JP3495808B2 - Manufacturing method of semiconductor light emitting device - Google Patents

Manufacturing method of semiconductor light emitting device

Info

Publication number
JP3495808B2
JP3495808B2 JP05769195A JP5769195A JP3495808B2 JP 3495808 B2 JP3495808 B2 JP 3495808B2 JP 05769195 A JP05769195 A JP 05769195A JP 5769195 A JP5769195 A JP 5769195A JP 3495808 B2 JP3495808 B2 JP 3495808B2
Authority
JP
Japan
Prior art keywords
layer
electron beam
light emitting
type
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05769195A
Other languages
Japanese (ja)
Other versions
JPH08255927A (en
Inventor
雅之 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP05769195A priority Critical patent/JP3495808B2/en
Publication of JPH08255927A publication Critical patent/JPH08255927A/en
Application granted granted Critical
Publication of JP3495808B2 publication Critical patent/JP3495808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子の製法に
関する。さらに詳しくは、青色発光に好適なチッ化ガリ
ウム系化合物半導体を用いた半導体発光素子の製法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor light emitting device. More specifically, it relates to a method for manufacturing a semiconductor light emitting device using a gallium nitride based compound semiconductor suitable for blue light emission.

【0002】ここにチッ化ガリウム系化合物半導体と
は、III 族元素のGaとV族元素のNとの化合物または
III 族元素のGaの一部がAl、Inなど他のIII 族元
素と置換したものおよび/またはV族元素のNの一部が
P、Asなど他のV族元素と置換した化合物からなる半
導体をいう。
Here, a gallium nitride compound semiconductor is a compound of a group III element Ga and a group V element N or
A semiconductor made of a compound in which a part of Ga of the group III element is replaced with another group III element such as Al and In and / or a part of N of the group V element is replaced with another group V element such as P and As. Say.

【0003】また、半導体発光素子とは、pn接合また
はダブルヘテロ接合を有する発光ダイオード(以下、L
EDという)、スーパルミネッセントダイオード(SL
D)または半導体レーザダイオード(以下、LDとい
う)などの光を発生する半導体素子をいう。
A semiconductor light emitting element is a light emitting diode having a pn junction or a double heterojunction (hereinafter referred to as L
ED), super luminescent diode (SL)
D) or a semiconductor element such as a semiconductor laser diode (hereinafter referred to as LD) that generates light.

【0004】[0004]

【従来の技術】従来青色のLEDは赤色や緑色に比べて
輝度が小さく実用化に難点があったが、近年チッ化ガリ
ウム系化合物半導体を用い、Mgをドーパントした低抵
抗のp型半導体層がえられたことにより、輝度が向上し
脚光をあびている。
2. Description of the Related Art Conventionally, blue LEDs have a lower brightness than red and green and are difficult to put into practical use. In recent years, however, gallium nitride compound semiconductors have been used, and a low resistance p-type semiconductor layer doped with Mg has been formed. As a result, the brightness is improved and it is in the limelight.

【0005】ところで、チッ化ガリウム系のLEDの製
法はつぎに示されるような工程で行われ、その完成した
チッ化ガリウム系化合物半導体の斜視図を図3に示す。
The gallium nitride based LED is manufactured by the following steps, and a perspective view of the completed gallium nitride based compound semiconductor is shown in FIG.

【0006】まず、サファイア(Al2 3 単結晶)な
どからなる基板21に400〜700℃の低温で有機金
属化合物気相成長法(以下、MOCVD法という)によ
りキャリアガスH2 とともに有機金属化合物ガスである
トリメチルガリウム(以下、TMGという)、NH3
よびドーパントとしてのSiH4 などを供給し、n型の
GaN層からなる低温バッファ層22を0.01〜0.
2μm程度形成し、ついで900〜1200℃の高温で
同じガスを供給し同じ組成のn型のGaNからなる高温
バッファ層23を2〜5μm程度形成する。
First, a substrate 21 made of sapphire (Al 2 O 3 single crystal) or the like is used at a low temperature of 400 to 700 ° C. at a low temperature of 400 to 700 ° C. with a carrier gas H 2 together with a carrier gas H 2 by an organometallic compound vapor phase growth method (hereinafter referred to as MOCVD method). Trimethylgallium (hereinafter referred to as TMG) which is a gas, NH 3 and SiH 4 as a dopant are supplied to the low temperature buffer layer 22 formed of an n-type GaN layer in an amount of 0.01 to 0.
Then, the same gas is supplied at a high temperature of 900 to 1200 ° C. to form the high temperature buffer layer 23 made of n-type GaN having the same composition to a thickness of about 2 to 5 μm.

【0007】ついで前述のガスにさらにトリメチルアル
ミニウム(以下、TMAという)の原料ガスを加え、n
型ドーパントのSiを含有したn型Alx Ga1-x
(0<x<1)層を成膜し、ダブルヘテロ接合形成のた
めのn型クラッド層24を0.1〜0.3μm程度形成
する。
Then, a raw material gas of trimethylaluminum (hereinafter referred to as TMA) is further added to the above gas, and n
N - type Al x Ga 1-x N containing Si as a type dopant
A (0 <x <1) layer is formed, and an n-type cladding layer 24 for forming a double heterojunction is formed to have a thickness of about 0.1 to 0.3 μm.

【0008】つぎに、バンドギャップエネルギーがクラ
ッド層のそれより小さくなる材料、たとえば前述の原料
ガスのTMAに代えてトリメチルインジウム(以下、T
MIという)を導入し、Gay In1-y N(0<y≦
1)からなる活性層25を0.05〜0.1μm程度形
成する。
Next, a material having a bandgap energy smaller than that of the clad layer, for example, trimethylindium (hereinafter, T
MI) is introduced, and Ga y In 1-y N (0 <y ≦
The active layer 25 composed of 1) is formed to a thickness of about 0.05 to 0.1 μm.

【0009】さらに、n型クラッド層24の形成に用い
たガスと同じ原料のガスで不純物原料ガスをSiH4
代えてp型不純物としてMgまたはZnをビスシクロペ
ンタジエニルマグネシウム(Mg(C5 5 2 )(以
下、Cp2 Mgという)またはジメチル亜鉛(以下、D
MZnという)を加えて反応管に導入し、p型クラッド
層26であるp型Alx Ga1-x N層を気相成長させ
る。これによりn型クラッド層24と活性層25とp型
クラッド層26とによりダブルヘテロ接合が形成され
る。
Further, the same raw material gas as that used for forming the n-type cladding layer 24 is used as the p-type impurity instead of the impurity raw material gas SiH 4, and Mg or Zn is replaced with biscyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as Cp 2 Mg) or dimethyl zinc (hereinafter referred to as D
(Hereinafter referred to as “MZn”) is added and introduced into the reaction tube, and a p-type Al x Ga 1-x N layer which is the p-type cladding layer 26 is vapor-phase grown. As a result, the n-type cladding layer 24, the active layer 25, and the p-type cladding layer 26 form a double heterojunction.

【0010】ついでキャップ層27を形成するため、前
述のバッファ層23と同様のガスで不純物原料ガスとし
てCp2 MgまたはDMZnを供給してp型のGaN層
を0.3〜1μm程度成長させる。
Next, in order to form the cap layer 27, Cp 2 Mg or DMZn is supplied as an impurity source gas by using the same gas as that of the buffer layer 23 described above to grow a p-type GaN layer of about 0.3 to 1 μm.

【0011】つぎに、熱処理または電子線照射によりア
ニールをしてp型層の活性化処理を行う。これはp型ド
ーパントのMgなどをチッ化ガリウム系化合物半導体層
内にドーピングするときに、Mgなどがキャリアガスの
2 や原料ガスのNH3 のHと化合してドーパントとし
ての働きをせず、高抵抗になるため、p型層の温度を上
昇させてMgなどとHとの結合を分離させ、Hを外部に
放出する目的で行われる。
Next, the p-type layer is activated by heat treatment or annealing by electron beam irradiation. This is because when the p-type dopant Mg or the like is doped into the gallium nitride-based compound semiconductor layer, the Mg or the like does not function as a dopant by combining with H 2 of the carrier gas and H of NH 3 of the source gas. Since the resistance becomes high, it is performed for the purpose of raising the temperature of the p-type layer to separate the bond between Mg and H and to release H.

【0012】熱処理によりp型層の活性化を行うには、
全体を炉内に入れて400〜800℃で15〜60分間
程度の熱処理で行われるが、全体の温度が高温になって
いるため、熱処理の際にチッ化ガリウム系化合物半導体
のNやGaが同時に抜け易い。それを防止するため、熱
処理を行う前に半導体層の表面全体にSiO2 やSi3
4 などの保護膜を設けてチッ素雰囲気中で行ってい
る。
To activate the p-type layer by heat treatment,
The whole is put in a furnace and heat-treated at 400 to 800 ° C. for about 15 to 60 minutes, but since the whole temperature is high, N and Ga of the gallium nitride based compound semiconductor are increased during the heat treatment. At the same time, it is easy to come out. To prevent this, the entire surface of the semiconductor layer is covered with SiO 2 or Si 3 before heat treatment.
A protective film such as N 4 is provided and the process is performed in a nitrogen atmosphere.

【0013】一方、電子線照射により活性化を行うばあ
いは、電子線の照射によりp型層の半導体層を局部的に
加熱して前述のMgとHとの結合を切り離すものである
が、従来の電子線照射に用いられる装置は、全表面を照
射する目的のため、ビーム径の大きい走査型電子顕微鏡
(SEM)を基礎とした構造の装置で、化合物半導体が
積層されたウェハ内を手動でスキャンすることにより行
っている。
On the other hand, when activation is performed by electron beam irradiation, the semiconductor layer of the p-type layer is locally heated by electron beam irradiation to break the above-mentioned bond between Mg and H. A conventional device used for electron beam irradiation is a device having a structure based on a scanning electron microscope (SEM) with a large beam diameter for the purpose of irradiating the entire surface. This is done by scanning in.

【0014】ついで、成長した各半導体層の一部をドラ
イエッチングにより除去してn型GaN層であるバッフ
ァ層23を露出させ、Au、Alなどの金属膜をたとえ
ば蒸着、スパッタリングなどにより成膜してp側および
n側の両電極29、30を形成し、ダイシングすること
によりLEDチップを形成している。
Then, a part of each of the grown semiconductor layers is removed by dry etching to expose the buffer layer 23 which is an n-type GaN layer, and a metal film of Au, Al or the like is formed by, for example, vapor deposition or sputtering. Then, the p-side and n-side electrodes 29 and 30 are formed, and the LED chip is formed by dicing.

【0015】[0015]

【発明が解決しようとする課題】従来のチッ化ガリウム
系化合物半導体を用いた半導体発光素子の製法では、チ
ッ化ガリウム系化合物半導体のp型層の活性化を熱処理
により行うと、保護膜を設ける工程が必要であるととも
に、熱処理時間が長くかかり、工数や工期が増加すると
いう問題がある。
In the conventional method for manufacturing a semiconductor light emitting device using a gallium nitride based compound semiconductor, a protective film is provided when the p-type layer of the gallium nitride based compound semiconductor is activated by heat treatment. There is a problem that the process is required and the heat treatment time is long and the man-hour and the work period are increased.

【0016】また、従来の電子線照射による方法では、
電子線の描画装置が走査型電子顕微鏡(SEM)を基に
した構造であり、電子ビームの径が大きく、しかも走査
は手動で行われるために、走査にムラが生じ、ウェハ内
での加熱にバラツキが生じ、均一な活性化を行えない。
そのため完全な低抵抗化を達成できないという問題があ
る。
In the conventional method using electron beam irradiation,
The electron beam drawing device has a structure based on a scanning electron microscope (SEM), the diameter of the electron beam is large, and the scanning is performed manually. Variations occur and uniform activation cannot be performed.
Therefore, there is a problem that a complete reduction in resistance cannot be achieved.

【0017】本発明はこのような問題を解決し、p型半
導体層を短時間で均一に加熱し、所要範囲の全体を活性
化して低抵抗のp型層がえられるチッ化ガリウム系化合
物半導体を用いた半導体発光素子の製法を提供すること
を目的とする。
The present invention solves such a problem, and uniformly heats the p-type semiconductor layer in a short time to activate the entire required range to obtain a p-type layer having a low resistance. An object of the present invention is to provide a method for manufacturing a semiconductor light emitting device using.

【0018】[0018]

【課題を解決するための手段】本発明の半導体発光素子
の製法は、基板上に少なくともn型層とp型層とを有す
るチッ化ガリウム系化合物半導体層を積層し、前記p型
層の活性化処理を行う半導体発光素子の製法であって、
前記活性化処理をビーム径が1μm以下の電子線描画装
置を用いて所定範囲を走査することにより行うことを特
徴とする。
According to the method of manufacturing a semiconductor light emitting device of the present invention, a gallium nitride based compound semiconductor layer having at least an n-type layer and a p-type layer is laminated on a substrate, and the activity of the p-type layer is increased. A method of manufacturing a semiconductor light-emitting element, which comprises a chemical conversion treatment, comprising:
The activation process is performed by scanning a predetermined range using an electron beam drawing apparatus having a beam diameter of 1 μm or less.

【0019】前記電子線描画装置のビーム径が0.01
〜0.2μmであることが、走査のムラがなく、加熱に
バラツキが生じないため好ましい。
The beam diameter of the electron beam drawing apparatus is 0.01
It is preferable that the thickness is 0.2 μm because there is no unevenness in scanning and there is no variation in heating.

【0020】前記所定範囲の走査を前記電子線描画装置
のビーム径のピッチで相対移動させながら行うことが全
面を均一に走査することができるため好ましい。
It is preferable that the scanning of the predetermined range is performed while relatively moving at a pitch of the beam diameter of the electron beam drawing apparatus because the entire surface can be uniformly scanned.

【0021】[0021]

【作用】本発明によれば、p型層の活性化処理をビーム
径が1μm以下の電子線描画装置を用いて走査すること
により行うので、活性化処理を行うべき範囲にもれなく
正確に同じ強さの電子ビームを照射し均一な温度にする
ことができる。その結果、均一な活性化処理がなされ、
所要範囲の全体を充分低抵抗化することができ、低い電
圧で明るい輝度の発光をうることができる。
According to the present invention, since the activation treatment of the p-type layer is performed by scanning with an electron beam drawing apparatus having a beam diameter of 1 μm or less, the activation treatment can be performed in exactly the same intensity range without exception. It is possible to irradiate an electron beam of a certain depth to obtain a uniform temperature. As a result, a uniform activation process is performed,
The entire required range can be made sufficiently low in resistance, and light emission with bright brightness can be obtained at a low voltage.

【0022】[0022]

【実施例】つぎに添付図面を参照しながら本発明の半導
体発光素子の製法を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a semiconductor light emitting device of the present invention will be described below with reference to the accompanying drawings.

【0023】図1は本発明の半導体発光素子の製法の一
実施例の工程断面説明図である。
FIG. 1 is a sectional view showing the steps of an embodiment of a method for manufacturing a semiconductor light emitting device according to the present invention.

【0024】まず、図1(a)に示されるように、サフ
ァイアなどからなる基板1に、MOCVD法によりたと
えばn型GaNなどのチッ化ガリウム系半導体層からな
る低温バッファ層2および高温バッファ層3をそれぞれ
0.01〜0.2μm、2〜5μm程度成長する。その
のち、たとえばn型Alx Ga1-x N(0<x<1)か
らなるn型クラッド層4、ノンドープまたはn型もしく
はp型のGay In1-y N(0<y≦1)からなる活性
層5、p型Alx Ga1-x Nからなるp型クラッド層
6、p型GaNからなるキャップ層7を順次積層する。
クラッド層4、6は通常0.1〜0.3μm程度、活性
層5は0.05〜0.1μm程度、キャップ層7は0.
3〜1μm程度の厚さにそれぞれ形成される。これらの
チッ化ガリウム系半導体層の成膜は従来技術で説明した
のと同様の原料ガスを導入し、反応させて成長する。
First, as shown in FIG. 1A, a low temperature buffer layer 2 and a high temperature buffer layer 3 made of a gallium nitride based semiconductor layer such as n-type GaN are formed on a substrate 1 made of sapphire by MOCVD. Of 0.01 to 0.2 μm and 2 to 5 μm, respectively. After that, for example, an n - type clad layer 4 made of n-type Al x Ga 1-x N (0 <x <1), undoped or n-type or p-type Ga y In 1-y N (0 <y ≦ 1) The active layer 5 made of p-type Al x Ga 1 -x N, the p-type cladding layer 6 made of p-type GaN, and the cap layer 7 made of p-type GaN are sequentially laminated.
The cladding layers 4 and 6 are usually about 0.1 to 0.3 μm, the active layer 5 is about 0.05 to 0.1 μm, and the cap layer 7 is about 0.
Each is formed to a thickness of about 3 to 1 μm. The film formation of these gallium nitride based semiconductor layers is performed by introducing the same raw material gas as described in the prior art and reacting it to grow.

【0025】前述のチッ化ガリウム系化合物半導体層を
n型にするためには、Si、Ge、TeなどをSi
4 、GeH4 、TeH4 などのガスとして反応ガス内
に混入し、p型にするためにはMgやZnをCp2 Mg
またはDMZnの有機金属ガスとして原料ガスに混入す
る。
In order to make the above-mentioned gallium nitride compound semiconductor layer n-type, Si, Ge, Te, etc. are replaced with Si.
In order to mix into the reaction gas as a gas such as H 4 , GeH 4 , and TeH 4 , and to make it p-type, Mg or Zn is replaced with Cp 2 Mg.
Alternatively, it is mixed in the source gas as an organic metal gas of DMZn.

【0026】そののち、図1(a)のチッ化ガリウム系
化合物半導体層に電子線を照射することにより、p型ク
ラッド層6およびキャップ層7の活性化を行う。本発明
ではこのp型層の活性化処理をビーム径が1μm以下、
さらに好ましくは0.01〜0.2μmの電子線描画装
置を用いて所定範囲を走査して行うことに特徴がある。
すなわち、電子線を点状ビームにし、該電子線の照射を
縦横にマトリクス状に移動して電子線の照射を走査する
ものである。ウェハ内で電子線を照射する範囲をあらか
じめコンピュータなどに記憶させておき、ウェハステー
ジを相対移動させてその範囲内のドットマトリクスを順
次走査するプログラムにより自動的に所定範囲への電子
線照射をもれなく行うことができる。ここで、ドットマ
トリクスとは、0.2μm程度のピッチをいい、ドット
マトリクスによるプログラムとは、0.2μm程度のピ
ッチでビームを照射するように位置を指定することをい
う。
After that, the p-type cladding layer 6 and the cap layer 7 are activated by irradiating the gallium nitride compound semiconductor layer of FIG. 1A with an electron beam. In the present invention, this p-type layer activation treatment is performed with a beam diameter of 1 μm or less,
More preferably, it is characterized in that a predetermined range is scanned using an electron beam drawing device of 0.01 to 0.2 μm.
That is, the electron beam is made into a point beam, and the irradiation of the electron beam is moved vertically and horizontally in a matrix to scan the irradiation of the electron beam. The range of electron beam irradiation on the wafer is stored in advance in a computer, etc., and the wafer stage is moved relative to it, and a program that sequentially scans the dot matrix within that range is automatically filled with electron beam irradiation to a predetermined range. It can be carried out. Here, the dot matrix means a pitch of about 0.2 μm, and the program by the dot matrix means designating a position so that the beam is emitted at a pitch of about 0.2 μm.

【0027】図2に電子線描画装置の概略構成図を示
す。電子線描画装置39は主に電子銃31、電子線走査
ユニット32および電子線収束系33よりなる。電子銃
31に5〜20kV程度の加速電圧が印加され、電子線
収束系33には所定の電圧が印加されることにより、電
子銃31より放射される電子ビーム34の径は積層され
た化合物半導体層であるウェハ36の表面で0.01〜
0.2μm程度に収束されるようになっている。また、
電子線走査ユニット32はたとえば偏向コイルなどで構
成され、印加される電流により発生する磁界で電子ビー
ムを所定の方向に偏向されるように構成され、その方向
はたとえば0.2〜0.5μm程度のピッチのドットマ
トリクスの単位で、所定範囲内を順次走査するようにプ
ログラミングすることにより、自動的に所定範囲にもれ
なく電子線を照射することができる。この方法によれ
ば、手動式の方法に比べてドットマトリクスの微小範囲
ごとにもれなく電子線を照射するため、均一に加熱して
クラッド層6およびキャップ層7を活性化することがで
きる。その結果、低抵抗のクラッド層6およびキャップ
層7をうることができるため、従来要した電圧と同じ電
圧値を与えても、高輝度の半導体発光素子がえられる。
なお、電子ビームの径が0.01〜0.2μm程度に絞
られる電子線描画装置としては(株)日立製作所製 商
品名 HL700、米国イーペック社製 商品名 ME
BES IVなどを用いることができる。
FIG. 2 shows a schematic configuration diagram of the electron beam drawing apparatus. The electron beam drawing device 39 mainly includes an electron gun 31, an electron beam scanning unit 32, and an electron beam focusing system 33. By applying an acceleration voltage of about 5 to 20 kV to the electron gun 31 and applying a predetermined voltage to the electron beam focusing system 33, the diameter of the electron beam 34 emitted from the electron gun 31 is a stacked compound semiconductor. On the surface of the wafer 36, which is a layer, from 0.01 to
It is designed to converge to about 0.2 μm. Also,
The electron beam scanning unit 32 is composed of, for example, a deflection coil or the like, and is configured to deflect the electron beam in a predetermined direction by a magnetic field generated by an applied current, which direction is, for example, about 0.2 to 0.5 μm. By programming so as to sequentially scan within a predetermined range in units of a dot matrix having a pitch of, it is possible to automatically irradiate the electron beam within the predetermined range. According to this method, the electron beam is irradiated in every minute area of the dot matrix as compared with the manual method, so that the cladding layer 6 and the cap layer 7 can be uniformly heated and activated. As a result, since the clad layer 6 and the cap layer 7 having low resistance can be obtained, a semiconductor light emitting device with high brightness can be obtained even if the same voltage value as that conventionally required is applied.
An electron beam drawing apparatus in which the diameter of the electron beam is reduced to about 0.01 to 0.2 μm is a product name HL700 manufactured by Hitachi, Ltd. and a product name ME manufactured by Yepec Co., USA.
BES IV or the like can be used.

【0028】前記電子線の照射は化合物半導体が積層さ
れた表面全体に行ってもよいが、前述のようにドットマ
トリクスによるプログラミングに基づく走査をすれば、
細かいパターンで走査をすることができるため、エッチ
ングにより除去する部分など不必要部分を除いた所定範
囲のみを走査させることができ、ムダがなくなり、短時
間で必要部分の活性化を行うことができる。
The electron beam irradiation may be performed on the entire surface on which the compound semiconductors are laminated, but if scanning is performed based on programming by the dot matrix as described above,
Since it is possible to scan in a fine pattern, it is possible to scan only a predetermined range excluding unnecessary parts such as a part to be removed by etching, waste is eliminated, and necessary parts can be activated in a short time. .

【0029】さらに前述の例では電子線走査ユニット3
2により電子ビームを偏向させることでドットマトリク
スの走査を行ったが、電子ビームは一定のままで、ウェ
ハ36を載置するステージ37をドットマトリクスのプ
ログラミングに基づいて移動させることによっても所定
範囲内の電子ビーム照射を行うことができる。
Further, in the above-mentioned example, the electron beam scanning unit 3
The dot matrix was scanned by deflecting the electron beam by means of 2. However, the electron beam remains constant, and the stage 37 on which the wafer 36 is mounted is moved within a predetermined range by moving based on the programming of the dot matrix. The electron beam irradiation can be performed.

【0030】つぎに図1(b)に示されるように、積層
された半導体層の表面にレジスト膜10を設け、パター
ニングして開口部を設け、たとえばCl2 およびBCl
3 の混合ガスなどの塩素系プラズマによる反応性イオン
エッチングを行い、活性層5を貫通してn型のクラッド
層4または高温バッファ層3が露出するまでエッチング
する。
Next, as shown in FIG. 1B, a resist film 10 is provided on the surface of the stacked semiconductor layers and patterned to form an opening, for example, Cl 2 and BCl.
Reactive ion etching is performed by chlorine-based plasma such as a mixed gas of 3 to penetrate the active layer 5 until the n-type cladding layer 4 or the high temperature buffer layer 3 is exposed.

【0031】ついで図1(c)に示されるように、A
u、Alなどの金属膜を蒸着、スパッタリングなどによ
り形成し、積層された化合物半導体層の表面でp型層に
電気的に接続されるp側電極8、露出した高温バッファ
層3の表面またはn型クラッド層4の表面でn型層に電
気的に接続されるn側電極9を形成する。
Then, as shown in FIG. 1 (c), A
A metal film of u, Al, or the like is formed by vapor deposition, sputtering, or the like, and the p-side electrode 8 electrically connected to the p-type layer on the surface of the stacked compound semiconductor layers, the exposed surface of the high-temperature buffer layer 3, or n. An n-side electrode 9 electrically connected to the n-type layer is formed on the surface of the mold clad layer 4.

【0032】つぎに、各チップにダイシングして、LE
Dチップが形成される。
Next, each chip is diced to obtain LE.
A D chip is formed.

【0033】前記実施例ではダブルヘテロ接合のLED
であったが、通常のpn接合のLEDや種々の構造のL
Dなどでも同様に適用できる。また、チッ化ガリウム系
化合物半導体についても、前述の組成の材料に限定され
ず、一般にAlp Gaq In1-p-q N(0≦p<1、0
<q≦1、0<p+q≦1)からなり、たとえば活性層
のバンドギャップエネルギーがクラッド層のバンドギャ
ップエネルギーより小さくなるように各組成の比率が選
定されるよう、p、qを選定して組成量を変化させたも
のでもよい。また、前記Alp Gaq In1-p-q NのN
の一部または全部をAsおよび/またはPなどで置換し
た材料でも同様に本発明を適用できる。
In the above embodiment, a double heterojunction LED
However, normal pn junction LEDs and L of various structures
The same applies to D and the like. Further, the gallium nitride based compound semiconductor is not limited to the material having the above-mentioned composition, and is generally Al p Ga q In 1 -pq N (0 ≦ p <1,0
<Q ≦ 1, 0 <p + q ≦ 1), and p and q are selected so that the composition ratios are selected such that the bandgap energy of the active layer is smaller than the bandgap energy of the cladding layer. The composition amount may be changed. In addition, N of the Al p Ga q In 1-pq N
The present invention can be similarly applied to a material in which a part or all of is replaced with As and / or P or the like.

【0034】[0034]

【発明の効果】本発明の半導体発光素子の製法によれ
ば、p型層の活性化をする必要がある部分に確実に電子
線照射を行うことができるために、低抵抗のp型層がえ
られ、発光効率が向上し輝度の大きい半導体発光素子を
うることができる。
According to the method for manufacturing a semiconductor light emitting device of the present invention, since a portion of the p-type layer that needs to be activated can be reliably irradiated with an electron beam, a p-type layer having a low resistance can be formed. Thus, it is possible to obtain a semiconductor light emitting device having improved luminous efficiency and high brightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体発光素子の製法の一実施例を示
す工程断面説明図である。
FIG. 1 is a process cross-sectional explanatory view showing an example of a method for manufacturing a semiconductor light emitting device of the present invention.

【図2】電子線描画装置の概略構成図である。FIG. 2 is a schematic configuration diagram of an electron beam drawing apparatus.

【図3】従来の半導体発光素子の一例を示す斜視図であ
る。
FIG. 3 is a perspective view showing an example of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 基板 4 n型クラッド層 5 活性層 6 p型クラッド層 31 電子銃 32 電子線走査ユニット 39 電子線描画装置 1 substrate 4 n-type clad layer 5 Active layer 6 p-type clad layer 31 electron gun 32 electron beam scanning unit 39 Electron beam drawing device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01L 21/027 H01L 21/263 H01L 21/324 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 33/00 H01L 21/027 H01L 21/263 H01L 21/324

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に少なくともn型層とp型層とを
有するチッ化ガリウム系化合物半導体層を積層し、前記
p型層の活性化処理を行う半導体発光素子の製法であっ
て、前記活性化処理をビーム径が1μm以下の電子線描
画装置を用いて所定範囲を走査することにより行う半導
体発光素子の製法。
1. A method for manufacturing a semiconductor light emitting device, comprising: laminating a gallium nitride based compound semiconductor layer having at least an n-type layer and a p-type layer on a substrate, and activating the p-type layer. A method for manufacturing a semiconductor light emitting device, which comprises performing an activation treatment by scanning a predetermined range using an electron beam drawing apparatus having a beam diameter of 1 μm or less.
【請求項2】 前記ビーム径が0.01〜0.2μmで
ある請求項1記載の半導体発光素子の製法。
2. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the beam diameter is 0.01 to 0.2 μm.
【請求項3】 前記所定範囲の走査を前記電子線描画装
置のビーム径のピッチで相対移動させながら行う請求項
1記載の半導体発光素子の製法。
3. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the scanning of the predetermined range is performed while relatively moving at a pitch of a beam diameter of the electron beam drawing apparatus.
JP05769195A 1995-03-16 1995-03-16 Manufacturing method of semiconductor light emitting device Expired - Fee Related JP3495808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05769195A JP3495808B2 (en) 1995-03-16 1995-03-16 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05769195A JP3495808B2 (en) 1995-03-16 1995-03-16 Manufacturing method of semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH08255927A JPH08255927A (en) 1996-10-01
JP3495808B2 true JP3495808B2 (en) 2004-02-09

Family

ID=13062975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05769195A Expired - Fee Related JP3495808B2 (en) 1995-03-16 1995-03-16 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3495808B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916489B1 (en) * 2007-07-27 2009-09-08 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
KR100921143B1 (en) * 2008-12-18 2009-10-12 엘지이노텍 주식회사 Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH08255927A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
KR100406201B1 (en) Light-emitting gallium nitride-based compound semiconductor device
US6821800B2 (en) Semiconductor light-emitting device and manufacturing method thereof
US5496766A (en) Method for producing a luminous element of III-group nitride
JPH08255926A (en) Semiconductor light emitting element and fabrication thereof
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
US6538265B1 (en) Indium aluminum nitride based light emitter active layer with indium rich and aluminum rich areas
US6479313B1 (en) Method of manufacturing GaN-based p-type compound semiconductors and light emitting diodes
JPH1032349A (en) Growing method for semiconductor
JPH11112030A (en) Production of iii-v compound semiconductor
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3447940B2 (en) Method for manufacturing semiconductor device
JP3495808B2 (en) Manufacturing method of semiconductor light emitting device
JP3209233B2 (en) Blue light emitting diode and method of manufacturing the same
JPH09266326A (en) Iii group nitride compound semiconductor light emitting device
JPH0888432A (en) Production of semiconductor laser
JP3180710B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP3301345B2 (en) Method for forming p-type gallium nitride-based compound semiconductor layer
US6962828B1 (en) Methods for manufacturing a light-emitting device
JPH06275867A (en) Method for converting gallium nitride-based compound semiconductor into p-type
JP3481305B2 (en) Group III nitride semiconductor light emitting device
JP2001015808A (en) Nitrogen compound semiconductor light emitting device and manufacture thereof
JPH0945962A (en) Group iii nitride semiconductor light emitting element and fabrication thereof
JP3298454B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP3340859B2 (en) Semiconductor light emitting device
JPH10178213A (en) Gallium nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees