JP3495491B2 - Steam turbine vane for gas turbine - Google Patents

Steam turbine vane for gas turbine

Info

Publication number
JP3495491B2
JP3495491B2 JP01871296A JP1871296A JP3495491B2 JP 3495491 B2 JP3495491 B2 JP 3495491B2 JP 01871296 A JP01871296 A JP 01871296A JP 1871296 A JP1871296 A JP 1871296A JP 3495491 B2 JP3495491 B2 JP 3495491B2
Authority
JP
Japan
Prior art keywords
chamber
shroud
steam
lid
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01871296A
Other languages
Japanese (ja)
Other versions
JPH09209706A (en
Inventor
卓 一柳
康意 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP01871296A priority Critical patent/JP3495491B2/en
Publication of JPH09209706A publication Critical patent/JPH09209706A/en
Application granted granted Critical
Publication of JP3495491B2 publication Critical patent/JP3495491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、翼内部を蒸気で冷
却するようにしたガスタービンの蒸気冷却静翼に関す
る。 【0002】 【従来の技術】従来のガスタービンの静翼では、圧縮機
吐出空気又はその中間段から抽気した空気を翼内部に流
して内面から冷却し、翼のメタル温度を主流のガス温度
より低いその材料の強度上許される値に維持している。 【0003】従来の空気冷却方式のガスタービンの静翼
の1例を、図3ないし図6によって説明する。ガスター
ビンの静翼の翼20の上下両側に設けられたシュラウド
11,12にはそれぞれ空気室5,5が設けられ、上方
のシュラウド11の空気室5には、その中央付近の部分
に空気の排出管22とその外側の部分に空気の供給管2
1が開口している。上方のシュラウド11の空気室5
は、供給管21に連絡する外側の室5aと排出管21に
連絡する内側の室5bに区画され、また、下方のシュラ
ウド12の空気室5も外側の室5aと内側の室5bに区
画され、かつ、外側の室5a,内側の室5bは互いに連
通しており、シュラウド11の空気室5の外側の室
a,内側の室5bとシュラウド12の空気室5の外側の
室5a,内側の室5bとは、それぞれ翼20内に設けら
れた複数の通路4で連絡されている。 【0004】図示しない圧縮機の吐出空気又はその中間
段から抽出した空気は、図3中矢印で示すように、供給
管21から外側の室5aに入り、外側の通路4を経てシ
ュラウド12の空気室外側の室5aに入り、更にシ
ュラウド12の空気室5の内側の室5bに入った上
側の通路4を経てシュラウド11の空気室5の内側の
5bに入り、排出管22から排出され、静翼の冷却を行
っている。 【0005】なお、13,14は、それぞれシュラウド
11,12の部分において、空気室5の蓋を形成する外
壁である。なお、23は、シュラウド11の空気室5の
外側の室5内の供給管21の下方に設けられた多穴の
インピンジング板であり、空気を同インピンジング板2
3の穴から噴流となって噴出させてシュラウド11に衝
突させて冷却効果を向上させるようになっている。 【0006】また、空気の供給管21と排出管22の位
置を逆にして、図3に示す矢印とは逆方向に空気を流す
ようにすることもできる。 【0007】前記の従来の空気冷却方式のガスタービン
の静翼の場合、翼内部の冷却空気を前記の通り自分の圧
縮機から取り出すので、翼の内外面間の差圧は小さい。 【0008】しかし最近に至ってガスタービンの効率向
上のため、翼内部に従来の自分の圧縮機から取り出した
空気に代り蒸気を流して冷却する方式が提案されてい
る。 【0009】この場合一般に従来の空気より高い圧力の
蒸気が使用される。例えばガスタービンの圧力比18〜
23程度の場合40ata程度の蒸気が使用される。 【0010】 【発明が解決しようとする課題】ガスタービンの静翼に
おいて、蒸気冷却を行う場合についての問題点を空気の
場合と比較して述べると、以下の通りである。 【0011】(1)従来の空気冷却の場合には、冷却空
気は冷却作用を果した後主流中に放出される。従って、
冷却空気の圧力と翼の外面との圧力差は圧力比20程度
の場合3〜4kgf/cmを超えることはなく、ま
た、翼へ冷却空気を導入する接続部分や仕切壁で洩れ零
を要求されない。一方蒸気冷却の場合には、差圧は蒸気
供給圧40ataとすると20〜40kgf/cm
達し、また、洩れはサイクル特性上許されず、僅かの洩
れがあってもガスタービンの効率低下が著しい。 【0012】(2)そこで、蒸気冷却の場合には、翼の
冷却蒸気を囲む壁は、前記の圧力差に耐え、かつ、完全
密封でなければならない。そのため、図3に示す構造を
採用した場合には、蒸気室の蓋となるシュラウドの外壁
13,14は充分な厚さを有し、かつ、シュラウド1
1,12と強固に接合されなければならない。ところが
主流ガスに接するシュラウド11,12の壁の厚さ方向
の平均メタル温度は、規設計の例によると800〜90
0℃に達する。一方蓋である外壁13,14は主流ガス
に接していないので冷却用蒸気温度(例えば300〜3
50℃)に近い。従来の空気冷却の場合、外壁13,1
4は、圧力差小でかつ、洩れ零を要求されていないので
比較的薄板でよく、その接合はシュラウドとの熱伸び差
を適当に吸収できるルーズな取り付け方法が許され、そ
の結果熱応力は低くすることができた。しかし蒸気冷却
の場合には温度差の大きな厚板同志を強固に接合するの
で大きな熱応力が発生する。 【0013】(3)現在静翼に適した耐熱合金として
は、主としてCO基合金例えばX−45、ECY768
等が採用されているが、これらの合金では、溶接性が悪
く翼シュラウド部にそれと同じ大きさ、肉厚の蓋を耐圧
強度を満足させるような溶接を行うことは容易ではな
い。また、翼に使用されるNi基耐熱合金でも、溶接は
はなはだ困難である。このために、溶接に代ってロー付
けが採用されるが、広い面積に及んで信頼性のあるロー
付けを行うことも容易ではない。 【0014】本発明は、以上の問題点を解決することが
できるガスタービンの蒸気冷却静翼を提供しようとする
ものである。 【0015】 【課題を解決するための手段】本発明は、静翼のシュラ
ウドに翼内部に流れる冷却蒸気の蒸気室を設けたガスタ
ービン蒸気冷却静翼において、上記蒸気室は、供給管に
連絡する外側の室と排出管に連絡する内側の室に区画さ
れ、上記シュラウドの上記外側の室の蓋を互いに接近し
て配置された内側の蓋と側の蓋との二重の蓋で構成
し、上記内側の蓋は上記シュラウドとの熱伸び差を吸収
可能に形成すると共にその全周が密封されるように上記
シュラウドに接合し、上記外側の蓋は上記外側の室の
外の力差による荷重に対する肉厚を有すると共に周囲
は固定されていない状態で上記シュラウドに接続されて
いることを特徴とする。 【0016】本発明では、冷却蒸気を収容するシュラウ
ドの蒸気室の洩れに対する密封作用と密封であるように
接合したことによる熱伸び差の吸収は内側の蓋が分担す
る。しかし、蒸気室の内側の蓋は、広い面に対して耐圧
強度は期待できない。そこで広い面全体の荷重は、シュ
ラウドの蒸気室内の蒸気の圧力によって内側の蓋が変形
して接近して位置する外側の蓋に接触して蒸気室の外側
の肉厚の大きい蓋が分担する。しかし、外側の蓋は周
でシュラウドに固定されていないので熱応力を軽減でき
る。しかも、本発明では、熱伸び差を吸収する蒸気室の
内側の蓋のみがシュラウドに接合されるに止まるので、
溶接性の悪い翼用耐熱合金の大規模な溶接を避けること
ができる。 【0017】 【発明の実施の形態】本発明の実施の第1の形態を、図
1によって説明する。本実施の形態は、図3〜図6に示
す空気冷却方式のガスタービンの静翼を以下述べるよう
な改良を行って蒸気冷却方式のガスタービンの静翼に適
用したものであり、図1において変更のない部分は図3
〜図6におけると同一の符号を付し、その説明を省略す
る。 【0018】即ち、本実施の形態では、供給管21に蒸
気を供給し排出管22から蒸気を排出するようにし、図
3〜図6に示される空気室5が蒸気室5に変更されてい
る。 【0019】また、上方のシュラウド11の蒸気室5
外側の室5aの蓋は、互いに接近して配置された金属製
の外側(上側)の蓋2と内側の蓋3で構成され、外側の
蓋2は蒸気室5の外側の室5aと蒸気室5外の雰囲気と
力差による荷重に耐える肉厚を有し、また、内側の
蓋3は薄板で構成されると共に縦横に形成された波形を
有するように構成され、シュラウド11の熱伸び差を吸
収できるようになっている。 【0020】図示を省略したが、下方のシュラウド(図
3に符号12で示す)にも、供給管21及び排出管22
がない点を除いて、前記の上方のシュラウド11と同様
な外側の蓋と内側の蓋を備えた蒸気室が設けられてい
る。 【0021】前記内側の蓋3の水平方向内側の周縁部
は、空気室外側の室5aと内側の室5bを区画す
るシュラウド11の部分にロー付け又は溶接によってそ
の全周が密封されるように接合され、また、内側の蓋3
の水平方向の外側の周縁部は、蒸気室外側の室5
を形成する水平方向外側のシュラウド11の部分に設け
られた溝11a内に挿入された上同部分にロー付け又
は溶接によってその全周が密封されるように接合されて
いる。これによって、内側の蓋3の下方のシュラウド1
1内には同蓋3によって密封された蒸気室5の外側の
が形成される。 【0022】前記外側の蓋2の水平方向内側の周縁部
は、蒸気室外側の室5aと内側の室5bを区画す
るシュラウド11の部分とは若干の間隙をおくように配
置され、また、外側の蓋2の水平方向の外側の周縁部
は、シュラウド11の蒸気室外側の室5を形成す
る水平方向側の部分に設けられた溝11a内にシュラ
ウド11に対して移動可能に挿入され、かつ、外側の蓋
2と溝11aとの係合によって荷重を蓋2からシュラウ
ド11に伝達することができるようになっている。 【0023】なお、シュラウド11の溝11aに外側の
蓋2を挿入するために、溝11aより上方のシュラウド
1の部分に切欠を設けて溝11aを入溝構造とする
か、外側の蓋2を分割する等の手段が採用される。 【0024】本実施の形態は以上のように構成されてい
るので、蒸気室5の外側の室5a内の蒸気温度によるシ
ュラウド11との熱伸び差は内側の蓋3によって吸収さ
れ、かつ、蒸気室5の外側の室5aの密封が保持され
る。この場合外側の蓋2は、シュラウド11に対して自
由であり、何らの熱伸び差による荷重が作用することは
ない。 【0025】また、蒸気室外側の室5内の蒸気圧
力と翼の外面との圧力差によって、内側の蓋3は外方へ
変形して外側の蓋2に接触し、荷重は外側の蓋2からシ
ュラウド11の溝11aとの係合部を経てシュラウド1
1へ伝えられる。従って、前記圧力差による荷重は充分
な肉厚を有する外側の蓋2によって分担され、内側の蓋
3にこの荷重がかかることはない。 【0026】また、本実施の形態では、薄板の内側の蓋
3の周縁部のみをシュラウド11にロー付け又は溶接に
よって接合するので、溶接性の悪い耐熱合金の大規模な
溶接をさけて製作が容易である。 【0027】本発明の実施の第2の形態を、図2によっ
て説明する。本実施の形態は、前記本発明の実施の第1
の形態において、外側の蓋2を蒸気室5の外側の室5
を形成するシュラウド11の部分を覆うように形成さ
れた車室の壁で兼用させるようにし、内側の蓋3は、前
記本発明の実施の第1の形態と同様にシュラウド11に
その全周が密封するように接合した。前記車室の壁で構
成される外側の蓋2の水平方向内側の周縁部は、シュラ
ウド11の蒸気室5の外側の室5a,内側の室5bを区
画する部分より若干の間隙をおくように配置され、ま
た、外側の蓋2下側には、シュラウド11の蒸気室5の
外側の室を形成する水平方向外側の部分が接触する
ようにしている。 【0028】本実施の形態においても、前記本発明の実
施の第1の形態と同様な作用及び効果を奏することがで
きる。 【0029】 【発明の効果】本発明に、請求項に記載された構成を具
備しているので、蒸気室の密封性を確保した状態でガス
タービンノズルの蒸気冷却静翼における高差圧に対し耐
久性が確保されると共に熱伸び差による熱応力も吸収す
ることができる。また、これに加えて、熱伸び差を吸収
する内側の蓋だけがシュラウドに密封されるように接合
されるので、広い面積にわたって信頼性の高い溶接或い
はロー付け等を内側の蓋の接合を行うことができる。 【0030】従って、主流ガス中に蒸気が洩れることが
防止され、ガスタービンノズルの信頼性が向上させると
共に、熱効率を向上させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam cooling vane of a gas turbine in which the inside of a blade is cooled by steam. 2. Description of the Related Art In a conventional vane of a gas turbine, air discharged from a compressor or air extracted from an intermediate stage thereof flows through the inside of the vane and is cooled from the inner surface. It is maintained at a value that is acceptable for the strength of the material. An example of a conventional vane of an air-cooled gas turbine will be described with reference to FIGS. Air chambers 5 and 5 are provided in shrouds 11 and 12 provided on the upper and lower sides of the vane 20 of the gas turbine stationary blade, respectively, and the air chamber 5 of the upper shroud 11 is provided with air at a portion near the center thereof. The discharge pipe 22 and the air supply pipe 2
1 is open. Air chamber 5 of upper shroud 11
Is divided into an outer chamber 5a communicating with the supply pipe 21 and an inner chamber 5b communicating with the discharge pipe 21, and the air chamber 5 of the lower shroud 12 is also divided into an outer chamber 5a and an inner chamber 5b. The outer chamber 5a and the inner chamber 5b communicate with each other, and the outer chamber 5 of the air chamber 5 of the shroud 11 is connected.
a, the inner chamber 5b and the outer chamber 5a and the inner chamber 5b of the air chamber 5 of the shroud 12 are connected by a plurality of passages 4 provided in the wing 20, respectively. [0004] air extracted from the discharge air or an intermediate stage of the compressor (not shown), as indicated by arrow in FIG enters chamber 5a of the outer from the supply pipe 21, the air shroud 12 through the outer passage 4 enters the outer chamber 5a of the chamber 5, further on entering the inner chamber 5b of the air chamber 5 of the shroud 12, it enters the inner chamber 5b of the air chamber 5 of the shroud 11 through the inside of the passage 4, the discharge pipe 22 And cooling the stationary blade. [0005] Reference numerals 13 and 14 denote outer walls forming the lid of the air chamber 5 at the shrouds 11 and 12, respectively. In addition, 23 is the air chamber 5 of the shroud 11.
An impinging plate multiwell provided below the supply pipe 21 outside the chamber 5 a, the in-air pins Managing plate 2
The nozzle 3 is jetted out as a jet and collides with the shroud 11 to improve the cooling effect. Further, the positions of the air supply pipe 21 and the discharge pipe 22 can be reversed so that the air flows in the direction opposite to the arrow shown in FIG. In the case of the stationary blade of the conventional air-cooled gas turbine described above, since the cooling air inside the blade is taken out from its own compressor as described above, the differential pressure between the inner and outer surfaces of the blade is small. However, recently, in order to improve the efficiency of a gas turbine, a system has been proposed in which steam is flown inside the blades instead of the air taken out of the conventional compressor to cool the blade. In this case, steam at a higher pressure than conventional air is generally used. For example, a gas turbine pressure ratio of 18 to
In the case of about 23, about 40 ata steam is used. Problems to be solved when steam cooling is performed in a stationary blade of a gas turbine in comparison with the case of air are as follows. (1) In the case of conventional air cooling, cooling air is discharged into the mainstream after performing a cooling function. Therefore,
The pressure difference between the pressure of the cooling air and the outer surface of the blade does not exceed 3 to 4 kgf / cm2 when the pressure ratio is about 20. Also, zero leakage is required at the connection part or partition wall for introducing the cooling air to the blade. Not done. On the other hand, in the case of steam cooling, when the steam supply pressure is 40 ata, the differential pressure reaches 20 to 40 kgf / cm 2. Leakage is not allowed due to cycle characteristics, and even if there is a slight leak, the efficiency of the gas turbine is significantly reduced. . (2) Therefore, in the case of steam cooling, the wall surrounding the cooling steam of the blade must withstand the above-mentioned pressure difference and be completely sealed. For this reason, when the structure shown in FIG. 3 is adopted, the outer walls 13 and 14 of the shroud serving as the lid of the steam chamber have a sufficient thickness and the shroud 1
It must be firmly joined with 1,12. However, according to the standard design example, the average metal temperature in the thickness direction of the walls of the shrouds 11 and 12 in contact with the mainstream gas is 800 to 90.
Reach 0 ° C. On the other hand, since the outer walls 13 and 14 as the lids are not in contact with the mainstream gas, the cooling steam temperature (for example, 300 to 3)
50 ° C). In the case of conventional air cooling, the outer walls 13, 1
No. 4 can be made of a relatively thin plate because the pressure difference is small and zero leakage is not required, and the connection is allowed to be a loose mounting method that can appropriately absorb the thermal expansion difference with the shroud, and as a result, the thermal stress is reduced. Could be lower. However, in the case of steam cooling, thick plates having a large temperature difference are strongly joined to each other, so that a large thermal stress is generated. (3) The heat-resistant alloys suitable for the stationary blade are mainly CO-based alloys such as X-45 and ECY768.
However, these alloys have poor weldability, and it is not easy to perform welding such that a lid having the same size and thickness as the wing shroud portion satisfies the pressure resistance. In addition, even with Ni-base heat-resistant alloys used for blades, welding is extremely difficult. For this reason, brazing is used instead of welding, but it is not easy to perform reliable brazing over a large area. An object of the present invention is to provide a steam-cooled vane for a gas turbine which can solve the above problems. According to the present invention, there is provided a gas turbine steam cooling vane in which a steam chamber for cooling steam flowing inside the vane is provided in a shroud of the vane, wherein the steam chamber is connected to a supply pipe.
It is divided into an outer chamber to contact and an inner chamber to
It is, constituted by a double lid between the outer the inner side arranged close to each other the lid of the chamber lid and the outer side of the lid of the shroud, the inside of the lid is the differential thermal expansion between the shroud was joined to the <br/> shroud so that the entire periphery is sealed as well as absorbable form, the outer lid wall with respect to the load by the pressure difference between the inner <br/> outside of the outer chamber around and having a thickness, characterized in that it is connected to the shroud in a state not fixed. In the present invention, the inner lid is responsible for absorbing the difference in thermal expansion due to the sealing function of the shroud containing the cooling steam and the sealing of the steam chamber against leakage. However, the inner lid of the steam chamber cannot be expected to have pressure resistance against a wide surface. Thus, the load on the entire wide surface is deformed by the pressure of the steam in the steam chamber of the shroud, and the inner lid is deformed and comes into contact with the outer lid which is located close to the shroud. However, the thermal stress can be reduced because the outer lid is not fixed to the shroud at ambient. Moreover, according to the present invention, only the lid inside the steam chamber that absorbs the difference in thermal expansion is joined to the shroud.
Large-scale welding of heat-resistant alloys for wings with poor weldability can be avoided. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. In this embodiment, the stationary blade of the air-cooled gas turbine shown in FIGS. 3 to 6 is applied to a stationary blade of a steam-cooled gas turbine by making improvements as described below. Fig. 3
6 are denoted by the same reference numerals as in FIG. 6, and description thereof will be omitted. That is, in the present embodiment, the steam is supplied to the supply pipe 21 and the steam is discharged from the discharge pipe 22, and the air chamber 5 shown in FIGS. . The steam chamber 5 of the upper shroud 11
The lid of the outer chamber 5a is composed of a metal outer (upper) lid 2 and an inner lid 3 arranged close to each other, and the outer lid 2 is formed of the outer chamber 5a of the steam chamber 5 and the steam chamber. has a wall thickness to withstand the loads due to pressure difference between the 5 outside atmosphere, also inside of the lid 3 is configured to have a waveform which is formed vertically and horizontally with composed of a thin plate, the thermal expansion of the shroud 11 The difference can be absorbed. Although not shown, a supply pipe 21 and a discharge pipe 22 are also provided on a lower shroud (indicated by reference numeral 12 in FIG. 3).
There is provided a steam chamber with an outer lid and an inner lid similar to the upper shroud 11 except that there is no. The horizontal inner periphery of the inside of the lid 3, the entire periphery thereof is sealed to the portion of the shroud 11 which partitions the chamber 5a of the outer air chamber 5 and the inner chamber 5b by soldering or welding And the inner lid 3
Peripheral portion, outside the steam chamber 5 chamber 5 a of the horizontal outer
Is inserted into a groove 11a provided in a portion of the shroud 11 on the outer side in the horizontal direction, and is joined to the same portion by brazing or welding so that the entire periphery thereof is sealed. Thereby, the shroud 1 below the inner lid 3
Outside of the chamber 5 a of the steam chamber 5 sealed by the lid 3 are formed in one. The periphery of the horizontal direction inside the outer cover 2, a portion of the shroud 11 defining the outer chamber 5a and the inner chamber 5b of the steam chamber 5 is arranged so as to place a slight gap, the horizontal direction of the outer periphery of the outer cover 2, relative to the shroud 11 in a groove 11a provided in the portion of the horizontal direction in the side forming the outside of the chamber 5 a of the steam chamber 5 of the shroud 11 A load is movably inserted, and a load can be transmitted from the lid 2 to the shroud 11 by engagement between the outer lid 2 and the groove 11a. In order to insert the outer lid 2 into the groove 11a of the shroud 11, a notch is provided in a portion of the shroud 11 above the groove 11a so that the groove 11a has a grooved structure or the outer lid 2 has a notch. Is adopted. Since the present embodiment is constructed as described above, the difference in thermal expansion between the shroud 11 and the shroud 11 due to the steam temperature in the outer chamber 5a of the steam chamber 5 is absorbed by the inner lid 3, and The sealing of the chamber 5a outside the chamber 5 is maintained. In this case, the outer lid 2 is free with respect to the shroud 11, so that no load due to any thermal expansion difference acts. Further, the pressure difference between the steam pressure and the wing of the outer surface of the outer chamber 5 a of the steam chamber 5, the inside of the lid 3 in contact with the lid 2 outside the deformed outwardly, load outside From the lid 2 of the shroud 11 through the engagement portion with the groove 11a of the shroud 11.
It is conveyed to 1. Therefore, the load due to the pressure difference is shared by the outer lid 2 having a sufficient thickness, and the load is not applied to the inner lid 3. In the present embodiment, since only the peripheral edge of the lid 3 inside the thin plate is joined to the shroud 11 by brazing or welding, it can be manufactured without large-scale welding of a heat-resistant alloy having poor weldability. Easy. A second embodiment of the present invention will be described with reference to FIG. This embodiment is a first embodiment of the present invention.
In the embodiment, the outer lid 2 is attached to the outer chamber 5 of the steam chamber 5.
a of the shroud 11 forming a portion of the vehicle, the inner cover 3 is provided on the shroud 11 in the same manner as in the first embodiment of the present invention. Were joined so as to be sealed. The horizontal inner peripheral edge of the outer lid 2 formed of the wall of the vehicle compartment has a slight gap from a portion of the shroud 11 that defines the outer chamber 5a and the inner chamber 5b of the steam chamber 5. The shroud 11 has a steam chamber 5 disposed below the outer lid 2 .
Horizontal outer portion forming an outer chamber 5 a are in contact. In this embodiment, the same operations and effects as those of the first embodiment of the present invention can be obtained. According to the present invention, since the present invention is provided with the configuration described in the claims, it is possible to prevent a high differential pressure in the steam cooling vane of the gas turbine nozzle while maintaining the sealing performance of the steam chamber. Durability is ensured and thermal stress due to the difference in thermal expansion can be absorbed. In addition, since only the inner lid that absorbs the difference in thermal expansion is joined so as to be sealed to the shroud, the inner lid is joined by welding or brazing with high reliability over a wide area. be able to. Accordingly, it is possible to prevent the steam from leaking into the mainstream gas, thereby improving the reliability of the gas turbine nozzle and improving the thermal efficiency.

【図面の簡単な説明】 【図1】本発明の実施の第1の形態の断面図である。 【図2】本発明の実施の第2の形態の断面図である。 【図3】従来の空気冷却方式のガスタービン静翼の断面
図である。 【図4】図3のA−A矢視断面図である。 【図5】図3のB−B矢視断面図である。 【図6】図3のC矢視図である。 【符号の説明】 2 外側の蓋 3 内側の蓋 4 通路 5 蒸気(空気室) 5a 外側の室5b 内側の室 11,12 シュラウド 11a 溝 20 翼 21 供給管 22 排出管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a first embodiment of the present invention. FIG. 2 is a sectional view of a second embodiment of the present invention. FIG. 3 is a cross-sectional view of a conventional air-cooled gas turbine vane. FIG. 4 is a sectional view taken along the line AA of FIG. 3; FIG. 5 is a sectional view taken along the line BB of FIG. 3; FIG. 6 is a view taken in the direction of the arrow C in FIG. 3; [Description of Signs] 2 outer lid 3 inner lid 4 passage 5 steam chamber (air chamber) 5a outer chamber 5b inner chamber 11, 12 shroud 11a groove 20 wing 21 supply pipe 22 discharge pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−257405(JP,A) 特開 平8−28205(JP,A) 特開 平6−93801(JP,A) 特開 平2−241902(JP,A) 特開 平4−311604(JP,A) 特開 平4−234537(JP,A) 特開 昭60−204904(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01D 9/02 - 9/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-257405 (JP, A) JP-A-8-28205 (JP, A) JP-A-6-93801 (JP, A) JP-A-2- 241902 (JP, A) JP-A-4-311604 (JP, A) JP-A-4-234537 (JP, A) JP-A-60-204904 (JP, A) (58) Fields investigated (Int. 7 , DB name) F01D 9/02-9/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 静翼のシュラウドに翼内部に流れる冷却
蒸気の蒸気室を設けたガスタービン蒸気冷却静翼におい
て、上記蒸気室は、供給管に連絡する外側の室と排出管
に連絡する内側の室に区画され、上記シュラウドの上記
外側の室の蓋を互いに接近して配置された内側の蓋と
側の蓋との二重の蓋で構成し、上記内側の蓋は上記シュ
ラウドとの熱伸び差を吸収可能に形成すると共にその全
周が密封されるように上記シュラウドに接合し、上記
側の蓋は上記外側の室の内外の力差による荷重に対す
る肉厚を有すると共に周囲は固定されていない状態で
シュラウドに接続されていることを特徴とするガスタ
ービンの蒸気冷却静翼。
(57) [Claim 1] In a gas turbine steam cooling vane having a steam chamber for cooling steam flowing inside the vane in a shroud of the vane, the steam chamber is connected to an outer side communicating with a supply pipe. Chamber and discharge pipe
The compartment is partitioned into an inner chamber and the shroud above
Inner side of the lid and the outer of the outer chamber lid disposed close to each other
Constituted by a double cover the side of the lid, the inner lid is joined to the shroud so that the entire periphery is sealed as well as absorbable form the thermal expansion difference between the shoe <br/> Loud and, on the outer <br/> side of the lid in a state where the ambient is not fixed and has a wall thickness for the load due to pressure difference between the inside and the outside of the outer chamber
Steam cooling vanes of a gas turbine, characterized in that it is connected to the serial shroud.
JP01871296A 1996-02-05 1996-02-05 Steam turbine vane for gas turbine Expired - Fee Related JP3495491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01871296A JP3495491B2 (en) 1996-02-05 1996-02-05 Steam turbine vane for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01871296A JP3495491B2 (en) 1996-02-05 1996-02-05 Steam turbine vane for gas turbine

Publications (2)

Publication Number Publication Date
JPH09209706A JPH09209706A (en) 1997-08-12
JP3495491B2 true JP3495491B2 (en) 2004-02-09

Family

ID=11979275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01871296A Expired - Fee Related JP3495491B2 (en) 1996-02-05 1996-02-05 Steam turbine vane for gas turbine

Country Status (1)

Country Link
JP (1) JP3495491B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517312B1 (en) * 2000-03-23 2003-02-11 General Electric Company Turbine stator vane segment having internal cooling circuits
US6413040B1 (en) * 2000-06-13 2002-07-02 General Electric Company Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment

Also Published As

Publication number Publication date
JPH09209706A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
US5259730A (en) Impingement cooled airfoil with bonding foil insert
US7175387B2 (en) Seal arrangement for reducing the seal gaps within a rotary flow machine
JP3426902B2 (en) Gas turbine cooling vane
JP3316415B2 (en) Gas turbine cooling vane
JP3316405B2 (en) Gas turbine cooling vane
JP4641916B2 (en) Turbine nozzle with corners cooled
JP4070856B2 (en) Turbine blade with slot cooling blade tip
EP1905956B1 (en) Ceramic matrix composite vane insulator
US6224337B1 (en) Thermal barrier coated squealer tip cavity
US5927946A (en) Turbine blade having recuperative trailing edge tip cooling
JP4527848B2 (en) Airfoil with insulated tip
US8454310B1 (en) Compressor blade with tip sealing
KR101180547B1 (en) Turbine blade
JPS6119804B2 (en)
JP2006083850A (en) Device and method for cooling turbine bucket platform
JPH10259703A (en) Shroud for gas turbine and platform seal system
JP2012077749A (en) Apparatus and method for cooling platform region of turbine rotor blade
US6406254B1 (en) Cooling circuit for steam and air-cooled turbine nozzle stage
JP5425458B2 (en) Turbine nozzle compartment
JPS63263251A (en) Cooling structure for trailing edge of nozzle flap
EP3192971A1 (en) Gas turbine blade with platform cooling
JP3495491B2 (en) Steam turbine vane for gas turbine
JPH1037704A (en) Stator blade of gas turbine
CA2263576C (en) Stationary blade of gas turbine
CN210289846U (en) Shrouded cooling turbine rotor blade leading edge cooling structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees