separate the precipitate. By firing, various rare metal oxides can be obtained. If the content of the rare metal component is divided into two, the above separation operation becomes easy.

【0023】[0023]

【発明の効果】本発明によりレアメタル成分を含む廃棄
蛍光管からこれらを種類ごと二分して抽出できるので、
各成分の最終分離が容易になり、希少資源の循環使用を
可能にする。
As described above, according to the present invention, it is possible to extract these from the waste fluorescent tubes containing rare metal components by dividing them into two types.
This facilitates the final separation of each component and enables the reuse of rare resources.

【図面の簡単な説明】[Brief description of drawings]

【図1】 4種類の単色蛍光体とこれを120分メカノ
ケミカル処理したもの(それぞれ上と下)のXRDパタ
−ンを示す。
FIG. 1 shows XRD patterns of four types of monochromatic phosphors and those subjected to mechanochemical treatment for 120 minutes (upper and lower, respectively).

【図2】 ボ−ルミルの回転速度を変化させた場合にお
けるボ−ルミル処理時間によるYの収率の変化を示す。
FIG. 2 shows a change in Y yield depending on the ball mill treatment time when the rotation speed of the ball mill is changed.

【図3】 ボ−ルミルの回転速度400rpmにおける
メカノケミカル処理時間と酸抽出されたレアメタル成分
の収率との関係を示す。
FIG. 3 shows the relationship between the mechanochemical treatment time at a ball mill rotation speed of 400 rpm and the yield of acid-extracted rare metal components.

【図4】 メカノケミカル処理時間と酸抽出されたレア
メタル成分の収率との関係を示す。
FIG. 4 shows the relationship between the mechanochemical treatment time and the yield of acid-extracted rare metal components.

【図5】 メカノケミカルにおけるボ−ルミルの回転速
度の変化と処理時間による酸抽出されたレアメタル成分
の収率との関係を示す。
FIG. 5 shows the relationship between the change in rotation speed of a ball mill in mechanochemicals and the yield of acid-extracted rare metal components depending on the treatment time.

【図6】 ガラス破片の混合率を変化させておこなった
メカノケミカル処理後のXRDパタ−ンを示す。
FIG. 6 shows an XRD pattern after mechanochemical treatment performed by changing the mixing ratio of glass fragments.

【図7】 レアメタル成分の酸浸出収率におよぼすガラ
ス破片混合割合の影響を示す。
FIG. 7 shows the influence of the glass fragment mixing ratio on the acid leaching yield of rare metal components.

フロントページの続き (56)参考文献 特開 平8−333642(JP,A) 特開 平8−333641(JP,A) 特開 昭60−161330(JP,A) 特開 平7−144921(JP,A) 特開 昭61−127622(JP,A) 特開 平11−71111(JP,A) 特公 昭48−15770(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22B 59/00 Continuation of the front page (56) Reference JP-A-8-333642 (JP, A) JP-A-8-333641 (JP, A) JP-A-60-161330 (JP, A) JP-A-7-144921 (JP , A) JP 61-127622 (JP, A) JP 11-71111 (JP, A) JP 48-15770 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB (Name) C22B 59/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レアメタル成分含有の廃棄蛍光材に対
し、さきに度合の低いメカノケミカル処理をほどこして
YおよびEu成分を弱酸に溶出させ、あとで度合の高い
メカノケミカル処理をほどこしてLa、Ce、Tb成分
を弱酸に溶出させることを特徴とする廃棄蛍光材からレ
アメタル成分を選択分離する方法。
1. A waste fluorescent material containing a rare metal component is first subjected to a low degree of mechanochemical treatment to elute Y and Eu components into a weak acid, and then subjected to a high degree of mechanochemical treatment to La, Ce. , A method of selectively separating a rare metal component from a waste fluorescent material, which comprises eluting the Tb component with a weak acid.
【請求項2】 メカノケミカル処理の度合いの高低がボ
−ルミルによる回転速度と処理時間の大小である請求項
1記載の廃棄蛍光材からレアメタル成分を選択分離する
方法。
2. The method for selectively separating a rare metal component from a waste fluorescent material according to claim 1, wherein the degree of mechanochemical treatment depends on the rotation speed and the treatment time of the ball mill.
JP37630298A 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material Expired - Fee Related JP3497089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37630298A JP3497089B2 (en) 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37630298A JP3497089B2 (en) 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material

Publications (2)

Publication Number Publication Date
JP2000192167A JP2000192167A (en) 2000-07-11
JP3497089B2 true JP3497089B2 (en) 2004-02-16

Family

ID=18506916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37630298A Expired - Fee Related JP3497089B2 (en) 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material

Country Status (1)

Country Link
JP (1) JP3497089B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392518B1 (en) * 2000-10-26 2003-07-28 한국화학연구원 useful metal separation method of useless three wave fluorescent lamp
KR100412397B1 (en) * 2001-11-05 2003-12-24 한국화학연구원 La and Eu separation method of useless three wave fluorescent lamp
CZ20041156A3 (en) * 2004-11-30 2006-07-12 Ústav chemickych procesu AV CR Method of extracting europium and yttrium ions from luminophore dust or sludge concentrates
DE102006025945A1 (en) * 2006-06-02 2007-12-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Process for the recovery of rare earths from fluorescent lamps
JP4846771B2 (en) * 2008-08-12 2011-12-28 Jfeミネラル株式会社 Pretreatment method for rare earth element recovery from waste fluorescent lamp and method for collecting rare earth element using solid matter obtained by the pretreatment method
FR2944276B1 (en) * 2009-04-14 2011-04-01 Rhodia Operations PROCESS FOR RECOVERING RARE LANDS FROM A SOLID MIXTURE CONTAINING HALOPHOSPHATE AND A COMPOUND OF ONE OR MORE RARE EARTHS
KR100945413B1 (en) 2009-07-15 2010-03-04 (주)포스바이오 Method of recycling waste mixed phosphor of the ccfl
KR101727642B1 (en) 2010-04-21 2017-04-17 하루오 우에하라 System and method for recycling rare metals
CN102776366B (en) 2012-08-10 2014-12-10 北京科技大学 Process for decomposing waste rare earth luminescent materials by two times of acidolysis
KR101480494B1 (en) * 2012-12-24 2015-01-12 주식회사 포스코 Method of recovering europium from mixed rare earth
CN104593608B (en) * 2015-02-02 2017-03-22 上海第二工业大学 Method for intensified leaching of rare earth metals from waste fluorescent powder by mechanical activation method

Also Published As

Publication number Publication date
JP2000192167A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP5598631B2 (en) Recovery method of rare earth elements
da Silva et al. Selective removal of impurities from rare earth sulphuric liquor using different reagents
JP3497089B2 (en) Method for selective separation of rare metal components from waste fluorescent material
JP5424873B2 (en) Recovery method of rare earth from fluorescent lamp
Liu et al. Multiscale recycling rare earth elements from real waste trichromatic phosphors containing glass
EP3715482A1 (en) Method and system for separation of rare earth elements from secondary sources
Nguyen et al. Development of a hydrometallurgical process for the recovery of calcium molybdate and cobalt oxalate powders from spent hydrodesulphurization (HDS) catalyst
Dhawan et al. A critical review of end-of-life fluorescent lamps recycling for recovery of rare earth values
CN108929957B (en) Method for recovering high-purity rare earth oxide from rare earth oxide-containing waste
JP2014505171A (en) Dissolution and recovery of at least one element of Nb or Ta and at least one element of other U or rare earth elements from ores and concentrates
Van Loy et al. Mechanochemical-assisted leaching of lamp phosphors: a green engineering approach for rare-earth recovery
Innocenzi et al. Secondary yttrium from spent fluorescent lamps: Recovery by leaching and solvent extraction
Tanvar et al. Extraction of rare earth oxides from discarded compact fluorescent lamps
CN114107668B (en) Method for mechanically activating, reinforcing and leaching rare earth in waste polishing solution
Yu et al. Recovering rare earths and aluminum from waste BaMgAl10O17: Eu2+ and CeMgAl11O19: Tb3+ phosphors using NaOH sub-molten salt method
Tian et al. Comparative atmospheric leaching characteristics of scandium in two different types of laterite nickel ore from Indonesia
Shukla et al. Rapid microwave processing of discarded tubular lights for extraction of rare earth values
Wu et al. Selective recovery of Y and Eu from rare-earth tricolored phosphorescent powders waste via a combined acid-leaching and photo-reduction process
KR102475153B1 (en) Recovering Method of Rare Earth Element from Waste Phosphor Powder Using Acid Leaching
JPH1171111A (en) Extraction of rare earth metallic compound
Rabie et al. Europium separation from a middle rare earths concentrate derived from Egyptian black sand monazite
EP1639144B1 (en) Method for recovering at least one metallic element like cesium from ore
US8486354B2 (en) Method for extracting rare earth material from monazite
Shukla et al. Investigation of different processing routes for rare earth extraction from discarded tubular lights
Pramanik et al. Valorization of phosphor powder of waste fluorescent tubes with an emphasis on the recovery of terbium oxide (Tb4O7)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees