JP3489324B2 - Method for producing diaryl carbonate - Google Patents

Method for producing diaryl carbonate

Info

Publication number
JP3489324B2
JP3489324B2 JP07025496A JP7025496A JP3489324B2 JP 3489324 B2 JP3489324 B2 JP 3489324B2 JP 07025496 A JP07025496 A JP 07025496A JP 7025496 A JP7025496 A JP 7025496A JP 3489324 B2 JP3489324 B2 JP 3489324B2
Authority
JP
Japan
Prior art keywords
reaction
oxalate
carbonate
alkaline earth
diphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07025496A
Other languages
Japanese (ja)
Other versions
JPH09255628A (en
Inventor
祥史 山本
常実 杉本
敏雄 蔵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP07025496A priority Critical patent/JP3489324B2/en
Publication of JPH09255628A publication Critical patent/JPH09255628A/en
Application granted granted Critical
Publication of JP3489324B2 publication Critical patent/JP3489324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ポリカーボネート
の製造原料として有用な炭酸ジアリールを製造する方法
に関する。 【0002】 【従来の技術】炭酸ジアリールを製造する方法として
は、ホスゲンと芳香族ヒドロキシ化合物をアルカリ存在
下で反応させる方法(特開昭62−190146号公報
など)や、炭酸ジアルキルと芳香族ヒドロキシ化合物を
触媒存在下でエステル交換反応させる方法(特公昭56
−42577号公報、特公平1−5588号公報など)
がよく知られている。しかしながら、前者のホスゲンを
用いる方法は、ホスゲン自体が毒性の強い化合物である
ことや多量のアルカリを使用することなどから工業的に
は必ずしも優れた方法ではない。また、後者のエステル
交換による方法は、この方法に係わる多くの特許に記載
されているように高活性な触媒を用いているにも拘わら
ず反応速度が充分ではなく、これを補うために大規模の
装置を必要とするなどの問題を有している。 【0003】その他の方法として、シュウ酸ジアリール
を脱カルボニル反応させて炭酸ジアリールを生成させる
方法が知られているが、この方法は反応速度が遅い上
に、目的の炭酸ジアリールの選択率が著しく低いという
問題を有している。即ち、シュウ酸ジフェニルを蒸留フ
ラスコ中で煮沸して炭酸ジフェニルを製造する方法(有
機合成協会誌,5,報47(1948),70)では、
反応速度が遅く、この文献記載の反応式にも示されまた
副生物として単離されているようにフェノールが副生
し、更に二酸化炭素も副生して、目的の炭酸ジフェニル
の選択率が著しく低くなる。 【0004】また、シュウ酸ジエステルをアルコラート
触媒の存在下に50〜150℃に液相で加熱して炭酸ジ
エステルを製造する方法も提案されているが(USP4
544507号公報)、この方法では、この公報記載の
実施例に示されるように、シュウ酸ジフェニルをカリウ
ムフェノキシド触媒の存在下で加熱しても、主生成物と
して得られるものは原料のシュウ酸ジフェニルであっ
て、目的の炭酸ジフェニルは得られない。 【0005】 【発明が解決しようとする課題】本発明は、毒性の強い
化合物であるホスゲンを用いることなく、充分な反応速
度で容易に炭酸ジアリールを製造できる方法を提供する
ことを課題とする。即ち、本発明は、シュウ酸ジアリー
ルから炭酸ジアリールを製造する方法において、炭酸ジ
アリールを高い反応速度及び高い選択率で製造できる方
法を提供することを課題とするものである。 【0006】 【課題を解決するための手段】本発明の課題は、シュウ
酸ジリールをアルカリ土類金属の酸化物の存在下に気相
で加熱して脱カルボニル反応させることを特徴とする炭
酸ジリールの製造法によって達成される。 【0007】 【発明の実施の形態】本発明では、炭酸ジアリールは次
式で示されるシュウ酸ジアリールの脱カルボニル反応に
よって生成する。 【0008】 【化1】 (式中、Arはアリール基を示す) 【0009】前記のアリール基としては、(1)フェニ
ル基、(2)置換基として、(a)メチル基、エチル基
等の炭素数1〜12のアルキル基、(b)メトキシ基、
エトキシ基等の炭素数1〜12のアルコキシ基、(c)
ニトロ基、又は(d)フッ素原子、塩素原子等のハロゲ
ン原子などを有する置換フェニル基、及び(3)ナフチ
ル基などが挙げられる。 【0010】前記置換フェニル基は各種異性体を含む。
これら異性体としては、(a)2−(又は3−、4−)
メチルフェニル基、2−(又は3−、4−)エチルフェ
ニル基等の炭素数1〜12のアルキル基を有する2−
(又は3−、4−)アルキルフェニル基、(b)2−
(又は3−、4−)メトキシフェニル基、2−(又は3
−、4−)エトキシフェニル基等の炭素数1〜12のア
ルコキシ基を有する2−(又は3−、4−)アルコキシ
フェニル基、(c)2−(又は3−、4−)ニトロフェ
ニル基、(d)2−(又は3−、4−)フルオロフェニ
ル基、2−(又は3−、4−)クロロフェニル基等のハ
ロゲン原子を有する2−(又は3−、4−)ハロフェニ
ル基などが挙げられる。 【0011】本発明では、触媒としてアルカリ土類金属
の酸化物を存在させて、前記の脱カルボニル反応が行わ
れる。アルカリ土類金属としては、マグネシウム、カル
シウム、ストロンチウム、バリウム等が挙げられる。こ
れらアルカリ土類金属の中ではマグネシウム、カルシウ
ムが好ましく、特にはマグネシウムが好ましい。 【0012】アルカリ土類金属の酸化物としては、マグ
ネシウム、カルシウム、ストロンチウム、バリウム等の
アルカリ土類金属の酸化物や、これらアルカリ土類金属
の水酸化物、炭酸塩、硝酸塩又は硫酸塩を加熱処理して
得られるものや、これらアルカリ土類金属又はその化合
物を酸素共存下で加熱処理して得られるものが少なくと
も一種以上用いられる。 【0013】前記のアルカリ土類金属の化合物として
は、塩化マグネシウム、塩化カルシウム、塩化ストロン
チウム、塩化バリウム、臭化マグネシウム、臭化カルシ
ウム、臭化ストロンチウム、臭化バリウム等のアルカリ
土類金属のハロゲン化物や、ギ酸マグネシウム、ギ酸カ
ルシウム、ギ酸ストロンチウム、ギ酸バリウム、酢酸マ
グネシウム、酢酸カルシウム、酢酸ストロンチウム、酢
酸バリウム、シュウ酸マグネシウム、シュウ酸カルシウ
ム、シュウ酸ストロンチウム、シュウ酸バリウム等のア
ルカリ土類金属の脂肪族モノ又はジカルボン酸塩などが
挙げられる。 【0014】アルカリ土類金属の酸化物は、アルミナ、
シリカ、シリカアルミナ、ゼオライト、ケイソウ土、軽
石、活性炭等の触媒担体に、アルカリ土類金属の水酸化
物、炭酸塩、硝酸塩、硫酸塩及び/又は前記のアルカリ
土類金属の化合物を担持させた後、酸素共存下で加熱処
理して担持触媒として用いることもできる。このときの
アルカリ土類金属化合物の担持量は、担体に対してアル
カリ金属として通常0.1〜50重量%、好ましくは
0.5〜30重量%である。 【0015】担持触媒を調製する方法は特別なものであ
る必要はなく、例えば含浸法、混練法、沈着法、共沈
法、蒸発乾固法、イオン交換法等の通常実施される方法
により、アルカリ土類金属の水酸化物、炭酸塩、硝酸
塩、硫酸塩及び/又は前記のアルカリ土類金属の化合物
を触媒担体に担持させた後、乾燥、焼成(加熱処理)す
る方法によって調製することができる。乾燥は空気中5
0〜100℃で、焼成(加熱処理)は空気中150〜5
00℃で通常行われる。 【0016】アルカリ土類金属の酸化物もしくはその担
持触媒は、粉末、粒状もしくは成型体で使用される。そ
のサイズは特に限定されるものではないが、通常、粉末
では20〜100μmφのもの、粒状では4〜200メ
ッシュのもの、成型体では長さ0.5〜10mmのもの
が好適に使用される。 【0017】シュウ酸ジアリールの脱カルボニル反応
は、触媒としてアルカリ土類金属の酸化物を存在させて
シュウ酸ジアリールを加熱することによって行われる。
このとき、前記反応式に従って、シュウ酸ジアリールか
ら炭酸ジアリールが生成すると共に一酸化炭素が発生す
る。反応は気相連続式で行うのが工業的に有利である。
触媒は反応系で固定床、移動床のいずれの形態でも使用
されうるが、通常は固定床で使用される。また、反応器
としては、例えばステンレス鋼製や石英製の反応管が使
用される。 【0018】気相連続式で反応を行う場合、脱カルボニ
ル反応は、前記触媒を充填した反応器に、通常、反応温
度が200〜600℃、好ましくは300〜500℃、
空間速度が10〜10000hr-1、好ましくは50〜
5000hr-1の条件で、シュウ酸ジアリール及び窒素
ガス等の不活性ガスを含有する原料ガスを供給すること
によって行われる。反応圧力は気相で反応を行うことが
できれば特に制限されないが、通常は常圧もしくは減圧
下で反応を行うのが好ましい。シュウ酸ジアリールは、
例えば固体状態、溶融液状態又は溶媒に溶解された状態
のシュウ酸ジアリールを予め気化器又は気化層等で気化
させて、窒素ガス等の不活性ガスと共に反応器に導入す
ることによって供給される。また、反応中、管壁に付着
する反応生成物を溶解させて補集するために、スルホラ
ン、N−メチルピロリドン、ジメチルイミダゾリドン等
の非プロトン性極性溶媒を反応管の下部から供給するこ
ともできる。反応後、生成した炭酸ジアリールは蒸留等
により分離精製される。 【0019】 【実施例】次に、実施例及び比較例を挙げて本発明を具
体的に説明する。なお、シュウ酸ジフェニルの転化率及
び炭酸ジフェニルの選択率は次式により求めた。 【0020】 【数1】 【0021】 【数2】 【0022】実施例1 内径10mmの石英ガラス製反応管に1〜3mmφに成
型した水酸化マグネシウム1mlを充填した後、反応管
を垂直に固定し、その回りにマントルヒーターを取り付
けて、窒素ガスを流しながら、反応管を450℃に加熱
制御した。1時間加熱処理して酸化マグネシウムを生成
させて触媒を調製した後、反応管の温度を350℃にな
るように制御した。次いで、165℃に加熱制御された
ステンレス鋼製のマイクロフィーダーによりシュウ酸ジ
フェニルの溶融液を反応管に導いて、常圧下、窒素ガス
を流しながら、反応管上部で気化させて触媒層に供給
し、350℃で15時間反応を行った。このとき、シュ
ウ酸ジフェニルの供給量は4.4mmol/hrで、シ
ュウ酸ジフェニル及び窒素ガスを含む原料ガスの空間速
度は5000hr-1であった。なお、反応中、反応管壁
に付着する反応生成物を溶解させて補集するために、触
媒層の下30mmの位置にスルホランをメタリングポン
プにより10ml/hrで供給した。 【0023】得られた反応生成物をガスクロマトグラフ
ィー(カラム温度:130〜170℃、注入口温度:1
80℃)により分析したところ、シュウ酸ジフェニルの
転化率は13.6%で、炭酸ジフェニルが0.37mm
ol/hrで生成していた(選択率:61.8%)。な
お、分析操作によるシュウ酸ジフェニルからの炭酸ジフ
ェニルの生成は認められなかった。 【0024】比較例1 実施例1において、成型した水酸化マグネシウムを石英
ビーズ(3mmφ)1mlに代えたほかは、実施例1と
同様に反応と分析を行った。その結果、シュウ酸ジフェ
ニルの転化率は12.0%で、炭酸ジフェニルが0.1
6mmol/hrで生成していた(選択率:30.3
%)。 【0025】実施例2 実施例1において、反応温度を400℃に変えたほか
は、実施例1と同様に反応と分析を行った。その結果、
シュウ酸ジフェニルの転化率は25.0%で、炭酸ジフ
ェニルが0.84mmol/hrで生成していた(選択
率:76.3%)。 【0026】比較例2 実施例2において、成型した水酸化マグネシウムを石英
ビーズ(3mmφ)1mlに代えたほかは、実施例2と
同様に反応と分析を行った。その結果、シュウ酸ジフェ
ニルの転化率は21.7%で、炭酸ジフェニルが0.4
0mmol/hrで生成していた(選択率:40.9
%)。 【0027】実施例3 実施例1において、成型した水酸化マグネシウムを1〜
3mmφに成型した水酸化カルシウム1mlに代えたほ
かは、実施例1と同様に反応と分析を行った。その結
果、シュウ酸ジフェニルの転化率は33.6%で、炭酸
ジフェニルが0.46mmol/hrで生成していた
(選択率:31.2%)。 【0028】実施例4 酢酸マグネシウム四水和物3.96gを水10mlに溶
解した液に10〜20メッシュのシリカ5gを浸漬し
て、シリカ担体に酢酸マグネシウムを含浸させた後、蒸
発乾固、乾燥(空気中、80℃、2時間)及び焼成(空
気中、500℃、3時間)を行って、担持触媒(MgO
−SiO2 )を調製した。酸化マグネシウムの担持量は
アルカリ土類金属としてシリカ担体に対して9重量%で
あった。実施例2において、触媒を上記の担持触媒0.
52g(1ml)に代えたほかは、実施例2と同様に反
応と分析を行った。その結果、シュウ酸ジフェニルの転
化率は25.0%で、炭酸ジフェニルが0.58mmo
l/hrで生成していた(選択率:52.4%)。 【0029】比較例3 実施例4において、担持触媒(MgO−SiO2 )をシ
リカ担体1mlのみに代えたほかは、実施例4と同様に
反応と分析を行った。その結果、シュウ酸ジフェニルの
転化率は21.2%で、炭酸ジフェニルが0.10mm
ol/hrで生成していた(選択率:11.9%)。実
施例1〜4及び比較例1〜3の結果を表1に示す。 【0030】 【表1】 【0031】比較例4 温度計、攪拌機及び還流冷却管を備えた100ml容ガ
ラス製反応器にシュウ酸ジフェニル5.0g(20.7
mmol)を入れて容器の空間部をアルゴンガスで置換
した後、330℃まで昇温した。そして、常圧下、この
温度で3時間液相で加熱(煮沸)して脱カルボニル反応
を行った。反応終了後、容器を室温まで冷却して実施例
1と同様に分析を行ったところ、炭酸ジフェニルが0.
18g(0.84mmol)生成していて(生成速度:
0.28mmol/hr)、その選択率は37.7%で
あった。 【0032】比較例5 ガス排気管を有し、温度計及び攪拌機を備えた内容積9
0mlのステンレス鋼製反応器に、シュウ酸ジフェニル
5.0g(20.7mmol)、カリウムフェノラート
0.5g(3.8mmol)及びテトラヒドロフラン
5.0gを入れ、容器の空間部をアルゴンガスで置換し
た後、100℃まで昇温した。そして、常圧下、この温
度で3時間液相で加熱して脱カルボニル反応を行った。
反応終了後、容器を室温まで冷却して実施例1と同様に
分析を行ったところ、炭酸ジフェニルの生成は認められ
なかった。 【0033】 【発明の効果】本発明により、毒性の強い化合物である
ホスゲンを用いることなく安全に、シュウ酸ジアリール
から炭酸ジアリールを高い反応速度及び高い選択率で容
易に製造することができる。
Description: TECHNICAL FIELD [0001] The present invention relates to a method for producing a diaryl carbonate useful as a raw material for producing a polycarbonate. [0002] As a method for producing a diaryl carbonate, a method of reacting phosgene with an aromatic hydroxy compound in the presence of an alkali (Japanese Patent Application Laid-Open No. 62-190146), a method of producing a dialkyl carbonate and an aromatic hydroxy compound, and the like. A method of subjecting a compound to a transesterification reaction in the presence of a catalyst (JP-B-56
Japanese Patent No. 42577, Japanese Patent Publication No. 1-5588)
Is well known. However, the former method using phosgene is not necessarily industrially excellent because phosgene itself is a highly toxic compound and a large amount of alkali is used. In addition, the latter transesterification method does not have a sufficient reaction rate in spite of using a highly active catalyst as described in many patents relating to this method. There is a problem that such a device is required. As another method, a method is known in which a diaryl oxalate is subjected to a decarbonylation reaction to form a diaryl carbonate. However, this method has a low reaction rate and a remarkably low selectivity for a target diaryl carbonate. There is a problem that. That is, in the method of producing diphenyl carbonate by boiling diphenyl oxalate in a distillation flask (Journal of the Society of Organic Synthesis, 5, 47 (1948), 70),
The reaction rate is slow, phenol is by-produced as shown in the reaction formula described in this document and isolated as a by-product, and carbon dioxide is also by-produced, resulting in a marked selectivity for the target diphenyl carbonate. Lower. A method has also been proposed in which oxalic acid diester is heated in the liquid phase at 50 to 150 ° C. in the presence of an alcoholate catalyst to produce a carbonic acid diester (USP4).
In this method, even when diphenyl oxalate is heated in the presence of a potassium phenoxide catalyst, the main product obtained as a starting material is diphenyl oxalate, as shown in the examples described in this publication. However, the desired diphenyl carbonate cannot be obtained. [0005] An object of the present invention is to provide a method for easily producing a diaryl carbonate at a sufficient reaction rate without using phosgene which is a highly toxic compound. That is, an object of the present invention is to provide a method for producing diaryl carbonate from diaryl oxalate, which method can produce diaryl carbonate with a high reaction rate and a high selectivity. SUMMARY OF THE INVENTION An object of the present invention is to provide a diaryl carbonate characterized in that the diaryl oxalate is heated in the gas phase in the presence of an oxide of an alkaline earth metal to cause a decarbonylation reaction. Is achieved. DETAILED DESCRIPTION OF THE INVENTION In the present invention, a diaryl carbonate is formed by a decarbonylation reaction of a diaryl oxalate represented by the following formula. [0008] (In the formula, Ar represents an aryl group.) The aryl group is (1) a phenyl group, and (2) as a substituent, (a) a methyl group or an ethyl group having 1 to 12 carbon atoms. Alkyl group, (b) methoxy group,
An alkoxy group having 1 to 12 carbon atoms such as an ethoxy group, (c)
Examples thereof include a nitro group or (d) a substituted phenyl group having a halogen atom such as a fluorine atom and a chlorine atom, and (3) a naphthyl group. The substituted phenyl group includes various isomers.
These isomers include (a) 2- (or 3-, 4-)
2- having an alkyl group having 1 to 12 carbon atoms such as a methylphenyl group and a 2- (or 3-, 4-) ethylphenyl group;
(Or 3-, 4-) alkylphenyl group, (b) 2-
(Or 3-, 4-) methoxyphenyl group, 2- (or 3)
A 2- (or 3-, 4-) alkoxyphenyl group having an alkoxy group having 1 to 12 carbon atoms, such as an-, 4-) ethoxyphenyl group, and (c) a 2- (or 3-, 4-) nitrophenyl group , (D) a 2- (or 3-, 4-) halophenyl group having a halogen atom such as a 2- (or 3-, 4-) fluorophenyl group or a 2- (or 3-, 4-) chlorophenyl group; No. In the present invention, the above-mentioned decarbonylation reaction is carried out in the presence of an alkaline earth metal oxide as a catalyst. Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like. Among these alkaline earth metals, magnesium and calcium are preferred, and magnesium is particularly preferred. As the alkaline earth metal oxide, an oxide of an alkaline earth metal such as magnesium, calcium, strontium and barium, or a hydroxide, carbonate, nitrate or sulfate of these alkaline earth metals is heated. At least one of those obtained by heat treatment and those obtained by heat treatment of these alkaline earth metals or compounds thereof in the presence of oxygen are used. Examples of the alkaline earth metal compound include halides of alkaline earth metals such as magnesium chloride, calcium chloride, strontium chloride, barium chloride, magnesium bromide, calcium bromide, strontium bromide and barium bromide. Alkaline earth metal aliphatics such as magnesium formate, calcium formate, strontium formate, barium formate, magnesium acetate, calcium acetate, strontium acetate, barium acetate, magnesium oxalate, calcium oxalate, strontium oxalate, barium oxalate Mono or dicarboxylates and the like can be mentioned. The oxide of the alkaline earth metal is alumina,
A catalyst carrier such as silica, silica alumina, zeolite, diatomaceous earth, pumice, activated carbon, etc., was loaded with a hydroxide, carbonate, nitrate, sulfate and / or a compound of the above alkaline earth metal of an alkaline earth metal. Thereafter, heat treatment can be performed in the presence of oxygen to use as a supported catalyst. At this time, the loading amount of the alkaline earth metal compound is usually 0.1 to 50% by weight, preferably 0.5 to 30% by weight as alkali metal with respect to the carrier. The method for preparing the supported catalyst does not need to be a special one. It can be prepared by a method in which an alkaline earth metal hydroxide, carbonate, nitrate, sulfate and / or the above alkaline earth metal compound is supported on a catalyst carrier, and then dried and calcined (heat treated). it can. Dry in the air 5
0-100 ° C, firing (heat treatment) in air 150-5
Usually performed at 00 ° C. The alkaline earth metal oxide or the supported catalyst is used in the form of powder, granules or molded products. Although the size is not particularly limited, usually, powder having a diameter of 20 to 100 μm, granular having a diameter of 4 to 200 mesh, and molding having a length of 0.5 to 10 mm are suitably used. The decarbonylation of the diaryl oxalate is carried out by heating the diaryl oxalate in the presence of an alkaline earth metal oxide as a catalyst.
At this time, according to the above reaction formula, diaryl carbonate is generated from diaryl oxalate and carbon monoxide is generated. It is industrially advantageous to carry out the reaction in a gas phase continuous system.
The catalyst may be used in a fixed bed or a moving bed in the reaction system, but is usually used in a fixed bed. As the reactor, for example, a reaction tube made of stainless steel or quartz is used. When the reaction is carried out in a gas phase continuous system, the decarbonylation reaction is usually carried out at a reaction temperature of 200 to 600 ° C., preferably 300 to 500 ° C. in a reactor filled with the catalyst.
Space velocity of 10 to 10,000 hr -1 , preferably 50 to
This is performed by supplying a raw material gas containing an inert gas such as diaryl oxalate and nitrogen gas under the condition of 5000 hr -1 . The reaction pressure is not particularly limited as long as the reaction can be performed in a gas phase, but it is usually preferable to perform the reaction under normal pressure or reduced pressure. Diaryl oxalate is
For example, the diaryl oxalate in a solid state, a molten state, or a state dissolved in a solvent is vaporized in advance by a vaporizer or a vaporization layer or the like, and supplied to a reactor together with an inert gas such as nitrogen gas. During the reaction, an aprotic polar solvent such as sulfolane, N-methylpyrrolidone, or dimethylimidazolidone may be supplied from the bottom of the reaction tube in order to dissolve and collect the reaction product attached to the tube wall. it can. After the reaction, the produced diaryl carbonate is separated and purified by distillation or the like. Next, the present invention will be specifically described with reference to examples and comparative examples. The conversion of diphenyl oxalate and the selectivity of diphenyl carbonate were determined by the following equations. ## EQU1 ## [Equation 2] Example 1 A quartz glass reaction tube having an inner diameter of 10 mm was filled with 1 ml of magnesium hydroxide molded to have a diameter of 1 to 3 mm, the reaction tube was fixed vertically, and a mantle heater was attached around the tube to supply nitrogen gas. While flowing, the reaction tube was heated and controlled at 450 ° C. After heating for 1 hour to produce magnesium oxide and prepare a catalyst, the temperature of the reaction tube was controlled to 350 ° C. Next, a melt of diphenyl oxalate was introduced into the reaction tube by a stainless steel microfeeder controlled to be heated to 165 ° C., and was vaporized at the upper portion of the reaction tube while supplying a nitrogen gas under normal pressure, and supplied to the catalyst layer. At 350 ° C. for 15 hours. At this time, the supply amount of diphenyl oxalate was 4.4 mmol / hr, and the space velocity of the source gas containing diphenyl oxalate and nitrogen gas was 5000 hr -1 . During the reaction, sulfolane was supplied at a rate of 10 ml / hr by a metering pump at a position 30 mm below the catalyst layer in order to dissolve and collect the reaction product attached to the reaction tube wall. The reaction product obtained is subjected to gas chromatography (column temperature: 130 to 170 ° C., inlet temperature: 1).
80 ° C.), the conversion of diphenyl oxalate was 13.6%, and the conversion of diphenyl carbonate was 0.37 mm.
ol / hr (selectivity: 61.8%). In addition, generation of diphenyl carbonate from diphenyl oxalate by the analytical operation was not recognized. Comparative Example 1 A reaction and analysis were carried out in the same manner as in Example 1 except that the molded magnesium hydroxide was changed to 1 ml of quartz beads (3 mmφ). As a result, the conversion of diphenyl oxalate was 12.0%, and the conversion of diphenyl carbonate was 0.1%.
6 mmol / hr (selectivity: 30.3
%). Example 2 A reaction and analysis were carried out in the same manner as in Example 1 except that the reaction temperature was changed to 400 ° C. as a result,
The conversion of diphenyl oxalate was 25.0%, and diphenyl carbonate was produced at 0.84 mmol / hr (selectivity: 76.3%). Comparative Example 2 A reaction and analysis were carried out in the same manner as in Example 2 except that the molded magnesium hydroxide was changed to 1 ml of quartz beads (3 mmφ). As a result, the conversion of diphenyl oxalate was 21.7%, and the conversion of diphenyl carbonate was 0.4%.
0 mmol / hr (selectivity: 40.9
%). Example 3 In Example 1, the molded magnesium hydroxide was changed to 1 to
The reaction and analysis were carried out in the same manner as in Example 1 except that 1 ml of calcium hydroxide molded to 3 mmφ was used. As a result, the conversion of diphenyl oxalate was 33.6%, and diphenyl carbonate was produced at 0.46 mmol / hr (selectivity: 31.2%). Example 4 5 g of 10-20 mesh silica was immersed in a solution of 3.96 g of magnesium acetate tetrahydrate in 10 ml of water to impregnate the silica carrier with magnesium acetate, and then evaporated to dryness. After drying (in air, at 80 ° C. for 2 hours) and calcination (in air, at 500 ° C. for 3 hours), the supported catalyst (MgO 2
—SiO 2 ) was prepared. The supported amount of magnesium oxide was 9% by weight based on the silica carrier as an alkaline earth metal. In Example 2, the catalyst was the same as the above supported catalyst 0.1.
The reaction and analysis were carried out in the same manner as in Example 2 except that the amount was changed to 52 g (1 ml). As a result, the conversion of diphenyl oxalate was 25.0%, and the conversion of diphenyl carbonate was 0.58 mmol.
1 / hr (selectivity: 52.4%). Comparative Example 3 A reaction and analysis were carried out in the same manner as in Example 4 except that the supported catalyst (MgO--SiO 2 ) was changed to only 1 ml of the silica carrier. As a result, the conversion of diphenyl oxalate was 21.2%, and diphenyl carbonate was 0.10 mm.
ol / hr (selectivity: 11.9%). Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 3. [Table 1] Comparative Example 4 5.0 g (20.7 g) of diphenyl oxalate was placed in a 100 ml glass reactor equipped with a thermometer, a stirrer and a reflux condenser.
mmol) and the space in the container was replaced with argon gas, and then the temperature was raised to 330 ° C. Then, the mixture was heated (boiled) in a liquid phase at normal temperature and at this temperature for 3 hours to carry out a decarbonylation reaction. After completion of the reaction, the vessel was cooled to room temperature and analyzed in the same manner as in Example 1.
18 g (0.84 mmol) was produced (production rate:
0.28 mmol / hr), its selectivity was 37.7%. Comparative Example 5 An internal volume 9 having a gas exhaust pipe and having a thermometer and a stirrer
5.0 g (20.7 mmol) of diphenyl oxalate, 0.5 g (3.8 mmol) of potassium phenolate and 5.0 g of tetrahydrofuran were placed in a 0 ml stainless steel reactor, and the space in the vessel was replaced with argon gas. Thereafter, the temperature was raised to 100 ° C. Then, the mixture was heated in the liquid phase at this temperature under normal pressure for 3 hours to carry out a decarbonylation reaction.
After completion of the reaction, the vessel was cooled to room temperature and analyzed in the same manner as in Example 1. As a result, formation of diphenyl carbonate was not observed. According to the present invention, diaryl carbonate can be easily produced from diaryl oxalate with high reaction rate and high selectivity without using phosgene which is a highly toxic compound.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−325207(JP,A) 特開 平8−333307(JP,A) 米国特許4544507(US,A) 特許3206425(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C07C 68/00 - 68/08 C07C 69/96 CA(STN) REGISTRY(STN) CASREACT(STN)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-325207 (JP, A) JP-A-8-333307 (JP, A) US Patent 4,544,507 (US, A) Patent 3,264,425 (JP, B2) ( 58) Fields surveyed (Int. Cl. 7 , DB name) C07C 68/00-68/08 C07C 69/96 CA (STN) REGISTRY (STN) CASREACT (STN)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 シュウ酸ジアリールをアルカリ土類金属
の酸化物の存在下に気相で加熱して脱カルボニル反応さ
せることを特徴とする炭酸ジアリールの製造法。
(1) A method for producing a diaryl carbonate, comprising heating a diaryl oxalate in a gas phase in the presence of an alkaline earth metal oxide to cause a decarbonylation reaction.
JP07025496A 1996-03-26 1996-03-26 Method for producing diaryl carbonate Expired - Lifetime JP3489324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07025496A JP3489324B2 (en) 1996-03-26 1996-03-26 Method for producing diaryl carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07025496A JP3489324B2 (en) 1996-03-26 1996-03-26 Method for producing diaryl carbonate

Publications (2)

Publication Number Publication Date
JPH09255628A JPH09255628A (en) 1997-09-30
JP3489324B2 true JP3489324B2 (en) 2004-01-19

Family

ID=13426246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07025496A Expired - Lifetime JP3489324B2 (en) 1996-03-26 1996-03-26 Method for producing diaryl carbonate

Country Status (1)

Country Link
JP (1) JP3489324B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409665B2 (en) * 1997-11-07 2003-05-26 宇部興産株式会社 Method for producing dialkyl carbonate

Also Published As

Publication number Publication date
JPH09255628A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
KR100261365B1 (en) Process of producing diarylcarbonate
JPH11140028A (en) Production of dialkyl carbonate
JPH08281115A (en) Catalyst for vapor-phase intramolecular dealcoholic reaction of n-(1-alkyloxyalkyl)carbamates, and production of n-vinyl carbamates
JP3489324B2 (en) Method for producing diaryl carbonate
JP3206425B2 (en) Method for producing diaryl carbonate
JP3482765B2 (en) Preparation of diaryl carbonate
JP3509419B2 (en) Preparation of diaryl carbonate
JP3206451B2 (en) Method for producing diaryl carbonate
JP3509422B2 (en) Method for producing diaryl carbonate
JP3509420B2 (en) Method for producing diaryl carbonate
JP3509416B2 (en) Method for producing diaryl carbonate
JP3829465B2 (en) Process for producing dialkyl carbonate
JPH06206835A (en) Preparation of halogenated aromatic compound
JPS6340417B2 (en)
JP3482786B2 (en) Preparation of diaryl carbonate
JP3509415B2 (en) Method for producing diaryl carbonate
JP3220973B2 (en) Preparation of diaryl carbonate
JP4131023B2 (en) Process for producing α, α-bis (trifluoromethyl) aryl acetate
EP0108332B1 (en) Preparation of acetone dicarboxylic acid diester
JPH11279116A (en) Production of dialkyl oxalate
JPH0155265B2 (en)
JP3206452B2 (en) Method for producing diaryl carbonate
JPS58146520A (en) Preparation of vinylidene chloride
JPH07252183A (en) Production of phenol derivative
JPS601290B2 (en) Production method of chlorotrifluoromethylbenzene

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term