JP3495925B2 - Optical element manufacturing method - Google Patents

Optical element manufacturing method

Info

Publication number
JP3495925B2
JP3495925B2 JP28729498A JP28729498A JP3495925B2 JP 3495925 B2 JP3495925 B2 JP 3495925B2 JP 28729498 A JP28729498 A JP 28729498A JP 28729498 A JP28729498 A JP 28729498A JP 3495925 B2 JP3495925 B2 JP 3495925B2
Authority
JP
Japan
Prior art keywords
layer
optical element
diffraction grating
manufacturing
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28729498A
Other languages
Japanese (ja)
Other versions
JP2000098117A (en
Inventor
正明 中林
順司 寺田
専一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28729498A priority Critical patent/JP3495925B2/en
Priority to US09/401,660 priority patent/US20010026399A1/en
Publication of JP2000098117A publication Critical patent/JP2000098117A/en
Application granted granted Critical
Publication of JP3495925B2 publication Critical patent/JP3495925B2/en
Priority to US11/157,986 priority patent/US20050237614A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、異なる材質の周期
構造を重ね合わせた光学素子の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical element in which periodic structures made of different materials are superposed.

【0002】[0002]

【従来の技術】従来から、光学系の色収差の補正は、分
散が異なる硝材から成る光学素子を組み合わせることに
より行われており、またレンズ等の屈折型光学系ではな
く、回折型光学系を用いることが、文献SPIE,Vo
l.1354第24〜37巻に開示されている。
2. Description of the Related Art Conventionally, correction of chromatic aberration of an optical system has been performed by combining optical elements made of glass materials having different dispersions, and a diffractive optical system is used instead of a refractive optical system such as a lens. That is the document SPIE, Vo
l. 1354, volumes 24-37.

【0003】分光特性を有する光学系に回折効率を有す
る回折面を付加する場合は、使用する波長領域における
回折効率を高く保つことが大切である。しかし、設計次
数以外の次数の光は、次数が離れる程、回折角が大きく
なり、焦点距離の差が大きくなるためにデフォーカスと
して現れ、特に高輝度な光源が存在する場合には、サイ
ドローブが見られることがある。
When a diffractive surface having a diffraction efficiency is added to an optical system having a spectral characteristic, it is important to keep the diffraction efficiency in the wavelength range to be used high. However, light of orders other than the designed order appears as defocus because the diffraction angle becomes larger as the order becomes farther away, and the difference in focal length becomes larger, and especially when there is a high-luminance light source, side lobes are present. May be seen.

【0004】2層構造の回折光学素子は、色収差の補正
効果を有する光学系において、使用波長の領域内で設計
次数近傍の回折効率を大幅に低減することができるの
で、この回折光学素子を応用することにより、画質及び
情報においてかなりの品質向上が期待できる。しかし、
この回折光学素子は光学的性能向上の反面で、製造方法
が非常に複雑でかつ高コストとなり、実用が難しいとい
う問題がある。
A diffractive optical element having a two-layer structure can significantly reduce the diffraction efficiency in the vicinity of the designed order within the wavelength range of use in an optical system having a chromatic aberration correction effect. By doing so, a considerable improvement in image quality and information can be expected. But,
Although this diffractive optical element has improved optical performance, it has a problem that the manufacturing method is very complicated and the cost is high, and it is difficult to put it into practical use.

【0005】このために、2層以上の多層構造を有する
回折光学素子は、半導体製造工程であるフォトリソグラ
フィ法により形成されており、このフォトリソグラフィ
法はフォトレジストと呼ばれる感光性の樹脂を保護膜と
して微細なパターニングをした後に、エッチング加工を
行って、現像処理したフォトレジストのパターンを基板
に転写する技術である。
For this reason, a diffractive optical element having a multilayer structure of two or more layers is formed by a photolithography method which is a semiconductor manufacturing process, and this photolithography method uses a photosensitive resin called photoresist as a protective film. After the fine patterning, the etching process is performed to transfer the developed photoresist pattern onto the substrate.

【0006】図10は従来のフォトリソグラフィ法によ
る8段構造の階段状格子の製造工程の模型的な断面図を
示す。図10(a) において、基板1にスピンナでフォト
レジスト2を塗布した後に、光束Lを照射してパターン
露光を行う。図10(b) において現像、リンス、ポスト
ベーク処理を行って、図10(c) においてエッチング加
工した後に、洗浄して残留フォトレジスト2を剥離し、
2段の階段形状が形成される。図10(d) 〜(f) におい
て、図10(a) 〜(c) と同様の処理を行って4段の階段
形状が形成され、更に図10(g) 〜(i) において処理を
繰り返すことにより、図10(j) に示すような8段の階
段形状が完成する。
FIG. 10 shows a schematic cross-sectional view of a manufacturing process of a stepped grating having an eight-step structure by a conventional photolithography method. In FIG. 10A, a photoresist 2 is applied to the substrate 1 by a spinner, and then a light flux L is irradiated to perform pattern exposure. In FIG. 10 (b), development, rinsing, and post-baking are performed, and after etching in FIG. 10 (c), cleaning is performed to remove the residual photoresist 2,
A two-step staircase shape is formed. In FIGS. 10 (d) to 10 (f), the same process as in FIGS. 10 (a) to 10 (c) is performed to form a four-step staircase shape, and the process is repeated in FIGS. 10 (g) to 10 (i). As a result, an 8-step staircase shape as shown in FIG. 10 (j) is completed.

【0007】また、図10の方法を応用した2層構造の
回折光学素子の製造方法が知られており、図11、図1
2に回折型レンズとして、所望の2層構造の回折光学素
子を作成する工程の断面図を示す。図11(a) において
石英ガラス基板3上に有機性被膜材料4を載せ、石英ガ
ラス製の第1型5を被せて紫外線を照射し、図11(b)
のように有機性被膜材料4による階段形状を形成する。
その後に、図11(c)においてイオンエッチングを行っ
て、図11(d) に示すように石英ガラスの回折格子6を
形成する。
A method for manufacturing a diffractive optical element having a two-layer structure, to which the method shown in FIG. 10 is applied, is known.
2 shows a sectional view of a step of forming a desired diffractive optical element having a two-layer structure as a diffractive lens. In FIG. 11 (a), the organic coating material 4 is placed on the quartz glass substrate 3, covered with the first mold 5 made of quartz glass, and irradiated with ultraviolet rays.
As described above, the staircase shape is formed by the organic coating material 4.
After that, ion etching is performed in FIG. 11C to form a silica glass diffraction grating 6 as shown in FIG. 11D.

【0008】図12(e) において、石英ガラス回折格子
6上にTiO2 膜7を成膜し、図12(f) においてTi
2 膜7上に有機性被膜材料4を載せ、更に第1型5と
階段形状が逆方向の石英ガラス製の第2型8を被せ、紫
外線を照射して図12(g) に示すように有機性被膜材料
4の階段形状を形成する。図12(h) において再びイオ
ンエッチングを行って、図12(i) に示すように石英ガ
ラス回折格子6上に、TiO2 膜による高分散回折格子
9を形成する。
In FIG. 12 (e), a TiO 2 film 7 is formed on the quartz glass diffraction grating 6, and in FIG.
The organic coating material 4 is placed on the O 2 film 7, and the second mold 8 made of quartz glass whose step shape is opposite to that of the first mold 5 is covered and irradiated with ultraviolet rays as shown in FIG. 12 (g). Then, the stepped shape of the organic coating material 4 is formed. Ion etching is performed again in FIG. 12 (h) to form a high-dispersion diffraction grating 9 of a TiO 2 film on the silica glass diffraction grating 6 as shown in FIG. 12 (i).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述の
製造方法においては、所望の2層構造の回折光学素子を
作成するためには、製造工程が多くなって製造コストが
掛かり、通常のカメラ等の機器用素子として普及させる
ことは難しい。
However, in the above-mentioned manufacturing method, in order to manufacture a diffractive optical element having a desired two-layer structure, the number of manufacturing steps is increased and the manufacturing cost is increased. It is difficult to popularize it as a device element.

【0010】また、通常の平面構造を転写する露光方式
でのリソグラフィ法も知られているが、この方法では1
回の工程で回折光学素子の形状条件である立体形状の高
さを所望の分布に制御できず、結局は異なる高さ(厚
み)設定がある場合には、フォトリソグラフィ法の工程
を複数回繰り返して、所望の格子構造を完成する必要が
ある。更に、図11の上側の2層目に形成する回折格子
についても、下側の1層目の回折格子に対して高さ(厚
み)が均一でないために、多工程を実施しなければなら
ないという問題がある。
A lithography method, which is an exposure method for transferring a normal planar structure, is also known.
If the height of the three-dimensional shape, which is the shape condition of the diffractive optical element, cannot be controlled to the desired distribution in each step, and if there is a different height (thickness) setting in the end, repeat the photolithography method multiple times. It is necessary to complete the desired lattice structure. Further, the height (thickness) of the diffraction grating formed on the second upper layer in FIG. 11 is not uniform with respect to the diffraction grating on the lower first layer, so that it is necessary to perform multiple steps. There's a problem.

【0011】本発明の目的は、上述の問題点を解消し、
高精度な光学素子を製造する光学素子の製造方法に関す
るものである。
An object of the present invention is to solve the above problems,
The present invention relates to an optical element manufacturing method for manufacturing a highly accurate optical element.

【0012】[0012]

【課題を解決するための手段】上記の目標を達成するた
めの本発明に係る2層回折光学素子は、第1の周期構造
上に第2の周期構造を型成型によって形成する光学素子
の製造方法であって、前記第1の周期構造が形成された
基板上のアライメントマークを用いて前記第2の周期構
造を成型するための型の位置合わせを行うことを特徴と
する。
A two-layer diffractive optical element according to the present invention for achieving the above object is an optical element in which a second periodic structure is formed on a first periodic structure by molding. The method is characterized in that the alignment mark on the substrate on which the first periodic structure is formed is used to perform alignment of a mold for molding the second periodic structure.

【0013】[0013]

【発明の実施の形態】本発明を図1〜図9に図示の実施
例に基づいて詳細に説明する。図1は第1の実施例の8
段階段構造の回折光学素子の断面図を示し、硝子基板1
0上に第1の回折格子(第1の周期構造)11が形成さ
れ、第1の回折格子11上に第2の回折格子(第2の周
期構造)12が形成されている。第1の回折格子11は
高屈折率で分散の大きい変性エポキシアクリレートを主
成分とする光硬化樹脂で成形し、第2層の回折格子12
は低分散のアクリレート系紫外線硬化樹脂で成形されて
いる。それぞれの樹脂の選択については、光学的設計に
より2種以上の樹脂材料のコンビネーションにより決ま
るので、用途により任意に選択することができ、また重
ねる順序も同様に任意で選択することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 shows the eighth embodiment.
A cross-sectional view of a diffractive optical element having a step structure is shown, showing a glass substrate 1.
A first diffraction grating (first periodic structure) 11 is formed on 0, and a second diffraction grating (second periodic structure) 12 is formed on the first diffraction grating 11. The first diffraction grating 11 is formed of a photo-curing resin whose main component is a modified epoxy acrylate having a high refractive index and large dispersion, and the diffraction grating 12 of the second layer is formed.
Is formed of a low-dispersion acrylate-based UV curable resin. The selection of each resin is determined by the combination of two or more kinds of resin materials depending on the optical design, and therefore can be arbitrarily selected depending on the application, and the order of stacking can also be arbitrarily selected.

【0014】2層の複合回折光学素子の設計例として、
次の樹脂を使用する。 第1層材料の主成分:変性エポキシアクリレート 硬化後の屈折率 1.598 アッべ数 28 第2層材料の主成分:ウレタン変性ポリエステルアクリ
レート 硬化後の屈折率 1.525 アッべ数 50.8
As a design example of a two-layer composite diffractive optical element,
The following resins are used. Main component of first layer material: Refractive index after curing modified epoxy acrylate 1.598 Abbe number 28 Main component of second layer material: Refractive index after curing urethane modified polyester acrylate 1.525 Abbe number 50.8

【0015】ここで、使用波長領域の光束が特定次数に
集中する格子構造とするためには、例えば波長486.
13mmのC線と656.27nmのF線において高い
回折効率を得るようにすることが必要であり、形状は次
のような条件を満たさなければならない。 656.27/8=|(NaF −1)・da−(NbF −1)・db| 486.13/8=|(NaC −1)・da−(NbC −1)・db|
Here, in order to have a lattice structure in which the luminous flux in the used wavelength region is concentrated in a specific order, for example, a wavelength of 486.
It is necessary to obtain high diffraction efficiency in the C line of 13 mm and the F line of 656.27 nm, and the shape must satisfy the following conditions. 656.27 / 8 = | (Na F −1) · da− (Nb F −1) · db | 486.13 / 8 = | (Na C −1) · da− (Nb C −1) · db |

【0016】ただし、NaF はF線に対する第1層の屈折
率 NbF はF線に対する第2層の屈折率 NaC はC線に対する第1層の屈折率 NbC はC線に対する第2層の屈折率 daは第1層の回折格子の段差 dbは第2層の回折格子の段差
Where Na F is the refractive index of the first layer for F rays, Nb F is the refractive index of the second layer for F rays, Na C is the refractive index of the first layer for C rays, and Nb C is the second layer for C rays. Is the step difference of the diffraction grating of the first layer db is the step difference of the diffraction grating of the second layer

【0017】このような条件を満たすための形状寸法は
例えば次のようになる。 da=2355nm db=2818nm
The geometrical dimensions for satisfying such conditions are as follows, for example. da = 2355nm db = 2818nm

【0018】図2は2層の複合回折光学素子の製造工程
の断面図を示し、先ず図2(a) で第1の回折格子12を
成形する石英硝子基板10の表面に、シランカップリン
グを均一にスピンナで塗布した後に、オーブンで乾燥す
る。カップリングは離型の際に石英硝子から成る基板1
0と図2(b) に示す第1層の樹脂材料13との密着性
を、第1層の石英第1型14と第1層の樹脂材料13と
の剥離性よりも大きくして、成形された樹脂材料13を
石英硝子基板10に十分に定着させる機能を持ってい
る。
FIG. 2 is a sectional view of the manufacturing process of the two-layer composite diffractive optical element. First, a silane coupling is applied to the surface of the quartz glass substrate 10 for forming the first diffraction grating 12 in FIG. 2 (a). After uniformly applying with a spinner, it is dried in an oven. The coupling is a substrate 1 made of quartz glass at the time of release.
0 and the adhesiveness between the first layer resin material 13 shown in FIG. It has a function of sufficiently fixing the resin material 13 thus obtained onto the quartz glass substrate 10.

【0019】図2(b) で石英硝子が所望の形状を有する
ように設計した石英硝子の第1型14を使って成形し、
紫外線を照射し硬化させる。そして、第1型14を離型
すると、図2(c) に示すように第1の回折格子11が形
成される。
In FIG. 2 (b), the first mold 14 of quartz glass designed so that the quartz glass has a desired shape is used for molding.
Irradiate ultraviolet rays to cure. Then, when the first mold 14 is released, the first diffraction grating 11 is formed as shown in FIG. 2 (c).

【0020】次に図2(d) において、第2層の樹脂材料
15を第1の回折格子11上に載せ、第2型16により
上述と同様に成形して硬化させる。これによって、図2
(e)に示すような2層の複合回折格子が形成される。
Next, in FIG. 2D, the resin material 15 of the second layer is placed on the first diffraction grating 11 and is molded and cured by the second mold 16 in the same manner as described above. As a result, FIG.
A two-layer composite diffraction grating as shown in (e) is formed.

【0021】2層目の回折格子12は、1層目の回折格
子11のピッチと高精度にアライメントする必要であ
り、このときにずれがあると、ピッチ単位で設計した補
正効果が低減するだけでなく、本来の回折を乱してレン
ズとしての機能も失ってしまう。従って、本実施例では
図3、図4に示すように、第1層の成形時に第1型14
の凹形状14aによってアライメントマーク11aを基
板10上に転写しておき、そのマーク形状に第2型16
の凹形状16aを合わせることにより、高精度のアライ
メントを行っている。
The diffraction grating 12 of the second layer needs to be aligned with the pitch of the diffraction grating 11 of the first layer with high accuracy, and if there is a deviation at this time, the correction effect designed in units of pitch only decreases. Not only that, the original diffraction is disturbed and the function as a lens is lost. Therefore, in this embodiment, as shown in FIG. 3 and FIG.
The alignment mark 11 a is previously transferred onto the substrate 10 by the concave shape 14 a of the second mold 16
By aligning the concave shapes 16a, the highly accurate alignment is performed.

【0022】また、第2層の回折格子12の成形時に、
その光学樹脂材料15の厚みが第1層の回折格子11の
高さよりも小さいと、第2型16が石英上の紫外線硬化
樹脂製格子構造に嵌合しなければならないために、アラ
イメントの正確さと嵌合寸法の設定が難しいだけでな
く、第2型16及び第1層の回折格子11を破損する可
能性がある。これを回避するためには、回折光学素子の
設計においては理論上、層の順番は影響しないので、格
子高さが小さい層を下地側に設定する。
When molding the diffraction grating 12 of the second layer,
If the thickness of the optical resin material 15 is smaller than the height of the diffraction grating 11 of the first layer, the second mold 16 has to be fitted to the UV-cured resin grating structure on quartz, and the alignment accuracy and Not only is it difficult to set the fitting dimension, but also the second mold 16 and the diffraction grating 11 of the first layer may be damaged. In order to avoid this, theoretically, the order of layers does not affect the design of the diffractive optical element, so that the layer having a small grating height is set on the base side.

【0023】第2層の回折格子12は、離型後は第1層
の回折光子11に完全に密着していなければならないの
で、樹脂同士の接着強度が離型に対して十分あるよう
に、型には離型剤処理を施して離型性を良くする。そし
て、離型処理は十分に希釈した離型剤に浸漬した後に、
蒸気洗浄などで余分な離型剤が微細形状を乱さないよう
に留意する必要がある。
Since the diffraction grating 12 of the second layer must be in complete contact with the diffracted photons 11 of the first layer after releasing, so that the adhesive strength between the resins is sufficient for releasing. The mold is treated with a mold release agent to improve the mold releasability. And, the mold release treatment, after soaking in a sufficiently diluted mold release agent,
It is necessary to take care so that excess mold release agent does not disturb the fine shape by steam cleaning or the like.

【0024】2層に成形した樹脂の厚さは、実際にはそ
れぞれ各層の合計厚みよりも厚くなり、加熱して粘度を
下げたり加圧成形しても、格子部分のみの厚さにはなら
ない。しかし、格子面内での厚さが均一であれば、透過
する光束全体に対しての影響は等しくなり、回折格子と
しての性能に支障は生じないので、各層の厚さを均一化
することが重要となる。また、焦点が短い回折光学素子
では画角が大きくなるために、樹脂厚が大きいと画角に
より光束の方向が素子内部でずれ、補正効果が低減して
しまう。従って、樹脂の厚さを極力小さくし、画角と樹
脂厚を十分に考慮して素子設計を行うことが大切であ
る。
The thickness of the resin molded into two layers is actually thicker than the total thickness of each layer, and even if the viscosity is reduced by heating or pressure molding is performed, the thickness of the lattice portion alone is not obtained. . However, if the thickness in the plane of the grating is uniform, the effect on the entire transmitted light flux will be equal and there will be no hindrance to the performance as a diffraction grating, so it is possible to make the thickness of each layer uniform. It becomes important. Further, since the angle of view becomes large in a diffractive optical element having a short focal point, if the resin thickness is large, the direction of the light beam shifts inside the element due to the angle of view, and the correction effect is reduced. Therefore, it is important to design the element by making the resin thickness as small as possible and sufficiently considering the angle of view and the resin thickness.

【0025】石英から成る樹脂材料の成形型は、フォト
リソグラフィ工程により製造する。例えば、転写する型
の形状が階段状格子の場合は、従来例の図12と同様
に、フォトリソグラフィ工程を複数回繰り返すことによ
ってできる。また、一般に高屈折樹脂は耐候性が劣るも
のが多いので、比較的安定している樹脂を第2層に使用
して性能を保持することが、構成を決める上で重要であ
る。
A mold of resin material made of quartz is manufactured by a photolithography process. For example, when the shape of the mold to be transferred is a step-like lattice, the photolithography process can be repeated a plurality of times as in the conventional example shown in FIG. Further, since generally high refractive resins have poor weather resistance, it is important for determining the constitution to use a relatively stable resin for the second layer so as to maintain the performance.

【0026】図5は第2の実施例の断面図を示し、ラン
タン硝子をエッチングして作成した回折格子17上に、
レプリカ回折格子12を成形している。
FIG. 5 is a sectional view of the second embodiment, in which a diffraction grating 17 formed by etching lanthanum glass is
The replica diffraction grating 12 is molded.

【0027】第1層材料の主成分:ランタン硝子 屈折率 1.678 アッべ数 55.3 第2層材料の主成分:変性エポキシアクリレート 硬化後の屈折率 1.598 アッベ数 28Main component of the first layer material: lanthanum glass Refractive index 1.678 Abbe number 55.3 Main component of the second layer material: modified epoxy acrylate Refractive index after curing 1.598 Abbe number 28

【0028】ランタン硝子の加工は、フォトリソグラフ
ィを行う方法と、ランタン硝子基板に被膜材料を成形し
て異方性エッチングを行うことにより、ランタン硝子表
面に形状を転写する方法とがあるが、生産性を考えると
後者の方法が有利である。何れの方法においても、回折
格子17を形成すると共に回折格子17以外の部分に、
図3、図4に示すようなアライメントマーク11aを形
成し、レプリカ回折格子12の型を、そのアライメント
マーク11aに合わせることによって、高精度のアライ
メントを行っている。
The lanthanum glass is processed by a method of performing photolithography and a method of forming a coating material on a lanthanum glass substrate and performing anisotropic etching to transfer the shape to the surface of the lanthanum glass. The latter method is advantageous in consideration of sex. In any of the methods, the diffraction grating 17 is formed, and at the portion other than the diffraction grating 17,
By forming the alignment mark 11a as shown in FIGS. 3 and 4 and aligning the mold of the replica diffraction grating 12 with the alignment mark 11a, highly accurate alignment is performed.

【0029】第1の実施例と同様にして、第2の回折格
子を樹脂により成形する。このとき、補正条件を満たす
形状を算出すると、次のようになる。
Similar to the first embodiment, the second diffraction grating is made of resin. At this time, when the shape satisfying the correction condition is calculated, it becomes as follows.

【0030】第1層の格子段差:da=2042nm 第2層の格子段差:db=2204nmLattice step of the first layer: da = 2042 nm Second layer grating step: db = 2204nm

【0031】なお、ランタン硝子以外の他の硝子材料に
ついても、同様の光学設計をすれば所望の回折光学素子
を製作することができる。
With respect to glass materials other than lanthanum glass, a desired diffractive optical element can be manufactured by the same optical design.

【0032】また、ブレーズドタイプの格子構造から成
る2層回折光学素子にも適用することができ、第1の実
施例の材料の組み合わせで次のような関係が満たされる
ことにより、先に述べた2層による効果を保つことがで
きる。なお、λD 、λF 、λC はそれぞれD線、F線、
C線の波長、NbD はD線に対する第2層の屈折率であ
る。
Further, the present invention can be applied to a two-layer diffractive optical element having a blazed type grating structure, and the combination of the materials of the first embodiment satisfies the following relationship. The effect of the two layers can be maintained. Λ D , λ F , and λ C are D line, F line, and
The wavelength of C line, Nb D is the refractive index of the second layer for D line.

【0033】 mλD =(NaD −1)・da−(NbD −1)・db mλF =(NaF −1)・da−(NbF −1)・db mλC =(NaC −1)・da−(NbC −1)・dbD = (Na D −1) · da− (Nb D −1) · db mλ F = (Na F −1) · da− (Nb F −1) · db mλ C = (Na C − 1) ・ da- (Nb C -1) ・ db

【0034】実施例としては、次のように高さを設定
し、型はダイアモンドバイトにより切削し加工する。
As an example, the height is set as follows, and the mold is cut and processed by a diamond cutting tool.

【0035】 第1層目の格子の高さ:h1=21.07μm 第2層目の格子の高さ:h2=22.54μm[0035] Height of first layer grating: h1 = 21.07 μm Height of second layer grating: h2 = 22.54 μm

【0036】図6は第3の実施例の三角波形状の2層回
折光学素子の断面図を示す。第2の実施例で、ランタン
硝子をエッチングして作成した回折格子17の上に、レ
プリカ回折格子12を成形したものに関し、階段状の格
子形状ではなく三角波形状の回折格子18を形成する。
硝子の微細加工は、エッチングレートから算出した三角
波状にフォトレジストを成形した後に、異方性エッチン
グを行うことにより達成でき、その後に第2の実施例と
同様に第2の回折格子19を樹脂により成形する。
FIG. 6 is a sectional view of a triangular wave-shaped two-layer diffractive optical element of the third embodiment. In the second embodiment, with respect to the replica diffraction grating 12 formed on the diffraction grating 17 formed by etching lanthanum glass, the triangular diffraction grating 18 is formed instead of the stepped grating.
The fine processing of the glass can be achieved by forming the photoresist into a triangular wave shape calculated from the etching rate and then performing anisotropic etching. After that, as in the second embodiment, the second diffraction grating 19 is formed on the resin. To mold.

【0037】図7は2層回折光学素子20の正面図を示
し、1つの格子はピッチの境界のみを実線で表し、1つ
の格子ピッチ内の階段構造の境界線は省略してある。こ
の2層回折光学素子20は、設計次数の回折光の回折効
率を使用波長全域で高くすることができるので、良好な
光学性能を発揮することができる。なお、鋸歯状断面を
8レベルの階段構造で近似したものを示しているが、8
レベル以外の近似、例えば4レベルや16レベルでも製
造可能である。
FIG. 7 is a front view of the two-layer diffractive optical element 20. Only one pitch boundary of one grating is shown by a solid line, and the boundary line of the staircase structure within one grating pitch is omitted. Since the two-layer diffractive optical element 20 can increase the diffraction efficiency of the diffracted light of the designed order over the entire wavelength range used, it can exhibit good optical performance. It is to be noted that the sawtooth cross section is approximated by an 8-level staircase structure.
It is possible to manufacture with an approximation other than the level, for example, 4 level or 16 level.

【0038】図8は2層回折光学素子20を有するカメ
ラの正面図、図9は側面図を示している。カメラ本体2
1には撮影光学系22及びファインダ光学系23が配置
されており、2層回折光学素子20は撮影光学系32中
やファインダ光学系33中の任意の位置に設けることが
できる。このようにして、2層回折光学素子20をカメ
ラ等の光学機器の光学系に使用することにより、光学機
器の光学性能を向上させることができる。
FIG. 8 is a front view of a camera having the two-layer diffractive optical element 20, and FIG. 9 is a side view. Camera body 2
1, a photographing optical system 22 and a finder optical system 23 are arranged, and the two-layer diffractive optical element 20 can be provided at any position in the photographing optical system 32 and the finder optical system 33. In this way, by using the two-layer diffractive optical element 20 in the optical system of an optical device such as a camera, the optical performance of the optical device can be improved.

【0039】[0039]

【発明の効果】以上説明したように本発明に係る光学素
子の製造方法は、第1の周期構造が形成された基板上に
型を用いて第2の周期構造を成形する際に、低コストで
高性能の素子を量産することができる。
As described above, the method of manufacturing an optical element according to the present invention has a low cost when the second periodic structure is formed by using the mold on the substrate on which the first periodic structure is formed. Therefore, high-performance devices can be mass-produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】2層階段状回折格子の断面図である。FIG. 1 is a cross-sectional view of a two-layer step diffraction grating.

【図2】製造方法の断面図である。FIG. 2 is a cross-sectional view of the manufacturing method.

【図3】アライメントマークの説明図である。FIG. 3 is an explanatory diagram of alignment marks.

【図4】アライメントマークの説明図である。FIG. 4 is an explanatory diagram of alignment marks.

【図5】硝子と樹脂の2層回折光学素子の断面図であ
る。
FIG. 5 is a sectional view of a two-layer diffractive optical element made of glass and resin.

【図6】2層ブレーズド回折格子の断面図である。FIG. 6 is a sectional view of a two-layer blazed diffraction grating.

【図7】2層回折光学素子の正面図である。FIG. 7 is a front view of a two-layer diffractive optical element.

【図8】2層回折光学素子を有するカメラの正面図であ
る。
FIG. 8 is a front view of a camera having a two-layer diffractive optical element.

【図9】側面図である。FIG. 9 is a side view.

【図10】従来例の8段階段状回折格子の製造方法の断
面図である。
FIG. 10 is a sectional view of a method for manufacturing a conventional eight-step stepped diffraction grating.

【図11】2層の8段階段状回折格子の製造方法の断面
図である。
FIG. 11 is a cross-sectional view of a method for manufacturing a two-layer 8-step stepped diffraction grating.

【図12】2層の8段階段状回折格子の製造方法の断面
図である。
FIG. 12 is a cross-sectional view of a method for manufacturing a two-layer 8-step stepped diffraction grating.

【符号の説明】[Explanation of symbols]

10 石英硝子基板 11、12、17 階段状回折格子 13、15 樹脂材料 14、16 成形型 18、19 三角波状回折格子 20 2層回折格子 21 カメラ 22 撮影光学系 23 ファインダ光学系 10 Quartz glass substrate 11, 12, 17 Step diffraction grating 13,15 Resin material 14, 16 Mold 18, 19 triangular wave diffraction grating 20 Two-layer diffraction grating 21 camera 22 Shooting optical system 23 Finder optical system

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−127322(JP,A) 特開 平7−108612(JP,A) 特開 平8−29769(JP,A) 特開 昭59−143110(JP,A) 特表 平10−513575(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 5/18 G02B 3/08 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-9-127322 (JP, A) JP-A-7-108612 (JP, A) JP-A-8-29769 (JP, A) JP-A-59- 143110 (JP, A) Special Table 10-513575 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) G02B 5/18 G02B 3/08

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の周期構造上に第2の周期構造を型
成型によって形成する光学素子の製造方法であって、前
記第1の周期構造が形成された基板上のアライメントマ
ークを用いて前記第2の周期構造を成型するための型の
位置合わせを行うことを特徴とする光学素子の製造方
法。
1. A method of manufacturing an optical element, comprising forming a second periodic structure on a first periodic structure by molding, comprising using an alignment mark on a substrate on which the first periodic structure is formed. A method of manufacturing an optical element, which comprises performing alignment of a mold for molding the second periodic structure.
【請求項2】 前記位置合わせは前記アライメントマー
クに前記第2の周期構造を成型するための型の所定部を
嵌合して行う請求項1に記載の光学素子の製造方法。
2. The method of manufacturing an optical element according to claim 1, wherein the alignment is performed by fitting a predetermined portion of a mold for molding the second periodic structure to the alignment mark.
【請求項3】 前記アライメントマークは前記第1の周
期構造を形成した基板上に設けた凸部とした請求項1又
は2記載の光学素子の製造方法。
3. The method of manufacturing an optical element according to claim 1, wherein the alignment mark is a convex portion provided on a substrate on which the first periodic structure is formed.
【請求項4】 前記第1の周期構造の高さは前記第2の
周期構造の高さよりも高くする請求項1〜3の何れかの
請求項に記載の光学素子の製造方法。
4. The method of manufacturing an optical element according to claim 1, wherein the height of the first periodic structure is higher than the height of the second periodic structure.
【請求項5】 前記第1及び第2の周期構造は回折格子
とした請求項1〜4の何れかの請求項に記載の光学素子
の製造方法。
5. The method for manufacturing an optical element according to claim 1, wherein the first and second periodic structures are diffraction gratings.
【請求項6】 前記請求項1〜5の何れかの請求項に記
載の方法により製造した光学素子。
6. An optical element manufactured by the method according to any one of claims 1 to 5.
JP28729498A 1998-09-24 1998-09-24 Optical element manufacturing method Expired - Fee Related JP3495925B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28729498A JP3495925B2 (en) 1998-09-24 1998-09-24 Optical element manufacturing method
US09/401,660 US20010026399A1 (en) 1998-09-24 1999-09-23 Diffractive optical element and method of manufacture of the same
US11/157,986 US20050237614A1 (en) 1998-09-24 2005-06-22 Diffractive optical element and method of manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28729498A JP3495925B2 (en) 1998-09-24 1998-09-24 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2000098117A JP2000098117A (en) 2000-04-07
JP3495925B2 true JP3495925B2 (en) 2004-02-09

Family

ID=17715525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28729498A Expired - Fee Related JP3495925B2 (en) 1998-09-24 1998-09-24 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP3495925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659473B2 (en) * 2005-02-02 2011-03-30 Okiセミコンダクタ株式会社 Photoresist pattern forming method, diffraction grating manufacturing method, and semiconductor device manufacturing method
CN111095043B (en) * 2017-12-27 2023-03-10 株式会社日立高新技术 Method for manufacturing concave diffraction grating, and analyzer using same
CN112646501A (en) * 2020-12-16 2021-04-13 四川羽玺新材料股份有限公司 High-transmittance anti-dazzle explosion-proof protective film and preparation method thereof

Also Published As

Publication number Publication date
JP2000098117A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
US20050237614A1 (en) Diffractive optical element and method of manufacture of the same
US7554733B2 (en) Diffractive optical element and method for manufacturing same
US7916394B2 (en) Diffractive optical element and optical system using the same
US7286293B2 (en) Method of fabricating diffractive optical element
US8149510B2 (en) Diffractive optical element and method of making the same
JP7127116B2 (en) Diffraction light guide plate and method for manufacturing diffraction light guide plate
JP2007328096A (en) Diffraction optical element, manufacturing method thereof and optical module
JPH1144808A (en) Diffractive optics and optical system using the same
JP2011081424A (en) Planar waveguide with patterned cladding and method for producing the same
US5496616A (en) Optical element for correcting non-uniform diffraction efficiency in a binary diffractive optical element
JP2002062417A (en) Diffractive optical device, optical system and optical appliance having the diffractive optical device, method for manufacturing diffractive optical device and mold for manufacturing diffractive optical device
CN111065942B (en) Diffraction light guide plate and method for manufacturing diffraction light guide plate
US6523963B2 (en) Hermetically sealed diffraction optical element and production method thereof
JP2004145277A (en) Optical material and optical element, diffractive optical element, laminated diffractive optical element, and optical system
US20030218803A1 (en) Method for manufacturing diffraction optical element
JP3495925B2 (en) Optical element manufacturing method
JPH11223717A (en) Optical diffraction element and optical system using the same
JPH10253811A (en) Diffraction grating and manufacture thereof
JP7106279B2 (en) Diffractive optical element and optical equipment
JP2001141918A (en) Diffraction optical device and its production method
JPH1130711A (en) Diffraction optical element and its manufacture, and optical equipment
JP2018136529A5 (en)
JP2007017980A (en) Optical device with refractive and diffraction characteristics
US5494783A (en) Method of correcting non-uniform diffraction efficiency in a binary diffractive optical element
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees