JP3480854B2 - Rechargeable battery charging circuit - Google Patents

Rechargeable battery charging circuit

Info

Publication number
JP3480854B2
JP3480854B2 JP16142194A JP16142194A JP3480854B2 JP 3480854 B2 JP3480854 B2 JP 3480854B2 JP 16142194 A JP16142194 A JP 16142194A JP 16142194 A JP16142194 A JP 16142194A JP 3480854 B2 JP3480854 B2 JP 3480854B2
Authority
JP
Japan
Prior art keywords
charging
secondary battery
charge control
value
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16142194A
Other languages
Japanese (ja)
Other versions
JPH0833225A (en
Inventor
信雄 塩島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP16142194A priority Critical patent/JP3480854B2/en
Publication of JPH0833225A publication Critical patent/JPH0833225A/en
Application granted granted Critical
Publication of JP3480854B2 publication Critical patent/JP3480854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池の充電回路に係
り、特に二次電池の残容量に応じて急速充電時の充電電
流の制御を行う充電回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging circuit for a secondary battery, and more particularly to a charging circuit for controlling the charging current during rapid charging according to the remaining capacity of the secondary battery.

【0002】[0002]

【従来の技術】従来、二次電池を急速充電する際の制御
方式として、種々の方式が考えられているが、その一つ
として充電末期に電池電圧が一旦ピークとなり、その後
電池電圧が低下するという電池の固有の特性を利用して
急速充電を制御する、いわゆる−ΔV制御方式が知られ
ている。この−ΔV制御方式は、充電末期の電池電圧の
ピーク値を記憶しておき、電池電圧がこのピーク値から
所定値(ΔV)低下した時点で急速充電を停止させる方
式である。
2. Description of the Related Art Conventionally, various methods have been considered as a control method for rapidly charging a secondary battery. One of them is that the battery voltage once peaks at the end of charging and then the battery voltage decreases. There is known a so-called -ΔV control method in which rapid charging is controlled by utilizing the unique characteristics of the battery. The −ΔV control method is a method in which the peak value of the battery voltage at the end of charging is stored and the rapid charging is stopped when the battery voltage drops by a predetermined value (ΔV) from the peak value.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した従来
の−ΔV制御方式では、例えば満充電状態の電池を誤っ
て充電器にセットして再充電した場合、電池電圧がΔV
(例えば、電池1個当たり20mV)低下するまで急速
充電されてしまう。このような再充電が繰り返される
と、電池に悪影響が及ぶことになり、例えば電気容量が
低下したり、サイクル寿命が短くなるなどの問題が生じ
る。
However, in the conventional -ΔV control method described above, for example, when a battery in a fully charged state is mistakenly set in the charger and recharged, the battery voltage becomes ΔV.
(For example, 20 mV per battery) It will be charged rapidly until it drops. When such recharging is repeated, the battery is adversely affected, and problems such as a decrease in electric capacity and a shortened cycle life occur.

【0004】本発明は、このような従来の−ΔV制御方
式の問題点を解消し、満充電状態の二次電池を再充電し
た場合の過充電量を小さく抑えることができるようにし
た二次電池の充電回路を提供することを目的とする。
The present invention solves the problems of the conventional -ΔV control method and can suppress the overcharge amount when the secondary battery in the fully charged state is recharged. An object is to provide a battery charging circuit.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係る二次電池の充電回路は、二次電池の
電電流及び放電電流の値に基づいて前記二次電池の充電
量及び放電量を計算し、該充電量及び放電量から前記二
次電池の残容量を計算により求める残容量計測手段と、
この残容量計測手段により計測された残容量の大きさに
応じて小さくなる充電制御値を設定する充電制御値設定
手段と、前記二次電池の充電時の端子電圧がピーク値か
ら前記充電制御値分だけ低下したとき前記二次電池の充
電電流を制御するための充電制御信号を発生する充電制
御信号発生手段と、この充電制御信号発生手段により発
生された充電制御信号に基づいて前記二次電池の充電電
流を制御する充電制御手段とを具備することを特徴とす
る。また、前記残容量計測手段は、より具体的には前記
二次電池の充放電路に挿入された電流検出用抵抗と、前
記二次電池の充電時及び放電時における前記電流検出用
抵抗の電圧降下を増幅する第1及び第2の増幅器と、前
記第1及び第2の増幅器の出力をディジタル値に変換す
るA/D変換器と、前記第1及び第2の増幅器の出力に
対応する前記A/D変換器の出力ディジタル値から前記
二次電池の充電電流及び放電電流を検出する充電電流検
出手段及び放電電流検出手段と、前記充電電流検出手段
及び放電電流検出手段によりそれぞれ検出された前記充
電電流及び放電電流の値に基づいて前記二次電池の充電
量及び放電量を計算し、該充電量及び放電量から前記二
次電池の残容量を計算により求める残容量演算手段とを
有することを特徴とする。
To solve the above problems BRIEF SUMMARY OF THE INVENTION, the charging circuit of a secondary battery according to the present invention, charging of the rechargeable battery
Charging of the secondary battery based on the values of electric current and discharge current
The amount of charge and the amount of discharge are calculated.
A residual capacity measuring means for calculating the residual capacity of the secondary battery,
A charge control value setting means for setting a charge control value that becomes smaller according to the amount of the remaining capacity measured by the remaining capacity measuring means, and a terminal voltage during charging of the secondary battery from a peak value to the charge control value. Charging control signal generating means for generating a charging control signal for controlling the charging current of the secondary battery when the charging control signal is reduced by the amount, and the secondary battery based on the charging control signal generated by the charging control signal generating means. Charging control means for controlling the charging current of In addition, more specifically, the remaining capacity measuring means is
The current detection resistor inserted in the charging / discharging path of the secondary battery
For detecting the current when the secondary battery is charged and discharged
First and second amplifiers for amplifying the voltage drop across the resistor;
Converts the outputs of the first and second amplifiers to digital values
The A / D converter and the outputs of the first and second amplifiers.
From the corresponding output digital value of the A / D converter,
Charging current detection to detect charging current and discharging current of secondary battery
Outputting means, discharging current detecting means, and charging current detecting means
And the charge detected by the discharge current detecting means.
Charging of the secondary battery based on the values of electric current and discharge current
The amount of charge and the amount of discharge are calculated.
The remaining capacity calculation means for calculating the remaining capacity of the secondary battery
It is characterized by having.

【0006】ここで、充電制御信号発生手段は、 (a) 二次電池の電圧のピーク値からの低下分(−ΔV)
充電制御値に達したとき充電制御信号を発生する−Δ
V制御方式に加えて、 (b) 前記二次電池の温度上昇率(温度微分)が前記充電
制御値に達したとき前記充電制御信号を発生する温度上
昇率検知方式、 (c) 前記二次電池の温度が前記充電制御値に達したとき
前記充電制御信号を発生する温度制御方式、 (d) 前記二次電池の電圧が前記充電制御値に達したとき
前記充電制御信号を発生する電圧制御方式、 (e) 前記二次電池の充電時間が前記充電制御値に達した
とき前記充電制御信号を発生するタイマ制御方式から選
択した一つまたは二つ以上を組み合わせ方式により前
記充電制御信号を発生することを特徴とする請求項1に
記載の二、 (b) 二次電池の温度上昇率(温度微分)が充電制御値に
達したとき充電制御信号を発生する温度上昇率検知方
式、 (c) 二次電池の温度をパラメータ値とし、これが充電制
御値に達したとき充電制御信号を発生する温度制御方
式、 (d) 二次電池の電圧をパラメータ値とし、これが充電制
御値に達したとき充電制御信号を発生する電圧制御方
式、 (e) 二次電池の充電時間をパラメータ値とし、これが充
電制御値に達したとき充電制御信号を発生するタイマ制
御方式から選択した一つまたは二つ以上の組み合わせの
方式により充電制御信号を発生するようにしてもよい。
[0006] Here, charging control signal generating means, (a) decrease amount from the peak value of the voltage of the secondary battery (- [Delta] V)
but which generates a charge control signal when it reaches a charge control value
In addition to the V control system, (b) the rate of temperature rise of the secondary battery (temperature differential) temperature increase rate detection method for generating the charging control signal when it reaches a pre-Symbol charge control value, (c) the two temperature control method for generating the charging control signal when the temperature of the next battery reaches a pre-Symbol charge control value, (d) generating said charge control signal when the voltage of the secondary battery reaches a pre-Symbol charge control value voltage control system which, said by (e) the combination of the charge control signal one or more selected from a timer control system that generates when the charging time of the secondary battery reaches a pre-Symbol charge control value scheme 2. The charge control signal is generated according to claim 2, (b) The temperature increase rate for generating the charge control signal when the temperature increase rate (temperature differential) of the secondary battery reaches the charge control value. Detection method, (c) The temperature of the secondary battery is used as a parameter value. Voltage control method that generates a charge control signal when the charge control value is reached, (d) A voltage control method that generates a charge control signal when the voltage of the secondary battery is used as a parameter value, and this reaches the charge control value, (e ) The charging time of the secondary battery is used as a parameter value, and the charging control signal is generated by one or a combination of two or more selected from timer control methods that generate the charging control signal when it reaches the charging control value. You may

【0007】[0007]

【作用】上記のように構成される二次電池の充電回路に
おいては、二次電池の残容量に応じて、例えばこの残容
量が所定値以上の場合は充電制御値を設定し直す。具体
的には、−ΔV制御方式の場合を例にとると、残容量が
所定値以上になった場合には、充電制御値であるΔVの
値を小さくする(例えば、電池1個当たりのΔV値を2
0mVから10mVに下げる)。これにより、残容量が
大きい二次電池を充電する場合の充電量は少なくなる。
従って、満充電状態の二次電池に対して再充電が繰り返
された場合の過充電量は小さく抑えられ、電気容量の低
下やサイクル寿命が短くなるなどの二次電池に対する悪
影響を与えることがなくなる。
In the secondary battery charging circuit configured as described above, the charge control value is reset according to the remaining capacity of the secondary battery, for example, when the remaining capacity is equal to or greater than the predetermined value. Specifically, taking the case of the −ΔV control method as an example, when the remaining capacity becomes equal to or greater than a predetermined value, the value of ΔV that is the charge control value is decreased (for example, ΔV per battery). Value 2
(Reduce from 0 mV to 10 mV). As a result, the amount of charge when a secondary battery with a large remaining capacity is charged is reduced.
Therefore, the amount of overcharge when recharge is repeated for a fully charged secondary battery is suppressed to a small amount, and the secondary battery is not adversely affected such as a decrease in electric capacity and a shortened cycle life. .

【0008】[0008]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は、本発明の一実施例に係る二次電池の充
電回路を示す回路図である。同図1において、充電用電
源1には充電制御回路2を介して二次電池(以下、単に
電池という)3および電流検出用抵抗4が直列に接続さ
れている。充電制御回路2は、最も簡単には例えば外部
からの制御によりオン・オフ制御可能なスイッチからな
り、充電電流のオン・オフを行う。また、充電制御回路
2は充電電流を段階的あるいは連続的に変化させること
ができるような構成でもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing a charging circuit for a secondary battery according to an embodiment of the present invention. In FIG. 1, a secondary battery (hereinafter, simply referred to as a battery) 3 and a current detection resistor 4 are connected in series to a charging power source 1 via a charging control circuit 2. The charging control circuit 2 is, in the simplest form, a switch that can be turned on / off by external control, for example, and turns on / off the charging current. Further, the charging control circuit 2 may be configured to change the charging current stepwise or continuously.

【0009】電流検出用抵抗4の両端は、差動増幅器か
らなる増幅器5,6の各々二つの入力端子に接続されて
いる。これらの増幅器5,6は、電池3の充電時および
放電時における電流検出用抵抗4の端子間電圧(電圧降
下)を増幅する。
Both ends of the current detecting resistor 4 are connected to two input terminals of each of amplifiers 5 and 6 which are differential amplifiers. These amplifiers 5 and 6 amplify the voltage (voltage drop) between the terminals of the current detection resistor 4 when the battery 3 is charged and discharged.

【0010】増幅器5,6の出力はA/D変換器7によ
りディジタル値に変換された後、充電電流検出回路8お
よび放電電流検出回路9にそれぞれ入力される。充電電
流検出回路8および放電電流検出回路9は、それぞれ増
幅器5,6の出力に対応するA/D変換器7の出力ディ
ジタル値から、電池3の充電電流Icおよび放電電流I
dを検出して、それらの値を残容量演算回路10に出力
するものである。
The outputs of the amplifiers 5 and 6 are converted into digital values by the A / D converter 7, and then input to the charging current detecting circuit 8 and the discharging current detecting circuit 9, respectively. The charge current detection circuit 8 and the discharge current detection circuit 9 calculate the charge current Ic and the discharge current I of the battery 3 from the output digital values of the A / D converter 7 corresponding to the outputs of the amplifiers 5 and 6, respectively.
It detects d and outputs those values to the remaining capacity calculation circuit 10.

【0011】残容量演算回路10は、充電電流検出回路
8および放電電流検出回路9により検出された充電電流
Icおよび放電電流Idの値に基づいて、電池3の充電
量および放電量を計算し、これらの充電量および放電量
から電池3の残容量を演算によって求めるものである。
The remaining capacity calculation circuit 10 calculates the charge amount and the discharge amount of the battery 3 based on the values of the charge current Ic and the discharge current Id detected by the charge current detection circuit 8 and the discharge current detection circuit 9, The remaining capacity of the battery 3 is calculated from these charge and discharge amounts.

【0012】上述した電流検出抵抗4、増幅器5,6、
A/D変換器7、充電電流検出回路8、放電電流検出回
路9および残容量演算回路10により、残容量計測回路
11が構成される。
The above-mentioned current detection resistor 4, amplifiers 5, 6,
The A / D converter 7, the charging current detecting circuit 8, the discharging current detecting circuit 9 and the remaining capacity calculating circuit 10 constitute a remaining capacity measuring circuit 11.

【0013】充電制御信号発生回路を構成する−ΔV制
御回路12は、充電時の電池3の電圧を検出し、この電
圧が充電末期のピーク値から充電制御値であるΔVだけ
低下した時点で充電制御信号を発生する。この充電制御
信号は充電制御回路2に供給される。充電制御回路2
は、−ΔV制御回路12からの充電制御信号が与えられ
ると充電制御状態となり、充電用電源1から電池3に供
給する充電電流を遮断するか、あるいは充電電流を減少
させて小電流で電池の充電を続行するように構成されて
いる。
The -.DELTA.V control circuit 12 constituting the charge control signal generating circuit detects the voltage of the battery 3 during charging, and charges when the voltage drops from the peak value at the end of charging by the charge control value .DELTA.V. Generate a control signal. This charge control signal is supplied to the charge control circuit 2. Charge control circuit 2
Is in a charge control state when a charge control signal from the −ΔV control circuit 12 is applied, and cuts off the charging current supplied from the charging power source 1 to the battery 3 or reduces the charging current to reduce the battery charge with a small current. It is configured to continue charging.

【0014】−ΔV制御回路12には、充電制御値設定
回路である−ΔV値設定回路13が接続されている。こ
の−ΔV値設定回路13は、残容量演算回路10で求め
られた電池3の残容量に対応して、−ΔV制御回路12
におけるΔVの値の設定を変更するものである。すなわ
ち、急速充電開始時の電池3の残容量が規定値Ck(例
えば満充電の80%)未満のときはΔV=ΔV1に、ま
た残容量が規定値Ck以上のときはΔV=ΔV2に設定
する。ここでΔV1>ΔV2であり、具体的な数値とし
ては例えばΔV1=20mV、ΔV2=10mVのよう
に選ばれる。
A -ΔV value setting circuit 13, which is a charge control value setting circuit, is connected to the -ΔV control circuit 12. The −ΔV value setting circuit 13 corresponds to the remaining capacity of the battery 3 obtained by the remaining capacity calculation circuit 10 and corresponds to the −ΔV control circuit 12
This is to change the setting of the value of ΔV in. That is, ΔV = ΔV1 is set when the remaining capacity of the battery 3 at the start of rapid charging is less than the specified value Ck (for example, 80% of full charge), and ΔV = ΔV2 is set when the remaining capacity is equal to or more than the specified value Ck. . Here, ΔV1> ΔV2, and specific numerical values are selected such as ΔV1 = 20 mV and ΔV2 = 10 mV.

【0015】次に、図1の充電回路の動作を図2の波形
図を参照して説明する。電池3の急速充電が開始される
と、充電制御回路2は導通状態となって、充電用電源1
から電池3に電流検出用抵抗4を介して比較的大きな充
電電流が流れ、急速充電が開始される。この急速充電過
程において、充電電流Iは図2(b)に示すように比較
的大電流が流れる。一方、電池3の端子電圧VB は図2
(a)に示すように充電初期では急激に上昇するが、充
電中期では緩やかに上昇するようになり、充電末期には
再び急激な電圧上昇を示し、さらに充電が進むとピーク
を示した後、低下する。
Next, the operation of the charging circuit of FIG. 1 will be described with reference to the waveform chart of FIG. When the rapid charging of the battery 3 is started, the charging control circuit 2 becomes conductive and the charging power source 1
A relatively large charging current flows from the battery 3 to the battery 3 through the current detecting resistor 4 to start rapid charging. In this rapid charging process, the charging current I is a relatively large current as shown in FIG. On the other hand, the terminal voltage VB of the battery 3 is shown in FIG.
As shown in (a), it rises sharply in the early stage of charging, but gradually rises in the middle period of charging, and again shows a sharp rise in voltage at the final stage of charging, and shows a peak when the charging further proceeds, descend.

【0016】ここで、充電初期において残容量演算回路
10で求められる残容量Cと規定値Ckとの関係は、図
2(c)に示されるように、 C<Ck であるため、−ΔV値設定回路13で設定されるΔV値
は、図2(d)に示されるようにt=tdの時点までΔ
V1となる。
Here, the relationship between the remaining capacity C obtained by the remaining capacity calculation circuit 10 and the specified value Ck at the initial stage of charging is C <Ck as shown in FIG. The ΔV value set by the setting circuit 13 is Δ until the time t = td as shown in FIG.
It becomes V1.

【0017】次に、電池3の充電が進み、それに伴い残
容量Cが増加し、やがてC=100%に達すると(t=
ta)、電池3の端子電圧VB はほぼピークを示し、V
B がピーク値からΔV1低下すると(t=tb)、−Δ
V制御回路12が充電制御信号を出力する。従って充電
制御回路2は充電制御状態となり、充電用電源1から電
池3に供給される充電電流が遮断されるか、または充電
電流が小さい電流となる。
Next, when the charging of the battery 3 progresses, the remaining capacity C increases accordingly, and eventually reaches C = 100% (t =
ta), the terminal voltage VB of the battery 3 shows almost a peak, and
When B decreases from the peak value by ΔV1 (t = tb), −Δ
The V control circuit 12 outputs a charge control signal. Therefore, the charging control circuit 2 enters the charging control state, and the charging current supplied from the charging power source 1 to the battery 3 is cut off or the charging current becomes a small current.

【0018】次に、図2(b)に示すようにt=tcの
時点で電池3が負荷の接続などにより放電を開始する
と、残容量Cは減少してゆく。次に、図2のt=tdの
時点で急速充電が再開されたとすると、残容量Cと規定
値Ckとの関係が図2(d)に示すように、 C>Ck であるから、−ΔV値設定回路13はΔV値の設定をΔ
V2に変更する(但し、ΔV1>ΔV2)。
Next, as shown in FIG. 2 (b), when the battery 3 starts discharging at time t = tc due to connection of a load or the like, the remaining capacity C decreases. Next, if the rapid charging is restarted at the time of t = td in FIG. 2, the relationship between the remaining capacity C and the specified value Ck is C> Ck as shown in FIG. The value setting circuit 13 sets the ΔV value by Δ
Change to V2 (however, ΔV1> ΔV2).

【0019】そして、電池の再充電が進んで残容量Cが
100%に達し(t=te)、さらに充電が継続して行
われ、電池3の端子電圧VB が再充電開始後のピーク値
からΔV2低下すると、急速充電は停止される(t=t
f)。
Then, the recharging of the battery progresses, the remaining capacity C reaches 100% (t = te), the charging is further continued, and the terminal voltage VB of the battery 3 is changed from the peak value after the recharging is started. When ΔV2 decreases, rapid charging is stopped (t = t
f).

【0020】このように、残容量Cが規定値Ck(例え
ば満充電の80%)未満の場合はΔV=ΔV1とし、残
容量Cが規定値Ck以上の場合はΔV=ΔV2(ΔV1
>ΔV2)と、ΔV値の設定を変えることにより、図2
(c)に示されるように再充電時の過充電量を小さく抑
えることができる。
As described above, ΔV = ΔV1 is set when the remaining capacity C is less than the specified value Ck (for example, 80% of full charge), and ΔV = ΔV2 (ΔV1 is set when the remaining capacity C is the specified value Ck or more.
> ΔV2) and by changing the setting of the ΔV value,
As shown in (c), the overcharge amount at the time of recharging can be suppressed to be small.

【0021】本発明は、上記実施例に限定されるもので
はなく、次のように種々変形して実施することができ
る。 (1)実施例では、ΔV値を残容量によって2段階に分
けたが、3段階以上に分けてもよい。また、残容量とΔ
V値との関係をある関数(例えば直線)にしてもよい。
The present invention is not limited to the above embodiment, but can be modified in various ways as follows. (1) In the embodiment, the ΔV value is divided into two stages according to the remaining capacity, but it may be divided into three or more stages. In addition, the remaining capacity and Δ
The relationship with the V value may be a function (for example, a straight line).

【0022】(2)実施例では、ΔV値を残容量のみに
応じて変化させたが、残容量と再充電回数の両方を勘案
して変化させるようにしてもよい。すなわち、例えば同
じ残容量でも、再充電回数が多い場合はΔV値をより小
さくするようにΔV値を設定してもよい。
(2) In the embodiment, the ΔV value is changed only in accordance with the remaining capacity, but it may be changed in consideration of both the remaining capacity and the number of recharges. That is, for example, even if the remaining capacity is the same, the ΔV value may be set to be smaller when the number of recharges is large.

【0023】(3)実施例では、二次電池3の充電状態
を示すパラメータ値として−ΔV値、すなわち電池電圧
のピーク値からの低下分を示したが、他のパラメータ値
あるいはそれらの組み合わせを用いてもよい。すなわ
ち、−ΔV制御回路12に相当する充電制御信号発生回
路としては、(a) 電池電圧のピーク値からの低下分(−
ΔV)をパラメータ値として、これが充電制御値に達し
たとき充電制御信号を発生する−ΔV制御方式(実施例
の方式)、(b) 二次電池の温度上昇率をパラメータ値と
し、これが充電制御値に達したとき充電制御信号を発生
する温度上昇率検知方式、(c) 二次電池の温度をパラメ
ータ値とし、これが充電制御値に達したとき充電制御信
号を発生する温度制御方式、(d) 二次電池の電圧をパラ
メータ値とし、これが充電制御値に達したとき充電制御
信号を発生する電圧制御方式、(e) 二次電池の充電時間
をパラメータ値とし、これが充電制御値に達したとき充
電制御信号を発生するタイマ制御方式から選択した一つ
または二つ以上の組み合わせの方式により充電制御信号
を発生する構成を採用することができる。その他、本発
明は要旨を逸脱しない範囲で種々変形して実施すること
が可能である。
(3) In the embodiment, -ΔV value, that is, the amount of decrease from the peak value of the battery voltage is shown as the parameter value indicating the state of charge of the secondary battery 3, but other parameter values or a combination thereof may be used. You may use. That is, the charge control signal generation circuit corresponding to the −ΔV control circuit 12 includes (a) a decrease amount (−) from the peak value of the battery voltage.
ΔV) is a parameter value, and a charge control signal is generated when it reaches a charge control value-ΔV control method (method of the embodiment), (b) The temperature rise rate of the secondary battery is a parameter value, and this is the charge control A temperature rise rate detection method that generates a charge control signal when the value reaches a value, (c) a temperature control method that uses the temperature of the secondary battery as a parameter value, and generates a charge control signal when it reaches the charge control value, (d ) A voltage control method in which the voltage of the secondary battery is used as a parameter value and a charge control signal is generated when it reaches the charge control value. (E) The charging time of the secondary battery is used as a parameter value, which reaches the charge control value. It is possible to employ a configuration in which the charging control signal is generated by one or a combination of two or more selected from the timer control methods that generate the charging control signal. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば急
速充電に際し二次電池の充電状態を示すパラメータ値が
充電制御値に達したとき充電電流を制御するための制御
信号を発生し、この充電制御信号に基づいて充電電流を
制御する方式の充電回路において、電池の残容量に応じ
て充電制御値を設定することにより、再充電時の過充電
量を小さくすることができ、それによって満充電状態の
電池を再充電することによる電池の電気容量の低下や、
サイクル寿命の短縮といった電池への悪影響を防止する
ことが可能となる。
As described above, according to the present invention, the control signal for controlling the charging current is generated when the parameter value indicating the state of charge of the secondary battery reaches the charge control value during the rapid charging, In the charging circuit that controls the charging current based on this charging control signal, by setting the charging control value according to the remaining capacity of the battery, it is possible to reduce the overcharge amount at the time of recharging. Reducing the electric capacity of the battery by recharging the fully charged battery,
It becomes possible to prevent adverse effects on the battery such as shortening of cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る二次電池の充電回路の
構成図
FIG. 1 is a configuration diagram of a charging circuit for a secondary battery according to an embodiment of the present invention.

【図2】同実施例の動作を説明するための波形図FIG. 2 is a waveform chart for explaining the operation of the embodiment.

【符号の説明】[Explanation of symbols]

1…充電用電源 2…充電制御回路 3…二次電池 4…電流検出用抵
抗 5,6…増幅器 7…A/D変換器 8…充電電流検出回路 9…放電電流検出
回路 10…残容量演算回路 11…残容量計測
回路 12…−ΔV制御回路(充電制御信号発生手段) 13…−ΔV値設定回路(充電制御値設定手段)
1 ... Charging power source 2 ... Charging control circuit 3 ... Secondary battery 4 ... Current detection resistors 5, 6 ... Amplifier 7 ... A / D converter 8 ... Charging current detection circuit 9 ... Discharge current detection circuit 10 ... Remaining capacity calculation Circuit 11 ... Remaining capacity measuring circuit 12 ...-. DELTA.V control circuit (charging control signal generating means) 13 ...-. DELTA.V value setting circuit (charging control value setting means)

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/12 H02J 7/34 - 7/36 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) H02J 7/ 00-7/12 H02J 7 /34-7/36

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二次電池の充電電流及び放電電流の値に基
づいて前記二次電池の充電量及び放電量を計算し、該充
電量及び放電量から前記二次電池の残容量を計算により
求める残容量計測手段と、 前記残容量計測手段により求められた残容量の大きさに
応じて小さくなる充電制御値を設定する充電制御値設定
手段と、 前記二次電池の充電時の端子電圧がピーク値から前記充
電制御値分だけ低下したとき前記二次電池の充電電流を
制御するための充電制御信号を発生する充電制御信号発
生手段と、 前記充電制御信号発生手段により発生された充電制御信
号に基づいて前記二次電池の充電電流を制御する充電制
御手段とを具備することを特徴とする二次電池の充電回
路。
1. Based on the values of charging current and discharging current of a secondary battery
Then, the charge amount and discharge amount of the secondary battery are calculated based on
Calculate the remaining capacity of the secondary battery from the amount of electricity and the amount of discharge
And residual capacity measuring means for determining the remaining capacity and the charging control value setting means for setting a small charge control value in accordance with the magnitude of the calculated et a remaining capacity by measuring means, charging time of the terminal voltage of the secondary battery Charge control signal generating means for generating a charge control signal for controlling the charging current of the secondary battery when the charge control value decreases from the peak value by the charge control value, and the charge control generated by the charge control signal generating means. A charging circuit for a secondary battery, comprising: a charging control unit that controls a charging current of the secondary battery based on a signal.
【請求項2】前記残容量計測手段は、前記二次電池の充
放電路に挿入された電流検出用抵抗と、前記二次電池の
充電時及び放電時における前記電流検出用抵抗の電圧降
下を増幅する第1及び第2の増幅器と、前記第1及び第
2の増幅器の出力をディジタル値に変換するA/D変換
器と、前記第1及び第2の増幅器の出力に対応する前記
A/D変換器の出力ディジタル値から前記充電電流及び
放電電流を検出する充電電流検出手段及び放電電流検出
手段と、前記充電電流検出手段及び放電電流検出手段に
よりそれぞれ検出された前記充電電流及び放電電流の値
に基づいて前記充電量及び放電量を計算し、該充電量及
び放電量から前記残容量を計算する残容量演算手段とを
有することを特徴とする請求項1に記載の二次電池の充
電回路。
2. The remaining capacity measuring means is used for charging the secondary battery.
A current detection resistor inserted in the discharge path and the secondary battery
Voltage drop of the current detection resistor during charging and discharging
First and second amplifiers for amplifying the bottom, and the first and second amplifiers
A / D conversion that converts the output of amplifier 2 into a digital value
And corresponding to the outputs of the first and second amplifiers.
From the output digital value of the A / D converter, the charging current and
Charge current detection means for detecting discharge current and discharge current detection
Means, the charging current detection means and the discharge current detection means
The values of the charging current and the discharging current respectively detected by
The charge amount and the discharge amount are calculated based on
And the remaining capacity calculation means for calculating the remaining capacity from the discharge amount.
The rechargeable battery according to claim 1, wherein the rechargeable battery has a rechargeable battery.
Electric circuit.
【請求項3】前記充電制御値設定手段は、前記残容量計
測手段により求められた、前記二次電池の充電開始時の
残容量Ckが規定値Cに満たないときの前記充電制御値
ΔV1と、前記残容量Ckが前記規定値Cを越えたとき
の前記充電制御値ΔV2の関係をΔV1>ΔV2となる
ように設定することを特徴とする請求項1に記載の二次
電池の充電回路。
3. The charge control value setting means is the remaining capacity meter.
The charging control value ΔV1 when the remaining capacity Ck at the start of charging of the secondary battery , which is obtained by the measuring means, is less than the specified value C, and the charging control value ΔV1 when the remaining capacity Ck exceeds the specified value C. The charging circuit for a secondary battery according to claim 1, wherein the relationship of the charge control value ΔV2 is set so that ΔV1> ΔV2.
【請求項4】前記充電制御信号発生手段は、 (a) 前記二次電池の電圧のピーク値からの低下分が前記
充電制御値に達したとき前記充電制御信号を発生する−
ΔV制御方式に加えて、 (b) 前記二次電池の温度上昇率が前記充電制御値に達し
たとき前記充電制御信号を発生する温度上昇率検知方
式、 (c) 前記二次電池の温度が前記充電制御値に達したとき
前記充電制御信号を発生する温度制御方式、 (d) 前記二次電池の電圧が前記充電制御値に達したとき
前記充電制御信号を発生する電圧制御方式、 (e) 前記二次電池の充電時間が前記充電制御値に達した
とき前記充電制御信号を発生するタイマ制御方式から選
択した一つまたは二つ以上を組み合わせた方式により前
記充電制御信号を発生することを特徴とする請求項1に
記載の二次電池の充電回路。
4. The charging control signal generating means (a) generates the charging control signal when the amount of decrease from the peak value of the voltage of the secondary battery reaches the charging control value.
In addition to the ΔV control method, (b) a temperature increase rate detection method that generates the charge control signal when the temperature increase rate of the secondary battery reaches the charge control value, (c) the temperature of the secondary battery is A temperature control method for generating the charge control signal when the charge control value is reached, (d) a voltage control method for generating the charge control signal when the voltage of the secondary battery reaches the charge control value, (e ) Generating the charge control signal by a method selected from one or a combination of two or more timer control methods that generate the charge control signal when the charge time of the secondary battery reaches the charge control value. The charging circuit for the secondary battery according to claim 1, wherein the charging circuit is for a secondary battery.
JP16142194A 1994-07-13 1994-07-13 Rechargeable battery charging circuit Expired - Lifetime JP3480854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16142194A JP3480854B2 (en) 1994-07-13 1994-07-13 Rechargeable battery charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16142194A JP3480854B2 (en) 1994-07-13 1994-07-13 Rechargeable battery charging circuit

Publications (2)

Publication Number Publication Date
JPH0833225A JPH0833225A (en) 1996-02-02
JP3480854B2 true JP3480854B2 (en) 2003-12-22

Family

ID=15734787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16142194A Expired - Lifetime JP3480854B2 (en) 1994-07-13 1994-07-13 Rechargeable battery charging circuit

Country Status (1)

Country Link
JP (1) JP3480854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69731361T2 (en) * 1996-12-19 2005-10-27 Koninklijke Philips Electronics N.V. Portable electronic device with detector device of changes of a supply voltage

Also Published As

Publication number Publication date
JPH0833225A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
US5144218A (en) Device for determining the charge condition of a battery
EP0713101B1 (en) Remaining battery capacity meter and method for computing remaining capacity
JP3043808B2 (en) Method for charging rechargeable batteries particularly quickly
US5621302A (en) Battery charger monitoring battery voltage and/or temperature at relevant sampling interval
JP4817647B2 (en) Secondary battery life judgment method.
JPH097641A (en) Charging method of secondary battery
JPS62201027A (en) Charging controller
JP3306188B2 (en) Rechargeable battery charging method
JP3480854B2 (en) Rechargeable battery charging circuit
JP3220797B2 (en) Rechargeable battery charging method
JP2007259633A (en) Charging circuit and charging control method
JP3151275B2 (en) Rechargeable battery charging circuit
JP2002236155A (en) Remaining capacity operation method of battery
JP2621115B2 (en) Charger control circuit
JPH07177670A (en) Charging circuit for secondary battery
JP3238938B2 (en) Battery charger
JPH10248177A (en) Charging circuit
JP4252024B2 (en) Rechargeable battery charging method
KR100216627B1 (en) Detecting method for full-charge of a rechargeable battery, and the Apparatus thereof
JP2569795B2 (en) Battery charge control device
JP2874287B2 (en) Method for determining memory effect of storage battery and charger for memory effect
JPH04325836A (en) Battery charger
JP3173288B2 (en) Charging device
JPH053633A (en) Battery charging controller
JP2656060B2 (en) Storage battery charge control circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

EXPY Cancellation because of completion of term