JP3483243B2 - Anaerobic treatment of organic sludge - Google Patents

Anaerobic treatment of organic sludge

Info

Publication number
JP3483243B2
JP3483243B2 JP02108099A JP2108099A JP3483243B2 JP 3483243 B2 JP3483243 B2 JP 3483243B2 JP 02108099 A JP02108099 A JP 02108099A JP 2108099 A JP2108099 A JP 2108099A JP 3483243 B2 JP3483243 B2 JP 3483243B2
Authority
JP
Japan
Prior art keywords
ozone
membrane
separation membrane
organic
anaerobic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02108099A
Other languages
Japanese (ja)
Other versions
JP2000218294A (en
Inventor
理夫 小澤
功 宗宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP02108099A priority Critical patent/JP3483243B2/en
Publication of JP2000218294A publication Critical patent/JP2000218294A/en
Application granted granted Critical
Publication of JP3483243B2 publication Critical patent/JP3483243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥、し尿汚
泥、農村集落排水汚泥などの有機性汚泥の嫌気処理方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anaerobic treatment of organic sludge such as sewage sludge, night soil sludge, and rural settlement drainage sludge.

【0002】[0002]

【従来の技術】上記のような有機性汚泥を生物反応槽で
嫌気性処理し、メタン発酵させて有機分の少ない処理水
とする嫌気処理方法は周知である。このとき処理水とと
もに嫌気性菌体が流出すると生物反応槽の菌体濃度が低
下するため、分離膜を利用して脱離液を分離することに
より、菌体濃度の低下を防止する膜分離付嫌気性消化法
が提案されている。しかしこの方法には分離膜の膜面に
有機物が蓄積して膜流束が低下し易いという大きな問題
があり、実用化の大きな妨げとなっていた。また、従来
は有機性汚泥をメタン発酵させることによって水とメタ
ンにまで分解しており、メタン発酵の前段階の酸発酵に
おいて生ずる溶解性有機物(低級脂肪酸)を回収して有
効利用するという技術思想はなかった。
2. Description of the Related Art An anaerobic treatment method in which the above organic sludge is anaerobically treated in a biological reaction tank and methane-fermented to produce treated water having a low organic content is well known. At this time, if anaerobic bacterial cells flow out together with the treated water, the bacterial cell concentration in the biological reaction tank will decrease. Therefore, by separating the desorbed liquid using a separation membrane, a membrane separation unit that prevents a decrease in bacterial cell concentration is provided. Anaerobic digestion methods have been proposed. However, this method has a big problem that the organic flux is easily accumulated on the membrane surface of the separation membrane and the membrane flux is easily lowered, which is a great obstacle to practical use. Conventionally, the technical idea is that organic sludge is decomposed into water and methane by methane fermentation, and soluble organic substances (lower fatty acids) generated in acid fermentation before the methane fermentation are recovered and effectively used. There was no.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、分離膜の膜流束の低下を防止しつ
つ、溶解性有機物(低級脂肪酸)を含む脱離液を回収す
ることができる有機性汚泥の嫌気処理方法を提供するた
めになされたものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems and prevents the reduction of the membrane flux of the separation membrane while recovering the desorbed liquid containing a soluble organic substance (lower fatty acid). It was made in order to provide an anaerobic treatment method of organic sludge which can be performed.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めになされた本発明は、有機酸生成菌により有機酸を含
む溶解性有機物を生成させる有機性汚泥の酸発酵型生物
反応槽に分離膜を付設し、この分離膜により前記溶解性
有機物を含む脱離液を分離回収する有機性汚泥の嫌気処
理方法において、分離膜の膜面をオゾン処理すること
より、膜面の付着物を除去するとともに、該オゾンによ
って溶解性有機物を生成する酸発酵を促進することを特
徴とするものである。
The present invention, which has been made to achieve the above object, contains an organic acid by an organic acid-producing bacterium.
A separation membrane is attached to the acid fermentation type bioreactor of organic sludge that produces soluble organic matter .
In the method of anaerobic treatment of organic sludge for separating and collecting desorbed liquid containing organic matter, ozone treatment of the membrane surface of the separation membrane is performed.
Remove the deposits on the film surface,
It is characterized by accelerating the acid fermentation that produces soluble organic matter .

【0005】このように本発明は嫌気性処理と相容れ
ず、また有機酸生成菌の活性を阻害すると考えられてき
たオゾン処理を膜分離付嫌気性消化法と組み合わせるこ
とにより、分離膜の膜面に蓄積した有機物を分解し、膜
流束の低下を防止することができる。またオゾン処理を
行うことにより有機性汚泥の嫌気性条件下における酸発
酵を促進し、低級脂肪酸を含む脱離液を分離回収するこ
とができる。この低級脂肪酸は下水等の脱窒処理工程に
おいて脱窒菌の水素供与体として用いることができ、従
来のように高価なアルコールを水素供与体として用いる
必要がなくなる。
As described above, the present invention is incompatible with anaerobic treatment, and by combining ozone treatment, which has been considered to inhibit the activity of organic acid-producing bacteria, with the anaerobic digestion method with membrane separation, the membrane of the separation membrane is separated. It is possible to decompose the organic matter accumulated on the surface and prevent the decrease of the membrane flux. Further, by performing the ozone treatment, acid fermentation of the organic sludge under anaerobic conditions can be promoted, and the desorbed liquid containing the lower fatty acid can be separated and recovered. This lower fatty acid can be used as a hydrogen donor for denitrifying bacteria in a denitrification process such as sewage, and it is not necessary to use expensive alcohol as a hydrogen donor as in the conventional case.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施形態を示す。
図1は本発明に用いられる装置の概略図であり、1は汚
泥貯蔵槽、2は生物反応槽、3は分離膜、4はオゾン発
生器、5は脱離液貯蔵槽である。汚泥貯蔵槽1に貯蔵し
た凝集生汚泥を生物反応槽2に送り、循環ポンプ6で分
離膜3との間を循環させながら発酵させた。生物反応槽
2内の温度は35°前後に保ち、ORP(酸化還元電
位)が−350mV以下にならないように空気曝気で制
御しながら嫌気性に保持した。また生物反応槽2内には
攪拌機7を設置した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
FIG. 1 is a schematic view of an apparatus used in the present invention, 1 is a sludge storage tank, 2 is a biological reaction tank, 3 is a separation membrane, 4 is an ozone generator, and 5 is a desorbed liquid storage tank. The flocculated raw sludge stored in the sludge storage tank 1 was sent to the biological reaction tank 2, and fermented while circulating between the separation membrane 3 with the circulation pump 6. The temperature in the biological reaction tank 2 was maintained at around 35 ° and kept anaerobic while controlling by air aeration so that the ORP (oxidation-reduction potential) did not become −350 mV or less. Further, a stirrer 7 was installed in the biological reaction tank 2.

【0007】分離膜3としては、オゾン処理に耐えるセ
ラミック膜が好ましく、特に図2に示したようなモノリ
ス型のセラミック膜が好ましい。この実施形態ではアル
ミナ製で孔径が1μmの精密ろ過膜を使用した。生物反
応槽2から送られる発酵液は図示のように一方の端面か
ら供給され、ろ過された脱離液は外周面から図1の吸引
ポンプ8により吸引され、脱離液貯蔵槽5に送られる。
この実施形態では分離膜3を生物反応槽2の循環ライン
内に設けたが、分離膜3を生物反応槽2の内部に設置し
てもよい。
As the separation membrane 3, a ceramic membrane resistant to ozone treatment is preferable, and a monolith type ceramic membrane as shown in FIG. 2 is particularly preferable. In this embodiment, a microfiltration membrane made of alumina and having a pore size of 1 μm was used. The fermented liquid sent from the biological reaction tank 2 is supplied from one end surface as shown in the figure, and the filtered desorbed liquid is sucked from the outer peripheral surface by the suction pump 8 of FIG. 1 and sent to the desorbed liquid storage tank 5. .
Although the separation membrane 3 is provided in the circulation line of the biological reaction tank 2 in this embodiment, the separation membrane 3 may be installed inside the biological reaction tank 2.

【0008】この実施形態では、オゾン発生器4で発生
させたオゾン含有空気を分離膜3の汚泥側膜面に供給す
ることにより、膜面のオゾン処理を行う。図2に示すよ
うにオゾン含有空気の供給をクロスフローで、あるいは
パラレルフローで行うことにより、膜面から付着物を掻
き取ることができる。オゾン処理は連続的に行ってもよ
いが、分離膜3への発酵液の循環を所定時間ごとに停止
して間欠的にオゾン処理を行うことが好ましい。また分
離膜3を透過水側からオゾン水で間欠的に逆洗する方法
を取ることもできる。
In this embodiment, ozone-containing air generated by the ozone generator 4 is supplied to the sludge-side membrane surface of the separation membrane 3 to perform ozone treatment of the membrane surface. As shown in FIG. 2, by supplying ozone-containing air in a cross flow or in a parallel flow, adhered substances can be scraped off from the film surface. The ozone treatment may be performed continuously, but it is preferable to intermittently perform the ozone treatment by stopping the circulation of the fermented liquid to the separation membrane 3 at predetermined intervals. Alternatively, the separation membrane 3 may be intermittently backwashed with ozone water from the permeate side.

【0009】このようなオゾン処理により、分離膜3の
膜面に蓄積したタンパク質、多糖類、アミノ酸、多水酸
化芳香属、脂肪等の付着物を物理的に剥離させるととも
に、これらの付着物を化学的に酸化分解させ、後記する
実施例に示すように膜流束の低下を回復させることがで
きる。この効果はろ過圧力のない状態でオゾンを供給す
る間欠オゾン処理の場合により顕著である。
By such ozone treatment, the deposits such as proteins, polysaccharides, amino acids, aromatic polyhydroxides, and fats accumulated on the membrane surface of the separation membrane 3 are physically removed, and these deposits are removed. It can be chemically oxidatively decomposed and the decrease in the membrane flux can be recovered as shown in Examples described later. This effect is more remarkable in the case of intermittent ozone treatment in which ozone is supplied without a filtration pressure.

【0010】また、このようなオゾン処理により酸発酵
が促進され、従来法では難分解であった有機物をも溶解
性有機物(低級脂肪酸)へと低分子化させることができ
る。しかも殺菌力の強いオゾンを用いたにもかかわら
ず、意外にも有機酸生成菌の活性が損なわれず、低級脂
肪酸を含む脱離液を分離回収することができる。この低
級脂肪酸は下水等の脱窒処理工程において脱窒菌の水素
供与体として有効に利用することができる。以下に実施
例のデータにより、本発明の作用効果を具体的に示す。
Further, the acid treatment is promoted by such ozone treatment, and the organic substances which were hardly decomposed by the conventional method can be made into a soluble organic substance (lower fatty acid) into a low molecular weight. Moreover, despite the use of ozone, which has a strong sterilizing power, the activity of the organic acid-producing bacteria is not impaired, and the desorbed liquid containing the lower fatty acid can be separated and recovered. This lower fatty acid can be effectively used as a hydrogen donor for denitrifying bacteria in a denitrification treatment step such as sewage. Hereinafter, the operation and effect of the present invention will be specifically shown by the data of the examples.

【0011】[0011]

【実施例】図1に示した装置を用い、膜面に対するオゾ
ンの注入量を変化させながら、分離膜3の膜面の流束回
復の程度を測定した。その結果を図3に示す。黒丸は分
離膜3への発酵液の循環を間欠的に停止してオゾン処理
を行った場合を示し、白丸は発酵液を循環させながらオ
ゾン処理を行った場合を示す。縦軸は流束であり、横軸
は膜内部の発酵液が占めている体積当たりのオゾン注入
量である。図3のグラフから明らかなように、オゾンの
注入量が0の場合の膜面の流束は0.7m/d以下であ
るが、15〜50g/Lのオゾン注入により流束は1〜
1.3m/dにまで回復した。また間欠的なオゾン処理
の方が流束回復効果に優れることが分かる。
EXAMPLES The apparatus shown in FIG. 1 was used to measure the degree of flux recovery on the membrane surface of the separation membrane 3 while changing the amount of ozone injected to the membrane surface. The result is shown in FIG. The black circles indicate the case where the circulation of the fermentation liquid to the separation membrane 3 is intermittently stopped and the ozone treatment is performed, and the white circles indicate the case where the ozone treatment is performed while circulating the fermentation liquid. The vertical axis represents the flux, and the horizontal axis represents the ozone injection amount per volume occupied by the fermentation liquid inside the membrane. As is clear from the graph of FIG. 3, the flux on the film surface is 0.7 m / d or less when the ozone injection amount is 0, but the flux is 1 to 50 g / L when ozone is injected.
It recovered to 1.3 m / d. Further, it is understood that the intermittent ozone treatment is more excellent in the flux recovery effect.

【0012】図4は、発酵液のろ過を行った後における
オゾン処理による膜面の流束回復率を示す。縦軸は純水
の流束を100%として表示した。発酵液を循環させた
場合には43g/L以上のオゾン注入によりろ過開始時
の流束まで回復させることができ、発酵液の循環を停止
した場合には27g/L以上のオゾン注入によりろ過開
始時の流束まで回復させることができた。このような差
が生じたのは、循環とオゾン注入を同時に行った場合に
は、オゾンと膜との接触効率が落ちるためと思われる。
FIG. 4 shows the flux recovery rate of the membrane surface by ozone treatment after the fermentation liquor was filtered. The vertical axis represents the flux of pure water as 100%. When the fermentation liquor is circulated, 43 g / L or more of ozone can be injected to recover the flux at the start of filtration, and when the fermentation liquor is stopped, the filtration can be started by 27 g / L or more of ozone injection. I was able to recover the time flux. It is considered that such a difference occurs because the contact efficiency between ozone and the film decreases when the circulation and the ozone injection are performed at the same time.

【0013】図5は縦軸に膜透過抵抗(膜面に捕捉され
た付着層による透過抵抗+液中成分と膜との相互作用に
よって形成される透過抵抗)を取り、オゾン注入量との
関係を示したグラフである。このグラフから明らかなよ
うに、発酵液の循環を停止してオゾン処理を行うことに
より、少量のオゾンで膜透過抵抗を減少させることがで
きる。
In FIG. 5, the vertical axis shows the membrane permeation resistance (permeation resistance due to the adhering layer trapped on the membrane surface + permeation resistance formed by the interaction between the liquid components and the membrane), and the relationship with the ozone injection amount. It is a graph showing. As is clear from this graph, the membrane permeation resistance can be reduced with a small amount of ozone by stopping the circulation of the fermentation liquid and performing the ozone treatment.

【0014】次にオゾン注入量を最低(65g/L)の
一定値とし、オゾン濃度や接触時間を表1の通り変化さ
せて膜面の流束変化を調べた。
Next, the ozone injection amount was set to a minimum (65 g / L), and the ozone concentration and contact time were changed as shown in Table 1 to examine the change in the flux on the film surface.

【表1】 [Table 1]

【0015】その結果を図6に示す。RUN3とRUN
6で高い流束が得られたことから、発生オゾン濃度が一
定以上となる場合には、分離膜3とオゾンとの接触時間
を長くすることが流束の回復に効果的であることが分か
った。しかし長い接触時間と高い送入量にもかかわらず
RUN4が一番低い流束を示すことから、流束の回復に
は発生オゾン濃度が一定以上となる必要があることが分
かった。またRUN3とRUN5の結果から、同じ発生
オゾン濃度では送入ガス量よりも接触時間を長くするこ
との方が流束の回復に効果的であることが分かった。
The results are shown in FIG. RUN3 and RUN
Since a high flux was obtained in No. 6, it was found that increasing the contact time between the separation membrane 3 and ozone is effective for flux recovery when the generated ozone concentration is above a certain level. It was However, RUN4 showed the lowest flux in spite of a long contact time and a high feed rate, so it was found that the concentration of generated ozone needs to be above a certain level in order to recover the flux. Further, from the results of RUN3 and RUN5, it was found that, for the same generated ozone concentration, making the contact time longer than the amount of introduced gas is more effective for the recovery of the flux.

【0016】次に、連続運転の結果を図7に示す。最初
の30日はオゾン注入を行わず、この間の膜面の流束は
0.7〜0.8m/dであった。その後分離膜3を新し
いものと交換し、2時間の連続運転の後に発酵液の循環
を停止し、20分間のオゾン処理を行うことを2時間2
0分周期で繰り返した。その結果、膜面の流束を1m/
dを越える高いレベルに安定させることができた。
Next, the result of continuous operation is shown in FIG. No ozone was injected for the first 30 days, and the flux on the film surface during this period was 0.7 to 0.8 m / d. After that, the separation membrane 3 is exchanged with a new one, and after 2 hours of continuous operation, the circulation of the fermentation liquid is stopped and the ozone treatment for 20 minutes is performed for 2 hours.
Repeated with a 0 minute cycle. As a result, the flux on the membrane surface was 1m /
It was possible to stabilize at a high level exceeding d.

【0017】図8は上記の連続運転期間中における発酵
液の吸光度(E260 )の変化を示すグラフである。E
260 は難分解性有機物量の指標であり、膜面のオゾン処
理を伴う連続運転により、難分解性有機物の低分子化が
進んだことが確認できた。
FIG. 8 is a graph showing changes in the absorbance (E 260 ) of the fermentation broth during the above continuous operation period. E
260 is an index of the amount of hardly-decomposable organic matter, and it was confirmed that the continuous operation with ozone treatment of the film surface made the molecular weight of the hardly-decomposable organic matter progress.

【0018】図9は上記の連続運転期間中における脱離
液中のTOC(全有機炭素)濃度の変化を示すグラフで
ある。オゾン処理によりTOC濃度は高い値を示し、固
形物の可溶化による溶解性有機物の増加が見られ、流入
有機炭素量の31〜51%に相当する炭素が脱離液とし
て回収された。このように本発明は有機物の回収にも効
果があり、回収された溶解性有機物は下水等の脱窒処理
工程において脱窒菌の水素供与体として用いることがで
きる。
FIG. 9 is a graph showing changes in TOC (total organic carbon) concentration in the desorbed liquid during the above continuous operation period. The TOC concentration showed a high value by the ozone treatment, the soluble organic matter increased due to the solubilization of the solid matter, and carbon corresponding to 31 to 51% of the inflowing organic carbon amount was recovered as the desorbed liquid. As described above, the present invention is also effective in recovering organic substances, and the recovered soluble organic substances can be used as a hydrogen donor for denitrifying bacteria in a denitrification treatment step such as sewage.

【0019】なお図10に示すように、発酵液中の有機
酸生成菌数はオゾン注入を開始すると一旦は低下する
が、その後はオゾン注入を行わないレベルにまで回復す
ることが確認されており、本発明による嫌気性消化工程
へのオゾン注入が可能であることが分かる。
As shown in FIG. 10, it has been confirmed that the number of organic acid-producing bacteria in the fermented liquor decreases once ozone injection is started, but thereafter recovers to a level where ozone injection is not performed. It can be seen that ozone can be injected into the anaerobic digestion process according to the present invention.

【0020】[0020]

【発明の効果】以上に説明したように、本発明によれば
膜分離付嫌気性消化法と膜面のオゾン処理とを組み合わ
せることにより、分離膜の膜流束の低下を防止しつつ、
溶解性有機物(低級脂肪酸)を含む脱離液を回収するこ
とができ、回収された溶解性有機物を水素供与体として
有効利用することができる利点がある。
As described above, according to the present invention, by combining the anaerobic digestion method with membrane separation and the ozone treatment of the membrane surface, while preventing the decrease of the membrane flux of the separation membrane,
The desorbed liquid containing a soluble organic substance (lower fatty acid) can be recovered, and the recovered soluble organic substance can be effectively used as a hydrogen donor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる装置の概略図である。FIG. 1 is a schematic diagram of an apparatus used in the present invention.

【図2】モノリス型のセラミック膜の断面図である。FIG. 2 is a cross-sectional view of a monolithic ceramic membrane.

【図3】オゾン注入量と膜面流束との関係を示すグラフ
である。
FIG. 3 is a graph showing a relationship between an ozone injection amount and a film surface flux.

【図4】オゾン注入量と膜面流束の回復率との関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between an ozone injection amount and a film surface flux recovery rate.

【図5】オゾン注入量と膜透過抵抗との関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between an ozone injection amount and a membrane permeation resistance.

【図6】オゾン濃度や接触時間を変化させたRUN1〜
RUN6における膜面流束を示すグラフである。
[FIG. 6] RUN1 to 1 in which ozone concentration and contact time are changed
It is a graph which shows the membrane surface flux in RUN6.

【図7】連続運転の場合の膜面流束の経日変化を示すグ
ラフである。
FIG. 7 is a graph showing the daily change of the membrane surface flux in the case of continuous operation.

【図8】連続運転の場合の発酵液吸光度の経日変化を示
すグラフである。
FIG. 8 is a graph showing changes with time of the absorbance of the fermentation broth in the case of continuous operation.

【図9】連続運転の場合のTOCの経日変化を示すグラ
フである。
FIG. 9 is a graph showing changes in TOC with time in the case of continuous operation.

【図10】連続運転の場合の有機酸生成菌の経日変化を
示すグラフである。
FIG. 10 is a graph showing changes with time of organic acid-producing bacteria in continuous operation.

【符号の説明】[Explanation of symbols]

1 汚泥貯蔵槽、2 生物反応槽、3 分離膜、4 オ
ゾン発生器、5 脱離液貯蔵槽、6 循環ポンプ、7
攪拌機、8 吸引ポンプ
1 sludge storage tank, 2 biological reaction tank, 3 separation membrane, 4 ozone generator, 5 desorbed liquid storage tank, 6 circulation pump, 7
Stirrer, 8 suction pumps

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/44 C02F 1/44 F C12M 1/00 C12M 1/00 H (56)参考文献 特開 平9−117646(JP,A) 特開 平10−309577(JP,A) 特開 平4−300693(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 11/04 ZAB B01D 61/00 - 71/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C02F 1/44 C02F 1/44 F C12M 1/00 C12M 1/00 H (56) Reference JP-A-9-117646 (JP, A) JP 10-309577 (JP, A) JP 4-300693 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 11/04 ZAB B01D 61/00- 71/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機酸生成菌により有機酸を含む溶解性
有機物を生成させる有機性汚泥の酸発酵型生物反応槽に
分離膜を付設し、この分離膜により前記溶解性有機物を
含む脱離液を分離回収する有機性汚泥の嫌気処理方法に
おいて、分離膜の膜面をオゾン処理することにより、膜
面の付着物を除去するとともに、該オゾンによって溶解
性有機物を生成する酸発酵を促進することを特徴とする
有機性汚泥の嫌気処理方法。
1. Solubility containing an organic acid by an organic acid-producing bacterium
A separation membrane is attached to an acid fermentation type biological reaction tank of organic sludge for producing organic matter, and the soluble organic matter is separated by this separation membrane.
In the method of anaerobic treatment of organic sludge for separating and recovering the desorbed liquid containing, by treating the membrane surface of the separation membrane with ozone ,
Removes deposits on the surface and dissolves with the ozone
A method for anaerobic treatment of organic sludge, which comprises promoting acid fermentation for producing volatile organic matter .
【請求項2】 分離膜を生物反応槽内または生物反応槽
の循環ライン内に設けた請求項1に記載の有機性汚泥の
嫌気処理方法。
2. The method for anaerobic treatment of organic sludge according to claim 1, wherein the separation membrane is provided in the biological reaction tank or in a circulation line of the biological reaction tank.
【請求項3】 分離膜としてモノリス型のセラミック膜
を用いる請求項1または2に記載の有機性汚泥の嫌気処
理方法。
3. The method for anaerobic treatment of organic sludge according to claim 1, wherein a monolithic ceramic membrane is used as the separation membrane.
【請求項4】 分離膜のオゾン処理を間欠的に行う請求
項1〜3のいずれかに記載の有機性汚泥の嫌気処理方
法。
4. The method for anaerobic treatment of organic sludge according to claim 1, wherein the ozone treatment of the separation membrane is carried out intermittently.
【請求項5】 分離膜の汚泥側膜面にオゾン含有空気を
間欠的に供給することにより、膜面をオゾン処理する請
求項4に記載の有機性汚泥の嫌気処理方法。
5. The method for anaerobic treatment of organic sludge according to claim 4, wherein the membrane surface is treated with ozone by intermittently supplying ozone-containing air to the membrane surface of the separation membrane on the sludge side.
【請求項6】 分離膜を透過水側からオゾン水で間欠的
に逆洗することにより、膜面をオゾン処理する請求項4
に記載の有機性汚泥の嫌気処理方法。
6. The surface of the membrane is ozone-treated by intermittently backwashing the separation membrane from the permeate side with ozone water.
The method for anaerobic treatment of organic sludge described in.
JP02108099A 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge Expired - Lifetime JP3483243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02108099A JP3483243B2 (en) 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02108099A JP3483243B2 (en) 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge

Publications (2)

Publication Number Publication Date
JP2000218294A JP2000218294A (en) 2000-08-08
JP3483243B2 true JP3483243B2 (en) 2004-01-06

Family

ID=12044919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02108099A Expired - Lifetime JP3483243B2 (en) 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge

Country Status (1)

Country Link
JP (1) JP3483243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242216A (en) * 2016-08-12 2016-12-21 同济大学 A kind of method utilizing cattle manure quickly to start mud superhigh temperature anaerobic digester system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632397B2 (en) * 2003-08-26 2011-02-16 アタカ大機株式会社 Sewage treatment method and apparatus
JP2005246309A (en) * 2004-03-05 2005-09-15 Ngk Insulators Ltd Membrane separation activated sludge process
JP2006263584A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method for cleaning membrane filtration apparatus
AU2008347921B2 (en) 2008-01-15 2012-10-11 Metawater Co., Ltd. Side stream type membrane bioreactor process
EP2703065B1 (en) * 2011-04-25 2020-07-01 NGK Insulators, Ltd. Method for cleaning a ceramic filter
JP6110216B2 (en) * 2013-06-03 2017-04-05 パナソニック株式会社 Wastewater treatment equipment
CN115286192A (en) * 2022-07-08 2022-11-04 哈尔滨工业大学(深圳) Method for rapidly recovering and converting carbon source by short-distance fermentation in high quality by adopting coagulation-microfiltration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242216A (en) * 2016-08-12 2016-12-21 同济大学 A kind of method utilizing cattle manure quickly to start mud superhigh temperature anaerobic digester system
CN106242216B (en) * 2016-08-12 2019-03-01 同济大学 A method of utilizing cow dung quick start sludge superhigh temperature anaerobic digester system

Also Published As

Publication number Publication date
JP2000218294A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JP4233479B2 (en) Method and system for treatment of wastewater containing organic compounds
JP4481345B1 (en) Seawater desalination method and seawater desalination apparatus
CN101219842A (en) Technique and equipment for recycling leachate of garbage
KR20080043614A (en) Wastewater treatment apparatus and method thereof using membrane bio reactor with reduced sludge production
JP3483243B2 (en) Anaerobic treatment of organic sludge
JPH0787914B2 (en) Membrane separation method
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP3721871B2 (en) Production method of ultra pure water
CN110127947A (en) A kind of system and method for landfill leachate treatment
CN104418465A (en) Landfill leachate treatment method and equipment
JP3651306B2 (en) Method and apparatus for treating water containing trace organic matter
JP3265456B2 (en) Treatment method and treatment equipment for methane fermentation treatment liquid
JP2001327998A (en) Organic sludge digesting method
CN209468283U (en) Chilled processing waste water processing unit
KR100514822B1 (en) Wastewater liquid organic sludge treatment system using membrane combined with intermittent alternate injection method of air and ozone
JPH0871593A (en) Water treatment method
JP2003205297A (en) Waste water treating system
JP2003340247A (en) Device and method for treating water
JP3350424B2 (en) Oil-containing wastewater treatment apparatus and its treatment method
JP2000204629A (en) Self-contained flush toilet
KR100249452B1 (en) Two-phase anaerobic reactor with submerged microfiltration system
CN208378684U (en) The sewage-treatment plant and sewage disposal system that sludge pyrohydrolysis generates
JP2682751B2 (en) Water treatment method
JPH0811226B2 (en) Membrane separation device
JP2003334592A (en) Sewage treatment apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031003

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term