JP3478988B2 - Organic wastewater treatment equipment - Google Patents

Organic wastewater treatment equipment

Info

Publication number
JP3478988B2
JP3478988B2 JP04887199A JP4887199A JP3478988B2 JP 3478988 B2 JP3478988 B2 JP 3478988B2 JP 04887199 A JP04887199 A JP 04887199A JP 4887199 A JP4887199 A JP 4887199A JP 3478988 B2 JP3478988 B2 JP 3478988B2
Authority
JP
Japan
Prior art keywords
yeast
sludge
wastewater
aeration
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04887199A
Other languages
Japanese (ja)
Other versions
JP2000246284A (en
Inventor
淳一 矢口
信俊 西
薫 千種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environmental Technology Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP04887199A priority Critical patent/JP3478988B2/en
Priority to MYPI99003953A priority patent/MY126466A/en
Publication of JP2000246284A publication Critical patent/JP2000246284A/en
Application granted granted Critical
Publication of JP3478988B2 publication Critical patent/JP3478988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、脂質を含有する
高濃度の有機性廃水を処理する装置に関し、特にパーム
油などの植物油生産工程から排出される難分解性の脂質
を含有する廃水の処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating high-concentration organic wastewater containing lipids, and particularly to the treatment of wastewater containing persistent lipids discharged from a vegetable oil production process such as palm oil. Regarding the device.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】各種
の有機物を多量に含む廃水をそのまま河川等に放流する
と、放流先の水域の水質汚染を招くため、一般に有機物
を多量に含む廃水は活性汚泥法に代表される生物処理を
経る。
2. Description of the Related Art If wastewater containing a large amount of various organic substances is directly discharged to a river or the like, it causes water pollution in the water area of the discharge destination. Therefore, wastewater containing a large amount of organic matter is generally activated sludge. Go through biological treatment represented by law.

【0003】しかしながら、例えば食品加工工場あるい
は外食産業から発生する廃水は極めて高濃度の有機物を
含んでおり、従来の一般的な活性汚泥法では対処しきれ
ない場合もあるため、各種の処理方法が提案されている
(特公昭58−8313号公報、特公昭57−1243
6号公報、特公昭56−52636号公報等)。
However, for example, wastewater generated from a food processing factory or a food service industry contains an extremely high concentration of organic matter, and there are cases where conventional general activated sludge methods cannot deal with it. Therefore, various treatment methods are required. Proposed (Japanese Patent Publication No. 58-8313, Japanese Patent Publication No. 57-1243)
No. 6, Japanese Patent Publication No. 56-52636, etc.).

【0004】この結果、蛋白質あるいは糖類などの有機
物は高濃度で存在していても比較的容易に低濃度化が可
能である。
As a result, it is possible to reduce the concentration of organic substances such as proteins and sugars relatively easily even when they are present in high concentrations.

【0005】ところが、脂質を多量に含む廃水を活性汚
泥処理する場合には、そこに出現する細菌類は脂質、特
に飽和脂肪酸を分解除去する酵素活性が弱いために、脂
質の吸着の方が勝り、活性汚泥フロックの周囲に脂質が
吸着して被膜となり、フロック内に酸素が移送されず酸
欠となってしまうため、脂質の分解除去が阻害されてし
まう。また、脂質は廃水中で水と混合しエマルジョン化
するか、コロイド状で存在するか、あるいはオイルボー
ル化しているかのいずれかであるが、別途油分のみを除
去する物理化学処理を行わない場合には実質的に未処理
となった油分によって処理施設が汚損されてしまうとい
う問題があった。このため、廃水中に脂質分が高濃度に
存在する場合、例えばヘキサン抽出物質(主として、廃
水中に含まれる比較的揮発しにくい炭化水素、炭化水素
誘導体、グリース油状物質などの油類、グリース類であ
って、ヘキサンによって抽出されるもの)の濃度が20
0〜500mg/Lの場合には油脂分離槽を設け、50
0mg/L以上であれば、加圧浮上手段を設けて脂質を
物理化学的に固液分離して除去するか、あるいは廃水に
対し油脂分解促進剤等の薬剤を添加するなどして廃水中
からの脂質の除去を図った後に、その処理液に対し活性
汚泥に代表される一般的な生物処理を行っていた。ま
た、固液分離した油脂は臭気を発生させるため、脂質自
体を根本的に分解処理することも望まれていた。これら
の廃水処理工程を一貫したシステムとして行おうとする
と、工程が複雑となり、処理時間が長くなり、装置の設
置スペースも大きくせざるを得ない。加えて、建設費や
ランニングコストが高くなり、運転管理も煩雑になる。
このため、各種食品工場等では脂質を多量に含む廃水の
処理に苦慮していた。
However, when wastewater containing a large amount of lipids is treated with activated sludge, the bacteria that appear there have a weak enzymatic activity for decomposing and removing lipids, especially saturated fatty acids, so that adsorption of lipids is superior. As a result, lipids are adsorbed around the flocs of the activated sludge to form a film, and oxygen is not transferred into the flocs, resulting in oxygen deficiency, which hinders decomposition and removal of the lipids. In addition, lipids are either mixed with water in wastewater to form an emulsion, exist in a colloidal form, or are formed into oil balls, but if a separate physicochemical treatment to remove only oil is not performed. Had a problem that the treatment facility would be contaminated by the untreated oil. For this reason, when the lipid content in the waste water is high, for example, hexane extract substances (mainly hydrocarbons, hydrocarbon derivatives, grease oily substances and other oils and greases contained in the waste water that are relatively hard to volatilize) And the concentration of (extracted with hexane) is 20
In the case of 0 to 500 mg / L, an oil and fat separation tank is provided,
If it is 0 mg / L or more, it is possible to remove lipids by physicochemically solid-liquid separating them by providing a pressure flotation means, or by adding chemicals such as fat and oil decomposition accelerators to the wastewater. After attempting to remove the lipids of the above, the treatment liquid was subjected to general biological treatment represented by activated sludge. Further, since fats and oils that have been solid-liquid separated generate an odor, it has been desired to fundamentally decompose the lipid itself. If an attempt is made to perform these wastewater treatment processes as an integrated system, the processes become complicated, the treatment time becomes long, and the installation space of the device must be increased. In addition, construction costs and running costs are high, and operation management becomes complicated.
For this reason, various food factories have had difficulty treating waste water containing a large amount of lipids.

【0006】そこで、従来、脂質を多量に含む廃水を処
理するために、脂質を分解する酵素活性が高く、生成さ
れた脂肪酸をβ酸化する一連の酵素活性も高い脂質資化
性酵母を用いる方法が提案されている(特開平3−27
5195号公報、特開平6−62837号公報、特開平
7−100477号公報等)。
Therefore, conventionally, in order to treat wastewater containing a large amount of lipids, a method using a lipid-assimilating yeast which has a high enzymatic activity for decomposing lipids and also a series of enzymatic activities for β-oxidizing the produced fatty acids. Has been proposed (JP-A-3-27)
No. 5,195, JP-A-6-62837, JP-A-7-100477).

【0007】ところが、脂質を含有する廃水には、構成
脂肪酸が主に比較的分解し易い不飽和脂肪酸からなる脂
質を含有する植物油の製造工程からの廃水のほかに、生
物分解されにくい飽和脂肪酸の組成(構成)比率が高い
脂質(「難分解性の脂質」と称す)である動物性脂肪や
パーム油等を含む廃水がある。難分解性の脂質は、前述
した脂質資化性酵母を用いる廃水処理方法で処理しても
分解除去されにくい。これは、当該処理方法が単に酵母
による脂質の分解能力に依存するのみで、廃水処理能力
を十分に発揮させるまでに至らなかったためである。そ
こで、難分解性の脂質を効率よく分解させて処理時間の
短縮、処理設備規模のコンパクト化を図る必要があっ
た。
However, lipid-containing wastewater includes not only wastewater from the process of producing a vegetable oil containing lipids composed of unsaturated fatty acids whose constituent fatty acids are relatively easy to decompose, but also saturated fatty acids which are hardly biodegradable. There is wastewater containing animal fat, palm oil, and the like, which are lipids having a high composition (composition) ratio (referred to as “hardly-degradable lipids”). Hardly degradable lipids are difficult to decompose and remove even when treated by the wastewater treatment method using the lipid-assimilating yeast described above. This is because the treatment method merely depends on the ability of yeast to decompose lipids, and the wastewater treatment ability has not been sufficiently exhibited. Therefore, it has been necessary to efficiently decompose the hardly-decomposable lipid to shorten the processing time and downsize the processing equipment.

【0008】また、特開昭54−141054号公報に
は難分解性のパーム油廃水に酵母を添加して処理する技
術が開示されているが、これも前記同様に酵母の廃水処
理能力が十分に引き出されておらず、以下の理由により
実現性、実効性に乏しい。(1)高濃度有機性廃水を十
分に処理できない。即ち、BOD除去率65%程度で、
処理水濃度が数千mg/Lも残存するため、この処理方
法では前処理的な役割しか果たせない。(2)酵母によ
る脂質の分解に関するメカニズムが全く示されておら
ず、加えて単に複数の酵母添加して、それらの脂質分解
能力に依存した処理手法が開示されているのみである。
(3)培養により増殖した酵母は常法によって分離する
ことが示唆されているが、高濃度に菌体が存在する場合
には重力沈殿などの常法による固液分離は不可能であ
る。
Further, Japanese Unexamined Patent Publication No. 54-141054 discloses a technique for treating yeast by adding it to a hardly decomposable palm oil wastewater, which also has a sufficient yeast wastewater treatment capacity as described above. However, it is not realized and effective for the following reasons. (1) High concentration organic wastewater cannot be treated sufficiently. That is, with a BOD removal rate of about 65%,
Since the treated water concentration remains as high as several thousands mg / L, this treatment method can play only a pretreatment role. (2) No mechanism for the decomposition of lipids by yeast is shown, and in addition, a treatment method that depends on their lipolytic ability by simply adding a plurality of yeasts is disclosed.
(3) It has been suggested that yeast grown by culturing is separated by a conventional method, but when the bacterial cells are present at a high concentration, solid-liquid separation by a conventional method such as gravity precipitation is impossible.

【0009】この発明の目的は、廃水中に含まれる難分
解性の脂質を効率よく分解することにより、処理時間が
短縮でき、また当該脂質を別途処理することなく直接分
解除去して良好な処理水を得ることができると共に、処
理施設自体の汚損を防ぎ、さらに省スペース型のコンパ
クト化された処理装置を提供することにある。
The object of the present invention is to efficiently decompose the hardly decomposable lipid contained in the waste water, thereby shortening the processing time, and to directly decompose and remove the lipid without separate processing, and to perform a good treatment. An object of the present invention is to provide a space-saving and compact processing apparatus which can obtain water and prevent the processing facility itself from being soiled.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、この発明は生物分解されにくい飽和脂肪酸の組成比
率が高い難分解性の植物油脂を含有する有機性廃水と飽
和脂肪酸を効率よく酸化分解する難分解性脂質資化性酵
母を1種または2種以上含む汚泥とを混合して好気性
生物学的処理を行う密閉された生物反応槽と、該生物反
応槽混合液を高酸素濃度ガスで曝気する高酸素濃度曝気
手段と、生物反応槽混合液を処理水と汚泥とに固液分離
する固液分離手段とを備えたものである。また、この発
は前記項酸素濃度曝気手段に代えて、生物反応槽混合
液を加圧状態で空気曝気する加圧曝気手段を含めること
ができる。ここで、固液分離手段は、加圧浮上手段また
は遠心分離手段であってもよい。さらに、生物分解され
にくい飽和脂肪酸の組成比率が高い難分解性の植物油脂
を含有する有機性廃水は植物油製造工程から排出され
る廃水であってもよい。
In order to achieve the above object, the present invention is directed to a composition ratio of saturated fatty acids which are hardly biodegradable.
High rate hardly decomposable you containing vegetable oil organic wastewater and saturated <br/> sum fatty efficiently oxidative decomposing Persistence lipid assimilation enzyme
Mother by mixing one or more kinds on including sludge, and bioreactor which is sealed performing aerobic biological treatment, high oxygen aerated organism reactor mixture at a high oxygen concentration gas It is provided with a concentration aeration means and a solid-liquid separation means for performing solid-liquid separation of the biological reaction tank mixed liquid into treated water and sludge. Further, the invention can be pre-instead of the climate oxygen concentration aerating means, including a pressurized圧曝air means air aeration under pressure the bioreactor mixture. Here, the solid-liquid separation means may be a pressure floating means or a centrifugal separation means . Et al., Allowed to biodegradable
Organic wastewater composition ratio of hard to saturated fatty acids containing high flame degradable vegetable oils <br/> may be waste water discharged from the vegetable oil fat manufacturing process.

【0011】ここで、上記「脂質資化性酵母」とは、脂
質をグリセリンと脂肪酸とに加水分解するリパーゼ(酵
素)を生成し、さらに加水分解で生じた脂肪酸を酸化分
解(β酸化)して資化する酵母をいい、具体的にはトリ
コスポロン属、ハンゼヌラ属、トリコスポリエラ属およ
びキャンディダ属等の真菌類が知られている。これらの
酵母は廃水中に含まれる脂質を分解資化する能力を有し
ているが、被処理脂質の構成脂肪酸などの組成により、
効率よく有効にその脂質を分解資化できる酵母種は限ら
れてくる。そのため、脂質含有廃水を、酵母を用いて処
理する場合には、上記酵母種から被処理脂質に対する資
化性が特に優れた1種または2種以上を選択することが
肝要である。これらの酵母を用いる廃水処理は好気的に
行う必要がある。即ち、好気的な廃水処理とは被処理水
である廃水と共に存在する微生物群が好気的な条件下で
処理を行い、廃水中の有機物を酸化分解することであ
る。このため、廃水と共に存在する微生物群が必要とす
る酸素を効率よく供給して十分に酸素が行き渡る状態に
しなければならない。この発明では、廃水と酵母を含む
汚泥とが混合した混合液を収容する生物反応槽へ高酸素
濃度の空気等のガスで曝気する高酸素濃度曝気手段、ま
たは加圧状態で空気曝気する加圧曝気手段を用いて酸素
を効率よく供給する。さらに、このような好気的条件を
実現する曝気手段を備えていても、上記生物反応槽が開
放型であれば、高酸素濃度曝気手段の場合には高酸素濃
度のガスが大気に放散してしまい、エネルギーの損失が
甚大であり、また加圧曝気手段の場合には上記生物反応
槽を加圧状態にすることができない。そのため、この発
明では、上記反応槽として密閉型のものを用いる。これ
により、曝気に用いた高酸素濃度の空気を生物反応槽内
に維持することができると共に、循環して曝気に再利用
することも可能であり、また加圧曝気手段の場合にはそ
の圧力条件を達成・維持することができる。なお、加圧
状態で曝気を行えば、ヘンリーの法則により生物反応槽
内の混合液に空気を効率よく溶解させることができるた
め、混合液中の酵母に対して十分に酸素を供給すること
ができる。
Here, the above-mentioned "lipid-assimilating yeast" means to produce a lipase (enzyme) which hydrolyzes a lipid into glycerin and a fatty acid, and further oxidatively decomposes (β-oxidizes) the fatty acid produced by the hydrolysis. It is a yeast that is assimilated, and specifically, fungi such as Trichosporon, Hansenula, Trichosporella and Candida are known. These yeasts have the ability to decompose and assimilate the lipids contained in the wastewater, but due to the composition of the constituent fatty acids of the treated lipid,
There are only a limited number of yeast species that can efficiently and effectively assimilate the lipids. Therefore, when treating the lipid-containing wastewater with yeast, it is important to select one or more species from the above yeast species that are particularly excellent in assimilating the lipid to be treated. Wastewater treatment using these yeasts must be performed aerobically. That is, the aerobic wastewater treatment is that a group of microorganisms existing together with the wastewater to be treated performs the treatment under aerobic conditions to oxidatively decompose the organic matter in the wastewater. Therefore, it is necessary to efficiently supply oxygen required by the microbial group existing together with the wastewater so that the oxygen is sufficiently distributed. In the present invention, a high oxygen concentration aeration means for aerating a biological reaction tank containing a mixed solution of waste water and sludge containing yeast with a gas such as air having a high oxygen concentration, or pressurization for aerating air in a pressurized state Oxygen is efficiently supplied using aeration means. Further, even if an aeration means for realizing such aerobic conditions is provided, if the biological reaction tank is an open type, in the case of a high oxygen concentration aeration means, a gas with a high oxygen concentration will diffuse to the atmosphere. The energy loss is enormous, and in the case of the pressurized aeration means, the biological reaction tank cannot be put into a pressurized state. Therefore, in the present invention, a closed type is used as the reaction tank. As a result, it is possible to maintain the high oxygen concentration air used for aeration in the biological reaction tank, and also to circulate and reuse the aeration. The condition can be achieved and maintained. If aeration is performed under pressure, air can be efficiently dissolved in the mixed solution in the biological reaction tank according to Henry's law, so sufficient oxygen can be supplied to the yeast in the mixed solution. it can.

【0012】上記構成を有する有機性廃水処理装置は、
廃水と脂質資化性酵母を含む汚泥とが混合した混合液を
収容して生物処理を行う密閉型の生物反応槽に対し高酸
素濃度曝気手段、または加圧曝気手段で曝気することに
より、上記酵母に十分な好気的条件下で脂質資化性をフ
ルに発揮させて、廃水中に含まれる難分解性の脂質等を
短時間で分解処理することができる。さらに、この発明
の有機性廃水処理装置は、高濃度に難分解性の脂質を含
む廃水に対しては、上記酵母を含む汚泥の濃度を高くす
ると共に、高負荷で運転することが可能であり、そのよ
うな場合にでも生物反応槽内を好気的条件に維持するこ
とができるので、生物反応槽を広げる必要がなく、省ス
ペース型でコンパクト化することができる。
The organic wastewater treatment apparatus having the above structure is
By aerating with a high oxygen concentration aeration means or a pressurized aeration means to a closed-type biological reaction tank that contains a mixed solution of wastewater and sludge containing lipid-assimilating yeast and performs biological treatment, It is possible to cause the yeast to fully exhibit its lipid assimilation under sufficient aerobic conditions and to decompose the hardly-decomposable lipids contained in the wastewater in a short time. Furthermore, the organic wastewater treatment apparatus of the present invention can be operated at a high load while increasing the concentration of sludge containing the above yeast with respect to wastewater containing lipids that are difficult to decompose at high concentrations. Even in such a case, since the inside of the biological reaction tank can be maintained under aerobic conditions, it is not necessary to expand the biological reaction tank, and it is possible to save space and make it compact.

【0013】なお、生物反応槽内へ酵母菌体を保持でき
る担体を投入する、いわゆる担体投入型の生物反応槽を
採用してもよい(図示せず)。担体は通常用いられる素
材(例えば、有機性ポリマーやスポンジ状物質等)であ
る。これにより、生物反応槽では酵母を含む汚泥の濃度
をあまり高くしなくても、担体に保持された酵母が存在
するため、実質的には高い汚泥濃度で廃水を処理するこ
とができ、また生物反応槽混合液の固液分離も比較的容
易にすることができる。
A so-called carrier-introducing type biological reaction tank in which a carrier capable of holding yeast cells is charged into the biological reaction tank may be employed (not shown). The carrier is a commonly used material (for example, an organic polymer or sponge-like substance). This allows the wastewater to be treated at a substantially high sludge concentration because the yeast retained on the carrier is present even if the concentration of sludge containing yeast is not so high in the biological reaction tank. Solid-liquid separation of the reaction tank mixture can also be made relatively easy.

【0014】[0014]

【発明の実施の形態】以下、図面を参照してこの発明の
実施の一形態を説明する。上述した酵母を用いた廃水の
処理は、特開平3−275195号公報等において千種
らによって説明されているように高濃度廃水、特に油脂
を含む食品工場廃水の処理に効果的であることが知られ
ている。例えば、大豆油のような植物油ではBOD容積
負荷で10〜20kg−BOD/kg酵母・dayで9
0%以上の除去率が得られている。表1に示す主な植物
油脂の脂肪酸組成表からわかるように、大豆油やサフラ
ワー油等の植物油脂は、ほとんどが比較的生物分解され
やすいオレイン酸やリノール酸などの不飽和脂肪酸から
構成されている。これに対して、パーム油やヤシ油等は
ラウリン酸、ミリスチン酸、パルミチン酸等の生物分解
されにくい飽和脂肪酸の組成(構成)比率が高い。その
ため、これらパーム油等を含有する廃水は従来の細菌類
を利用した生物学的処理が難しく、例えば嫌気性や好気
性の酸化池で処理する場合には、30日以上の滞留時間
が必要であり、廃水処理施設は広大な設置面積を必要と
していた。なお、表1は原田一郎著「改訂増補 油脂化
学の知識」(株式会社幸書房発行)第29頁の表4を転
載したものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. It is known that the treatment of wastewater using yeast described above is effective for treating high-concentration wastewater, particularly food factory wastewater containing fats and oils, as described by Chikusa et al. In JP-A-3-275195. Has been. For example, vegetable oil such as soybean oil has a BOD volume load of 10 to 20 kg-BOD / kg yeast / day and 9
A removal rate of 0% or more is obtained. As can be seen from the fatty acid composition table of the main vegetable oils and fats shown in Table 1, most vegetable oils and fats such as soybean oil and safflower oil are composed of unsaturated fatty acids such as oleic acid and linoleic acid, which are relatively biodegradable. ing. On the other hand, palm oil, coconut oil, and the like have a high composition (composition) ratio of lauric acid, myristic acid, palmitic acid, and other saturated fatty acids that are difficult to biodegrade. For this reason, wastewater containing these palm oils and the like is difficult to biologically treat using conventional bacteria. For example, when treating wastewater in an anaerobic or aerobic oxidation pond, a residence time of 30 days or more is required. Yes, the wastewater treatment facility required a vast installation area. Table 1 is a reproduction of Table 4 on page 29 of "Revised Supplementary Knowledge of Oil and Fat Chemistry" by Ichiro Harada (published by Koshobo Co., Ltd.).

【表1】 [Table 1]

【0015】この発明では、パーム油等の難分解性の脂
質の処理に適した酵母を選択して好気的に処理すること
で、パーム油等廃水を効率よく処理し、高負荷運転が可
能であるため、処理に必要な滞留時間を大幅に短縮でき
る。さらに、密閉型曝気手段を採用して、高酸素濃度曝
気または加圧曝気を行うことで、酵母が必要とする酸素
量を十分に供給し、安定したパーム油等廃水処理を実現
することができる。
In the present invention, yeast suitable for the treatment of hardly decomposable lipids such as palm oil is selected and treated aerobically, whereby wastewater such as palm oil is efficiently treated and high load operation is possible. Therefore, the residence time required for the treatment can be significantly shortened. Further, by adopting the closed type aeration means and performing high oxygen concentration aeration or pressure aeration, it is possible to supply a sufficient amount of oxygen required by the yeast and realize a stable wastewater treatment such as palm oil. .

【0016】この発明では、特にパーム油の処理に適し
た酵母を選択するため、パーム油廃水に既存のパーム油
廃水処理酸化池の汚泥及び本出願人が保存している脂質
資化性酵母の全株を添加して集積培養を行った。ここ
で、集積培養とは、供試したパーム油廃水の処理におい
て最も増殖速度の大きい菌株を選択する方法であり、そ
の結果、供試したパーム油廃水に出現した資化性酵母と
してトリコスポロン・ブラシカエ(Trichosporon brass
icae),トリコスポロン・カピタタム(Trichosporon c
apitatum),トリコスポロン・プルランス(Trichospor
on pullulans),トリコスポロン・エスピー(Trichosp
oron sp.),ハンゼヌラ・アノマラ(Hansenula anomal
a),トリコスポリエラ・エスピー(Trichosporiella s
p.),キャンディダ・アトランティカ(Candida atlant
ica),キャンディダ・ヘレニカ(Candida hellenic
a),キャンディダ・インターメディア(Candida inter
media),キャンディダ・リポリティカ(Candida lipol
ytica),キャンディダ・シルバエ(Candida silva
e),キャンディダ・ソラニ(Candida solani),キャ
ンディダ・エスピー(Candida sp. )等が確認された。
In the present invention, in order to select the yeast particularly suitable for the treatment of palm oil, the sludge from the existing palm oil wastewater treatment oxidation pond and the lipid-assimilating yeast stored by the present applicant are stored in the palm oil wastewater. All strains were added to carry out enrichment culture. Here, the enrichment culture is a method of selecting a strain having the highest growth rate in the treatment of the tested palm oil wastewater, and as a result, Trichosporon brassicae was identified as the assimilating yeast that appeared in the tested palm oil wastewater. (Trichosporon brass
icae), Trichosporon c
apitatum), Trichospor pullulans (Trichospor)
on pullulans), Trichosporon SP
oron sp.), Hansenula anomal
a), Trichosporiella s
p.), Candida atlant
ica, Candida hellenic
a), Candida intermedia
media), Candida lipol
ytica), Candida silva
e), Candida solani, Candida sp., etc. were confirmed.

【0017】この発明においては、これらの酵母類を種
菌として用い、パーム油廃水が流入する反応槽内で好気
的に培養することにより、難分解性の脂質を含有するパ
ーム油廃水を効率よく処理できる。この発明によれば、
パーム油廃水中に含まれる油脂は、油脂分離槽等の前処
理施設を設けることなく処理可能であり、廃水中のBO
Dを80%以上処理するには、BOD容積負荷で5〜8
0kg−BOD/m3・day、酵母負荷で0.5〜
5.0kg−BOD/kg酵母・dayで運転するのが
適当である。この場合、酵母を含む汚泥濃度は5000
mg/L以上に保ち、望ましくは20,000〜30,
000mg/Lの高濃度で滞留時間3時間以上で処理す
る。
In the present invention, these yeasts are used as seeds and aerobically cultivated in a reaction tank into which palm oil wastewater flows, whereby palm oil wastewater containing a persistent lipid is efficiently produced. It can be processed. According to this invention,
Oils and fats contained in palm oil wastewater can be treated without providing a pretreatment facility such as an oil and fat separation tank.
To treat more than 80% of D, 5-8 at BOD volume load
0 kg-BOD / m 3 · day, yeast load 0.5 ~
It is suitable to operate at 5.0 kg-BOD / kg yeast / day. In this case, the concentration of sludge containing yeast is 5000
Keep it at mg / L or more, preferably 20,000 to 30,
Treat with a high concentration of 000 mg / L for a residence time of 3 hours or longer.

【0018】また、この発明においては、パーム油廃水
処理酵母の能力を最大限発揮させるため、上述したよう
に生物反応槽に密閉型曝気手段を使用して高酸素濃度曝
気あるいは加圧曝気することも必要となる。これはパー
ム油廃水処理酵母に高負荷条件下でも培養に必要な酸素
を十分に供給するためである。加圧曝気では、BOD容
積負荷で5〜30kg−BOD/m3 ・dayで運転す
る場合に適しており、また高酸素濃度曝気では20〜8
0kg−BOD/m3 ・dayで処理する場合に適して
いる。
Further, in the present invention, in order to maximize the ability of the yeast for treating palm oil wastewater, high-oxygen concentration aeration or pressure aeration is performed by using the closed aeration means in the biological reaction tank as described above. Will also be required. This is to sufficiently supply the oxygen required for cultivation to the palm oil wastewater-treated yeast even under high load conditions. Pressurized aeration is suitable for operation at 5-30 kg-BOD / m 3 · day with BOD volume load, and 20-8 for high oxygen concentration aeration.
It is suitable for processing at 0 kg-BOD / m 3 · day.

【0019】加圧下で空気曝気する加圧曝気処理装置
は、強力な撹拌能力を有する撹拌装置と循環流路を備え
た密閉型曝気手段と、生物反応槽であるこの曝気槽に圧
縮空気を供給するコンプレッサと、曝気槽内の圧力を調
整する絞り弁と、曝気槽にパーム油廃水を供給する加圧
ポンプと、汚泥と処理水を分離するための浮上分離槽
と、分離された汚泥を一時的に貯留する汚泥貯留槽と、
上記浮上分離槽から掻き出された汚泥を曝気槽へ返送す
るための返送管路及びポンプとから概略構成されている
ことが望ましいが、これに限定されるものではない。
The pressurized aeration processing apparatus for aerating air under pressure supplies a closed type aeration means equipped with a stirring device having a strong stirring ability and a circulation flow path, and compressed air is supplied to this aeration tank which is a biological reaction tank. Compressor, a throttle valve that adjusts the pressure in the aeration tank, a pressure pump that supplies palm oil wastewater to the aeration tank, a flotation separation tank that separates sludge and treated water, and the separated sludge Sludge storage tank for
Although it is desirable that the sludge scraped out from the floating separation tank is returned to the aeration tank and a pump for returning the sludge to the aeration tank, it is not limited thereto.

【0020】この装置では、加圧下でパーム油廃水の処
理が行われ、その圧力範囲は1.5〜5気圧が妥当であ
る。加圧下では、ヘンリーの法則によって空気の溶解が
向上し、高い酸素溶解効率が得られるので、常圧下より
供給される空気量が少なくて済み、動力費の削減と共
に、曝気強度を低下させることができる。
In this apparatus, palm oil wastewater is treated under pressure, and the pressure range of 1.5 to 5 atm is appropriate. Under pressure, Henry's law improves the dissolution of air and obtains a high oxygen dissolution efficiency, so the amount of air supplied can be smaller than under normal pressure, which can reduce power costs and lower aeration strength. it can.

【0021】さらに、この発明の有機性廃水処理装置で
は、曝気槽内の混合液が絞り弁通過後に減圧されるた
め、混合液内に溶解していた酸素等が大量の気泡として
発生する。この微小な気泡は酵母汚泥に付着して酵母汚
泥に浮力を与えるため、浮上分離槽で汚泥が確実に浮上
し、処理水と汚泥との固液分離が容易となる。従って、
凝集剤の添加や圧縮空気の導入はほとんど必要ない。
Further, in the organic wastewater treatment apparatus of the present invention, the mixed liquid in the aeration tank is decompressed after passing through the throttle valve, so that oxygen and the like dissolved in the mixed liquid are generated as a large amount of bubbles. Since these minute bubbles adhere to the yeast sludge and give buoyancy to the yeast sludge, the sludge reliably floats in the flotation separation tank, and solid-liquid separation between the treated water and the sludge becomes easy. Therefore,
Addition of coagulant or introduction of compressed air is almost unnecessary.

【0022】実施の形態1.図1はこの発明の有機性廃
水処理装置に係る実施の形態1における基本的な処理フ
ローを示すフローシートである。図1に示すように、脂
質を含む廃水は流入水としてスクリーン1を通過して酵
母処理に適さない程度のサイズの固形分(夾雑物)が除
かれた上で、流量調整槽2に送られる。この流量調整槽
2から所定量の廃水が生物反応槽としての酵母反応槽3
内に供給される。この酵母反応槽3には槽内のpHを測
定するセンサ(図示せず)が取り付けられており、その
pHセンサの測定値に応じて槽内のpHを上記脂質資化
性酵母の最適pH3〜7とするために硫酸等の酸性薬剤
が添加される。また、この酵母反応槽3には後述の加圧
浮上手段4で固液分離された酵母のうち、再度廃水処理
に用いるための酵母をリサイクルするための返送経路お
よびポンプ(図示せず)が加圧浮上手段4との間に設け
られている。上記酵母反応槽3内で一定の滞留時間、酵
母により脂質分解処理を受けた廃水(混合液)は加圧浮
上手段4に送られ、固液分離を受ける。固液分離により
得られた処理水(液体)は処理水槽5に送られ、酵母汚
泥(固形分)の一部は上述したように酵母反応槽3に戻
され、残りは余剰酵母として汚泥処理系に送られる。処
理水槽5内の処理水は放流先の水質基準などに応じて後
処理として活性汚泥処理などの一般的な廃水処理を施し
てもよい。
Embodiment 1. FIG. 1 is a flow sheet showing a basic processing flow in Embodiment 1 of the organic wastewater treatment apparatus of the present invention. As shown in FIG. 1, lipid-containing wastewater passes through a screen 1 as inflow water to remove solids (contaminants) of a size not suitable for yeast treatment, and then sent to a flow rate adjusting tank 2. . A predetermined amount of waste water from this flow rate adjusting tank 2 is a yeast reaction tank 3 as a biological reaction tank.
Supplied within. A sensor (not shown) for measuring the pH in the tank is attached to the yeast reaction tank 3, and the pH in the tank is adjusted to the optimum pH 3 to 3 for the lipid-assimilating yeast according to the measurement value of the pH sensor. An acid chemical such as sulfuric acid is added to obtain 7. In addition, a return path and a pump (not shown) for recycling yeast, which has been solid-liquid separated by the pressure flotation means 4 described later, for reuse in wastewater treatment are added to the yeast reaction tank 3. It is provided between the pressure levitation means 4. The wastewater (mixed liquid) that has been subjected to the lipolysis treatment by yeast for a certain retention time in the yeast reaction tank 3 is sent to the pressure flotation means 4 and undergoes solid-liquid separation. The treated water (liquid) obtained by the solid-liquid separation is sent to the treated water tank 5, part of the yeast sludge (solid content) is returned to the yeast reaction tank 3 as described above, and the rest is surplus yeast as a sludge treatment system. Sent to. The treated water in the treated water tank 5 may be subjected to general wastewater treatment such as activated sludge treatment as a post-treatment depending on the water quality standard of the discharge destination.

【0023】実施の形態2.図2は、図1に示したこの
発明の有機性廃水処理装置の基本的フローをより具体的
に実現するための処理装置に係る実施の形態2の構成を
示すフローシートである。図2に示す酵母反応槽は、加
圧曝気処理装置である点に特徴がある。
Embodiment 2. FIG. 2 is a flow sheet showing the configuration of the second embodiment of the treatment apparatus for more specifically realizing the basic flow of the organic wastewater treatment apparatus of the present invention shown in FIG. The yeast reaction tank shown in FIG. 2 is characterized in that it is a pressure aeration treatment device.

【0024】本処理装置は、強力な撹拌能力を有する撹
拌装置10と循環流路を備えた密閉型の加圧曝気槽(生
物反応槽)11と、この加圧曝気槽11に圧縮空気を供
給するコンプレッサ12と、加圧曝気槽11内の圧力を
調整する絞り弁13と、加圧曝気槽11にパーム油廃水
を供給する加圧ポンプ14と、酵母汚泥と処理水とを分
離するための浮上分離槽(固液分離手段)15と、汚泥
掻寄装置16と、分離された酵母汚泥を一時的に貯留す
る汚泥貯留槽17と、上記浮上分離槽15の汚泥掻寄装
置16により掻き寄せられた酵母汚泥を加圧曝気槽11
へ返送するための返送管路18および汚泥返送ポンプ1
9と、上記汚泥掻寄装置16により掻き寄せられた酵母
汚泥を汚泥貯留槽17へ移送するか、あるいは汚泥処理
系へ移送するための汚泥移送ポンプ20とから概略構成
されている。
The present processing apparatus includes a stirring type aeration tank (biological reaction tank) 11 having a stirring apparatus 10 having a strong stirring capacity and a circulation flow path, and compressed air is supplied to the pressurized aeration tank 11. Compressor 12, a throttle valve 13 for adjusting the pressure in the pressure aeration tank 11, a pressure pump 14 for supplying palm oil wastewater to the pressure aeration tank 11, a yeast sludge for separating treated water The flotation separation tank (solid-liquid separation means) 15, the sludge scraping device 16, the sludge storage tank 17 for temporarily storing the separated yeast sludge, and the sludge scraping device 16 of the floating separation tank 15 Pressurized aeration tank 11 for the collected yeast sludge
Return line 18 for returning to and sludge return pump 1
9 and a sludge transfer pump 20 for transferring the yeast sludge scraped by the sludge scraping device 16 to the sludge storage tank 17 or to the sludge treatment system.

【0025】原水は、図1のフローシートに従ってスク
リーンで夾雑物を除去した後、流量調整槽(図示せず)
に蓄えられ、さらに加圧ポンプ14によって加圧曝気槽
11へ送られる。同時に、加圧曝気槽11には、コンプ
レッサ12によって圧縮空気が供給され、加圧下で酵母
によって廃水処理される。加圧曝気槽11内の混合液は
浮上分離槽15へ送られ、絞り弁13を通過した直後に
減圧され、発生した大量の気泡が酵母汚泥に付着し、浮
上分離槽15の上部にこの汚泥が浮上する。浮上分離し
た酵母汚泥の一部は余剰酵母として再利用され、他は汚
泥貯留槽17内に一時蓄えられた後、加圧曝気槽11へ
汚泥返送ポンプ19により返送される。処理水は流出口
から溢流される。なお、固液分離の状況により、余剰酵
母分が処理水と共に流出する場合には浮上分離した酵母
汚泥を全量、加圧曝気槽11に返送することもある。
The raw water is subjected to a screen according to the flow sheet of FIG. 1 to remove impurities, and then a flow rate adjusting tank (not shown).
And is sent to the pressure aeration tank 11 by the pressure pump 14. At the same time, compressed air is supplied to the pressurized aeration tank 11 by the compressor 12, and the wastewater is treated by the yeast under pressure. The mixed liquid in the pressurized aeration tank 11 is sent to the flotation / separation tank 15 and is decompressed immediately after passing through the throttle valve 13, a large amount of generated bubbles adhere to the yeast sludge, and the sludge is placed on the upper part of the flotation / separation tank 15. Emerges. A part of the yeast sludge that has been floated and separated is reused as surplus yeast, and the other is temporarily stored in the sludge storage tank 17, and then returned to the pressurized aeration tank 11 by the sludge return pump 19. Treated water overflows from the outlet. Depending on the state of solid-liquid separation, when the surplus yeast component flows out together with the treated water, the whole flotation-separated yeast sludge may be returned to the pressure aeration tank 11.

【0026】実施の形態3.この発明では、さらに高負
荷運転する場合には高酸素濃度曝気法が適している。高
酸素濃度曝気法は、通常の空気曝気と異なり、高濃度の
酸素を含む曝気ガスを使用するため、酸素溶解に要する
動力を大幅に削減することができる。好気性処理を高負
荷で行う場合、反応律速となるのは酸素の液中への溶解
であり、高酸素濃度曝気法では少ない動力消費で効率よ
く酸素が供給されるため、高い反応槽内の酵母汚泥濃度
を保持できると共に、高いBOD容積負荷での運転が可
能となる。
Embodiment 3. In the present invention, the high oxygen concentration aeration method is suitable for the operation under higher load. Unlike the ordinary air aeration, the high oxygen concentration aeration method uses an aeration gas containing a high concentration of oxygen, so that the power required for oxygen dissolution can be significantly reduced. When aerobic treatment is carried out at a high load, the rate of reaction is determined by the dissolution of oxygen in the liquid, and in the high oxygen concentration aeration method, oxygen is efficiently supplied with less power consumption, so that the high reaction chamber The yeast sludge concentration can be maintained, and operation with a high BOD volume load becomes possible.

【0027】この発明に用いられる高酸素濃度曝気処理
としては、通常の高酸素濃度曝気処理装置として用いら
れている廃水処理装置の使用が可能である。例えば、酸
素溶解槽を設けて酸素を溶解し、溶存酸素の形で反応槽
へ供給する方式、反応槽内の混合液を循環させ、この循
環液に高濃度酸素ガスを導入して酸素を溶解させる方
式、あるいは表面曝気装置を備えた一段又は多段からな
る密閉型曝気槽を利用できる。
As the high oxygen concentration aeration treatment used in the present invention, it is possible to use a wastewater treatment device used as a normal high oxygen concentration aeration treatment device. For example, a method of providing an oxygen dissolution tank to dissolve oxygen and supplying it to the reaction tank in the form of dissolved oxygen, circulating a mixed solution in the reaction tank, and introducing high-concentration oxygen gas into this circulation solution to dissolve oxygen It is possible to use a closed type aeration tank having a system or a single stage or multiple stages equipped with a surface aeration device.

【0028】この発明で使用する高酸素濃度のガスとし
ては、少なくとも50容量%以上の酸素を含むガスが好
ましく、またゼオライト系のモレキュラーシーブ(分子
篩)を用いたPSA酸素製造装置で供給される高濃度酸
素ガスであってもよい。
The gas having a high oxygen concentration used in the present invention is preferably a gas containing at least 50% by volume of oxygen, and the gas supplied by a PSA oxygen production apparatus using a zeolitic molecular sieve (molecular sieve) is high. It may be a concentrated oxygen gas.

【0029】反応槽内の酵母汚泥濃度が約10,000
mg/L以上の高濃度である場合には自然沈降による固
液分離は困難となるので、本装置においては反応槽内の
混合液を一旦、加圧状態にある加圧タンクに導入して加
圧し、その後、大気圧下にある分離槽に送って酵母汚泥
を浮上させて分離する加圧浮上分離か、または遠心分離
機によって処理水と酵母汚泥とを固液分離する遠心分離
の各方式の使用が必要となる。また、分離膜を用いて固
液分離する膜分離方式を採用してもよい。
The yeast sludge concentration in the reaction tank is about 10,000.
When the concentration is higher than mg / L, solid-liquid separation by spontaneous sedimentation becomes difficult, so in this device, the mixed liquid in the reaction tank is once introduced into a pressurized tank under pressure and added. Pressurization, then sent to a separation tank under atmospheric pressure to float the yeast sludge to separate it by pressure flotation, or centrifuge to separate the treated water and yeast sludge into solid-liquid separation Requires use. Moreover, you may employ | adopt the membrane separation system which carries out solid-liquid separation using a separation membrane.

【0030】図3は、この発明の有機性廃水処理装置に
係る実施の形態3を示すフローシートである。本実施の
形態の特徴は上述したように高酸素濃度曝気処理手段を
密閉曝気槽(生物反応槽)31として用いる点にある。
図3において本処理手段は、密閉型曝気槽31と、遠心
分離機(固液分離手段)32と、酸素製造機33と、曝
気装置(曝気手段)34と、撹拌機35と、処理水出口
36と、排ガス調整弁37と、高濃度酸素供給口38と
から概略構成されている。流入水が密閉型曝気槽31に
供給されるまでの工程は図1に示したフローシートと同
様であるので、その説明を省略する。廃水が密閉型曝気
槽31に供給される一方、酸素製造機33によって生成
された高濃度酸素ガスは高濃度酸素ガス供給口38から
供給され、密閉型曝気槽31で酵母によって廃水が処理
される。反応槽内の混合液は処理水出口36から排出さ
れ、遠心分離機32へ送られる。遠心分離機32で固形
分(SS)から分離された処理水は排出され、酵母汚泥
は一部余剰酵母として排出され、再利用するか汚泥処理
系へ送られ、残部は密閉型曝気槽31へ返送される。
FIG. 3 is a flow sheet showing Embodiment 3 of the organic wastewater treatment apparatus of the present invention. The feature of this embodiment is that the high oxygen concentration aeration processing means is used as the closed aeration tank (biological reaction tank) 31 as described above.
In FIG. 3, the present treatment means includes a closed aeration tank 31, a centrifuge (solid-liquid separation means) 32, an oxygen production machine 33, an aeration device (aeration means) 34, a stirrer 35, and a treated water outlet. 36, an exhaust gas control valve 37, and a high-concentration oxygen supply port 38. The process until the inflow water is supplied to the closed aeration tank 31 is the same as that of the flow sheet shown in FIG. 1, and therefore its explanation is omitted. While the wastewater is supplied to the closed aeration tank 31, the high-concentration oxygen gas generated by the oxygen production machine 33 is supplied from the high-concentration oxygen gas supply port 38, and the wastewater is treated by the yeast in the closed aeration tank 31. . The mixed liquid in the reaction tank is discharged from the treated water outlet 36 and sent to the centrifuge 32. The treated water separated from the solid content (SS) by the centrifuge 32 is discharged, the yeast sludge is partially discharged as surplus yeast, and is reused or sent to the sludge treatment system, and the rest is transferred to the closed aeration tank 31. Will be returned.

【0031】高濃度酸素の供給量は、密閉型曝気槽31
内の気相部における酸素濃度が30%以上、又は液相部
のDO(酵母の要求に相当する量の溶存酸素量:以下、
要求酸素量という)が3mg/L以上となるように制御
するのがよい。
The supply amount of high-concentration oxygen depends on the closed aeration tank 31.
Oxygen concentration in the gas phase portion of the inside is 30% or more, or DO in the liquid phase portion (amount of dissolved oxygen corresponding to the requirement of yeast: below,
It is preferable to control so that the required oxygen amount) is 3 mg / L or more.

【0032】また、酵母汚泥を遠心分離機で固液分離す
る場合、事前に凝集剤を混合液に添加して遠心分離機に
投入することにより、より効率よく固液分離を達成でき
る。
When solid-liquid separation of yeast sludge is carried out by a centrifuge, solid-liquid separation can be achieved more efficiently by adding a flocculant to the mixed solution in advance and introducing it into the centrifuge.

【0033】実施の形態4.図4はこの発明の有機性廃
水装置に係る実施の形態4を示すフローシートである。
本実施の形態の特徴は、高酸素濃度曝気手段と加圧浮上
手段とを組み合わせた点にある。流入水が密閉型曝気槽
(生物反応槽)41に供給されるまでの工程は図1に示
したフローシートと同様であるので、その説明を省略す
る。図4のフローシートに示すように、曝気装置(曝気
手段)44、攪拌機45および排ガス調整弁47を備え
た密閉型曝気槽41に流入水が供給される一方、酸素製
造機43によって生成された高濃度酸素ガスは高濃度酸
素ガス供給口48から供給され、密閉型曝気槽41内で
酵母によって廃水が処理される。密閉型曝気槽41内の
混合液は処理水出口46より排出され、加圧ポンプ槽5
0に設置された加圧ポンプ51により汚泥掻寄機52a
を備えた加圧浮上槽(固液分離手段)52で処理水と酵
母汚泥53とに分離される。処理水の一部は(50%〜
100%)は循環水ポンプ54で圧縮空気が圧入された
加圧タンク56内に送られ、そこで、空気を溶解させた
後、混合機57を通して加圧浮上槽52内で大気圧に開
放されるため、加圧浮上槽52内での処理水と酵母汚泥
53との分離を効率よく行わせることができる。酵母汚
泥53は汚泥移送ポンプ58により返送酵母として密閉
型曝気槽41に返送され、その一部は余剰酵母として排
出され、再利用するか汚泥処理系(図示せず)へ移送さ
れる。
Fourth Embodiment FIG. 4 is a flow sheet showing a fourth embodiment of the organic wastewater device of the invention.
The feature of this embodiment is that the high oxygen concentration aeration means and the pressure levitation means are combined. Since the steps until the inflow water is supplied to the closed aeration tank (biological reaction tank) 41 are the same as those in the flow sheet shown in FIG. 1, the description thereof will be omitted. As shown in the flow sheet of FIG. 4, while the inflow water is supplied to the closed type aeration tank 41 provided with the aeration device (aeration means) 44, the agitator 45 and the exhaust gas adjusting valve 47, it is generated by the oxygen production machine 43. The high-concentration oxygen gas is supplied from the high-concentration oxygen gas supply port 48, and the wastewater is treated by the yeast in the closed aeration tank 41. The mixed liquid in the closed aeration tank 41 is discharged from the treated water outlet 46, and the pressure pump tank 5
Sludge attractor 52a by pressure pump 51 installed at 0
The treated water and yeast sludge 53 are separated by a pressure flotation tank (solid-liquid separation means) 52 equipped with. Part of the treated water is (50% ~
100%) is sent to a pressurized tank 56 in which compressed air is press-fitted by a circulating water pump 54, where the air is melted and then opened to atmospheric pressure in a pressurized flotation tank 52 through a mixer 57. Therefore, the treated water and the yeast sludge 53 in the pressurized flotation tank 52 can be efficiently separated. The yeast sludge 53 is returned by the sludge transfer pump 58 as return yeast to the closed aeration tank 41, and a part of it is discharged as surplus yeast and reused or transferred to a sludge treatment system (not shown).

【0034】また、混合液に凝集剤を添加することによ
り、加圧浮上槽52内での固液分離をより効率よく達成
することができる。なお、上記実施例における固液分離
手段として膜分離装置を用いることによって、生物反応
槽から処理水を適宜流出するようにしてもよい。処理水
は、必要に応じてさらに処理を施してから放流、再利用
することもできる。一方、各固液分離手段で得られた余
剰酵母は適宜汚泥処理を施した後、系外に搬出してもよ
いが、魚用の飼料等への利用も可能である。また、先に
も述べたように余剰酵母が処理水と共に流出する場合
は、分離した酵母汚泥の全量を反応槽に返送することに
なる。このような場合も流出する酵母が混入する処理水
を魚用の飼料等に利用できる可能性がある。
By adding a coagulant to the mixed liquid, solid-liquid separation in the pressure flotation tank 52 can be achieved more efficiently. The treated water may be appropriately discharged from the biological reaction tank by using a membrane separation device as the solid-liquid separation means in the above embodiment. The treated water can be discharged and reused after further treatment if necessary. On the other hand, the surplus yeast obtained by each solid-liquid separation means may be appropriately sludge-treated and then carried out of the system, but it can also be used as a feed for fish or the like. Further, as described above, when the surplus yeast flows out together with the treated water, the whole amount of the separated yeast sludge is returned to the reaction tank. In such a case as well, the treated water mixed with the outflowing yeast may be used as fish feed or the like.

【0035】つまり、本実施の形態に限らず、酵母汚泥
が良質な蛋白質である酵母菌体を含むため、余剰酵母は
別途処理・処分せず、動物や魚の飼料に用いたり、農地
などの肥料に用いたりすることができる。例えば、先に
述べたように、生物反応槽混合液を遠心分離装置や加圧
浮上装置などの固液分離手段で固液分離するが、その際
処理水中に酵母汚泥(余剰酵母)が残存する場合は、こ
の処理水を養魚池等に放流することで、酵母汚泥(余剰
酵母)を養魚用の飼料として用いることができる。さら
に、固液分離手段に簡易な重力沈殿池などを採用して、
意図的に処理水中に酵母汚泥(余剰酵母)を残存させて
この処理水を養魚池に放流することで、酵母(余剰酵
母)を養魚用の飼料として積極的に用いることができ
る。また、余剰酵母を別途回収して乾燥させたり他の飼
肥料成分を添加したりして、動物用の飼料や農地の肥料
として用いることができる。このように、本発明にある
ような酵母を用いた廃水処理装置は、廃水処理の結果生
じる余剰酵母を別途処理せずに有効利用することがで
き、さらに余剰酵母を飼肥料として用いた場合には、動
植物の生産に寄与することから、エネルギー面や環境面
で大変有効なものである。
In other words, the present invention is not limited to this embodiment, and since yeast sludge contains yeast cells, which are high-quality proteins, surplus yeast is not treated or disposed of separately, but used as animal or fish feed, or as fertilizer for agricultural land. Can be used for. For example, as described above, the biological reaction tank mixed liquid is subjected to solid-liquid separation by solid-liquid separation means such as a centrifugal separator or a pressure flotation device, but yeast sludge (excess yeast) remains in the treated water at that time. In this case, by discharging this treated water to a fish pond or the like, yeast sludge (excess yeast) can be used as a feed for fish farming. Furthermore, by adopting a simple gravity settling tank as the solid-liquid separation means,
By intentionally leaving the yeast sludge (excess yeast) in the treated water and discharging the treated water to the fish pond, the yeast (excess yeast) can be positively used as a feed for fish farming. In addition, surplus yeast can be separately collected and dried, or other feed fertilizer components can be added to be used as animal feed or fertilizer for agricultural land. Thus, the wastewater treatment apparatus using yeast as in the present invention, the surplus yeast resulting from the wastewater treatment can be effectively utilized without separate treatment, and further when the surplus yeast is used as a fertilizer. Is very effective in terms of energy and environment as it contributes to the production of plants and animals.

【0036】[0036]

【実施例】実施例1. (酵母処理の適用可能性の検討) 東南アジアの某パーム油製造工場からの廃水に対して酵
母処理を行った。 (1)供試廃水 供試廃水の分析値を表2に示す。
EXAMPLES Example 1. (Examination of Applicability of Yeast Treatment) Yeast treatment was performed on wastewater from a palm oil manufacturing plant in Southeast Asia. (1) Test wastewater Table 2 shows the analytical values of the test wastewater.

【表2】 [Table 2]

【0037】供試廃水はCODcr 49300mg/
L,BOD5 27200mg/L,pH3.60の濃
厚な酸性有機性廃水であった。分析値をCODcr値に換
算して廃水の組成割合を求めると、油分42%,蛋白質
7%,糖質その他51%となる。ここで、脂質には油脂
の示性式(C3 5 (COOH)3 )を適用し、油分1
mg/Lを完全に酸化するのに必要な酸素量を2.9m
g/Lとした。また、上記廃水中には、固形性のCOD
crが63%となっており、油分以外に糖質、蛋白質その
他の成分中に約2割の固形成分が存在している。このよ
うな廃水を処理する場合には、脂質資化性酵母の他に糖
資化性酵母を用いるとさらに有効である。
The test wastewater is COD cr 49300 mg /
L, BOD 5 27200 mg / L, pH 3.60, a thick acidic organic wastewater. When the composition value of the wastewater is calculated by converting the analysis value into the COD cr value, the oil content is 42%, the protein content is 7%, and the sugar content is 51%. Here, the lipid's rational formula (C 3 H 5 (COOH) 3 ) is applied to the lipid, and
The amount of oxygen required to completely oxidize mg / L is 2.9 m
It was set to g / L. In addition, solid COD is contained in the waste water.
The cr is 63%, and about 20% of the solid components are present in the sugar, protein and other components in addition to the oil. When treating such wastewater, it is more effective to use sugar-assimilating yeast in addition to lipid-assimilating yeast.

【0038】また、分析値からBOD5 /CODcr
0.55であり、廃水中の有機性物質の比が生活廃水並
みであることから、この廃水は生物分解が可能であると
推定できる。また、廃水の栄養バランスCODcr:N:
Pは100:1.2:0.3である。酵母の示性式(C
71109 3711P)より求められる理論栄養バランス
はCODcr:N:P=100:1.8:0.4であるの
で、N(窒素)とP(リン)が不足することも考えられ
るので、不足する成分を別途補充してもよい。
From the analytical value, BOD 5 / COD cr is 0.55, and the ratio of organic substances in the wastewater is similar to that of domestic wastewater, so it can be estimated that this wastewater is biodegradable. In addition, the nutritional balance of wastewater COD cr : N:
P is 100: 1.2: 0.3. Yeast's rational formula (C
The theoretical nutritional balance calculated from 71 H 109 O 37 N 11 P) is COD cr : N: P = 100: 1.8: 0.4, so N (nitrogen) and P (phosphorus) may be insufficient. It is conceivable that the deficient component may be supplemented separately.

【0039】(2)供試酵母 パーム油廃水に、既存のパーム油廃水処理酸化池の汚泥
および本出願人が保存している脂質を分解することが確
認されている酵母の全株を添加して集積培養し、そこで
集積された酵母を実験に用いた。
(2) Yeast to be tested The palm oil wastewater was added with all strains of yeast known to decompose the sludge in the existing palm oil wastewater treatment oxidation pond and the lipids stored by the applicant. The cells were accumulated and cultured, and the yeast accumulated there was used for the experiment.

【0040】(3)処理方法 CODcr・SS負荷にして0.5kg/kg−ss・d
ay,1.0kg/kg−ss・dayの2つの負荷条
件を設定し、坂口フラスコを用いて表3の条件で処理実
験を行った。上述のように供試廃水は窒素とリンが不足
しているので、CODcr:N:P=100:5:1とな
るように、窒素については硫安を添加し、リンについて
はリン酸第一ナトリウムを添加して補充した。
(3) Treatment method 0.5 kg / kg-ss · d under COD cr · SS load
Two loading conditions of ay and 1.0 kg / kg-ss · day were set, and a treatment experiment was performed under the conditions of Table 3 using a Sakaguchi flask. As described above, since the test wastewater lacks nitrogen and phosphorus, ammonium sulfate was added to nitrogen and phosphoric acid first was added to phosphorus so that COD cr : N: P = 100: 5: 1. Sodium was added to replenish.

【0041】サンプリングは処理開始後、1時間、3時
間、5時間、10時間、24時間後にそれぞれ約3ml
ずつ採水し、2000rpmで3分間遠心し、その上澄
みのTOC(上澄の有機性炭素)を測定した。
Sampling was carried out for about 3 ml each 1 hour, 3 hours, 5 hours, 10 hours and 24 hours after the start of the treatment.
Water was collected for each and centrifuged at 2000 rpm for 3 minutes to measure the TOC (organic carbon of the supernatant) of the supernatant.

【表3】 [Table 3]

【0042】(4)処理結果 処理実験におけるTOCとpHの経時変化を表4と図5
に示す。
(4) Treatment results Table 4 and FIG. 5 show changes with time of TOC and pH in the treatment experiment.
Shown in.

【表4】 [Table 4]

【0043】図5に示したTOC除去曲線より、時間経
過に伴って順調にTOCは減少し、CODcr・SS負荷
にして0.5kg/kg−ss・dayの設定条件では
5時間後、処理水TOCはほぼ一定となった。CODcr
・SS負荷にして1.0kg/kg−ss・dayの設
定条件では24時間後、処理水TOCは最小となった。
2つの負荷条件ともTOC除去率は約88%であり、処
理水中には約300mg/LのTOC成分が残存してい
た。
From the TOC removal curve shown in FIG. 5, the TOC decreased steadily with the passage of time, and after 5 hours under the setting condition of 0.5 kg / kg-ss · day under COD cr · SS load, the treatment was performed. The water TOC became almost constant. COD cr
The treated water TOC became the minimum after 24 hours under the setting condition of the SS load of 1.0 kg / kg-ss · day.
The TOC removal rate was about 88% under both load conditions, and about 300 mg / L of TOC component remained in the treated water.

【0044】表5には24時間後の処理水の分析値を示
す。
Table 5 shows the analytical values of the treated water after 24 hours.

【表5】 *で示した表5中のヘキサン抽出物質は混合液全体で測
定されている。
[Table 5] The hexane-extracted substances in Table 5 shown by * are measured in the entire mixed solution.

【0045】2つの負荷条件とも24時間でCODcr
除去率90%以上、BODで除去率97%以上となり、
供試廃水としてのパーム油工場廃水は十分に酵母処理可
能であった。処理水中には未処理の有機物がBODで約
100mg/L,CODcrで700〜800mg/L残
存していたが、酵母処理後に既存の酸化池等で処理する
2段処理方式を採用することにより、BOD値,COD
cr値ともさらに低減できる。
In both load conditions, COD cr has a removal rate of 90% or more and BOD has a removal rate of 97% or more in 24 hours.
The palm oil factory wastewater as the test wastewater could be treated with yeast sufficiently. About 100 mg / L of untreated organic matter remained in treated water in BOD and 700-800 mg / L in COD cr , but by adopting the two-stage treatment method of treating with existing oxidation pond after yeast treatment, , BOD value, COD
The cr value can be further reduced.

【0046】また、ヘキサン抽出物質も24時間後には
95%以上処理され、20〜50mg/L残存するのみ
だった。
Further, the hexane-extracted substance was treated by 95% or more after 24 hours, and only 20 to 50 mg / L remained.

【0047】実施例2.種酵母として実施例1で使用し
た酵母を用いて、図2に示した装置を表6に示したBO
D容積負荷15kg/m3 ・日の運転条件に従って稼動
させたところ、表7に示す処理結果が得られた。
Example 2. Using the yeast used in Example 1 as the seed yeast, the BO shown in Table 6 for the apparatus shown in FIG.
When operated under operating conditions of D volume load of 15 kg / m 3 · day, the treatment results shown in Table 7 were obtained.

【表6】 [Table 6]

【表7】 [Table 7]

【0048】表7から明らかなように、酵母処理の前後
において、ヘキサン抽出物質濃度が10〜30mg/L
にまで低下し、BOD値が220〜350mg/Lにま
で低下していることがわかる。
As is clear from Table 7, the hexane extract substance concentration was 10 to 30 mg / L before and after the yeast treatment.
It can be seen that the BOD value is lowered to 220 to 350 mg / L.

【0049】実施例3.種酵母として実施例1で使用し
た酵母を用いて、図3に示した装置を表8に示した運転
条件に従って稼動させたところ、表9に示す処理結果が
得られた。
Example 3. When the apparatus shown in FIG. 3 was operated according to the operating conditions shown in Table 8 using the yeast used in Example 1 as the seed yeast, the treatment results shown in Table 9 were obtained.

【表8】 [Table 8]

【表9】 [Table 9]

【0050】表9から明らかなように、酵母処理の前後
において、ヘキサン抽出物質濃度が10〜30mg/L
にまで低下し、BOD値が280〜510mg/Lにま
で低下していることがわかる。
As is clear from Table 9, the hexane extract substance concentration was 10 to 30 mg / L before and after the yeast treatment.
It can be seen that the BOD value is lowered to 280 to 510 mg / L.

【0051】以上の各実施例に示したように、この発明
の有機性廃水処理装置によれば、パーム油等、難分解性
の脂質を分解する酵母を選択的に使用することにより、
従来処理が困難であった前記脂質を含有する廃水を生物
学的に処理することができる。さらに、反応槽内の酵母
濃度を高く保つと同時に高負荷処理を可能にするため、
反応槽を密閉型にすると共に高酸素濃度曝気方式あるい
は加圧曝気方式を採用することで、効率よく安定して処
理することができる。これにより、処理装置は非常にコ
ンパクト化され、処理時間の短縮や設置面積の縮小が図
れる。
As shown in each of the above examples, according to the organic wastewater treatment apparatus of the present invention, by selectively using yeast that decomposes persistent lipids such as palm oil,
It is possible to biologically treat wastewater containing the lipid, which has been difficult to treat conventionally. Furthermore, in order to maintain high yeast concentration in the reaction tank and enable high load treatment,
By making the reaction tank a closed type and adopting a high oxygen concentration aeration system or a pressurized aeration system, efficient and stable treatment can be achieved. As a result, the processing apparatus is made extremely compact, and the processing time and the installation area can be reduced.

【0052】この発明の好適な態様を以下に示す。 (1)有機性廃水に含まれる難分解性の脂質は、飽和脂
肪酸の組成比率が高い動物性または植物性の油脂である
請求項1または2に記載の有機性廃水装置。 (2)生物反応槽内を撹拌する撹拌手段をさらに備えて
いる請求項1または2に記載の有機性廃水処理装置。 (3)固液分離手段で分離された酵母を含む汚泥を生物
反応槽へ返送する汚泥返送手段を備えている請求項1ま
たは2に記載の有機性廃水処理装置。 (4)加圧浮上手段は、浮上した汚泥を回収する回収手
段を備えている請求項3に記載の有機性廃水処理装置。 (5)加圧浮上手段は、生物反応槽混合液を加圧する加
圧手段を備えている実施態様(4)に記載の有機性廃水
処理装置。
The preferred embodiments of the present invention are shown below. (1) The organic wastewater device according to claim 1 or 2, wherein the hardly decomposable lipid contained in the organic wastewater is an animal or vegetable oil or fat having a high composition ratio of saturated fatty acids. (2) The organic wastewater treatment apparatus according to claim 1 or 2, further comprising stirring means for stirring the inside of the biological reaction tank. (3) The organic wastewater treatment apparatus according to claim 1 or 2, further comprising sludge returning means for returning the sludge containing yeast separated by the solid-liquid separation means to the biological reaction tank. (4) The organic wastewater treatment apparatus according to claim 3, wherein the pressure floating means comprises a recovery means for recovering the sludge that has floated. (5) The organic wastewater treatment apparatus according to embodiment (4), wherein the pressure floating means comprises a pressure means for pressurizing the biological reaction tank mixed liquid.

【0053】(6)遠心分離手段は、生物反応槽混合液
を遠心力で処理水と汚泥とに固液分離する遠心分離機で
ある請求項3に記載の有機性廃水処理装置。 (7)脂質資化性酵母は、トリコスポロン属、ハンゼヌ
ラ属、トリコスポリエラ属およびキャンディダ属に属す
る群から選択された1種または2種以上の酵母である請
求項1または2に記載の有機性廃水処理装置。 (8)植物油製造工程は、パーム油、パーム核油および
ヤシ油から選ばれた一つまたは二つ以上を製造する工程
である請求項4に記載の有機性廃水処理装置。 (9)生物反応槽は、酵母菌体を保持する担体が投入さ
れている担体投入型生物反応槽である請求項1または2
に記載の有機性廃水処理装置。
(6) The organic wastewater treatment apparatus according to claim 3, wherein the centrifuging means is a centrifuge for solid-liquid separating the biological reaction tank mixed liquid into treated water and sludge by centrifugal force. (7) The lipid-assimilating yeast is one or more yeasts selected from the group belonging to the genus Trichosporon, the genus Hansenula, the genus Trichosporella and the genus Candida. Wastewater treatment equipment. (8) The organic wastewater treatment apparatus according to claim 4, wherein the vegetable oil production step is a step of producing one or more selected from palm oil, palm kernel oil, and coconut oil. (9) The biological reaction tank is a carrier-introduced biological reaction tank in which a carrier for holding yeast cells is charged.
The organic wastewater treatment device described in.

【0054】以上説明したように、この発明によれば、
パーム油等の、生物分解されにくい飽和脂肪酸の組成比
率が高い難分解性の植物油脂を分解する難分解性脂質資
化性酵母を選択的に使用して、生物反応槽で十分な好気
的条件下で廃水を処理することにより、廃水中に含まれ
る難分解性の脂質等を短時間で効率よく分解処理するこ
とができ、また密閉された反応槽として高酸素濃度曝気
方式あるいは加圧曝気方式を採用することで、反応槽内
を常に好気的条件に維持できるため、効率よく安定して
生物処理することができると共に、反応槽内の酵母汚泥
の濃度を高くして高負荷で処理することができるので、
コンパクト化された接地面積の小さい装置を実現でき
る。また、加圧浮上や遠心分離などの固液分離方式を採
用したことにより、高汚泥濃度の混合液でも効率よく安
定して処理水と酵母汚泥とに分離することができる。さ
らに、余剰酵母を魚用の飼料などに再利用することがで
きる。
As described above, according to the present invention,
Composition ratio of saturated fatty acids that are difficult to biodegrade, such as palm oil
By treating the wastewater under sufficient aerobic conditions in a bioreactor by selectively using a persistent biodegradable lipid-assimilating yeast that decomposes a highly- degradable persistent vegetable oil , The contained decomposable lipids can be decomposed efficiently in a short time, and by adopting a high oxygen concentration aeration method or a pressurized aeration method as a closed reaction tank, the inside of the reaction tank is always kept favorable. Since it can be maintained in an air condition, biological treatment can be carried out efficiently and stably, and at the same time, the concentration of yeast sludge in the reaction tank can be increased and treated with a high load,
It is possible to realize a compact device having a small ground contact area. Further, by adopting a solid-liquid separation method such as pressure flotation or centrifugal separation, it is possible to efficiently and stably separate the mixed water having a high sludge concentration into the treated water and the yeast sludge. Furthermore, the surplus yeast can be reused as a feed for fish and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の有機性廃水処理装置に係る実施の形
態1における廃水処理の基本的な流れを示すフローシー
トである。
FIG. 1 is a flow sheet showing a basic flow of wastewater treatment according to Embodiment 1 of an organic wastewater treatment apparatus of the present invention.

【図2】この発明の有機性廃水処理装置に係る実施の形
態2における廃水処理の流れを示すフローシートであ
る。
FIG. 2 is a flow sheet showing a flow of wastewater treatment in Embodiment 2 according to the organic wastewater treatment apparatus of the present invention.

【図3】この発明の有機性廃水処理装置に係る実施の形
態3における廃水処理の流れを示すフローシートであ
る。
FIG. 3 is a flow sheet showing the flow of wastewater treatment in Embodiment 3 of the organic wastewater treatment apparatus of the present invention.

【図4】この発明の有機性廃水処理装置に係る実施の形
態4における廃水処理の流れを示すフローシートであ
る。
FIG. 4 is a flow sheet showing the flow of wastewater treatment in Embodiment 4 of the organic wastewater treatment apparatus of the present invention.

【図5】この発明の有機性廃水処理装置を用いて廃水処
理を行った際におけるTOC除去を経時的に観察したT
OC除去曲線を示すグラフである。
FIG. 5 is a graph T showing TOC removal with time when wastewater treatment is performed using the organic wastewater treatment apparatus of the present invention.
It is a graph which shows an OC removal curve.

【符号の説明】[Explanation of symbols]

1 スクリーン 2 流量調整槽 3 酵母反応槽(生物反応槽) 4 加圧浮上手段(固液分離手段) 5 処理水槽 10 攪拌装置 11 加圧曝気手段(生物反応槽) 12 コンプレッサ 13 絞り弁 14 加圧ポンプ 15 浮上分離槽(固液分離手段) 16 汚泥掻寄装置 17 汚泥貯留槽 18 返送管路 19 汚泥返送ポンプ 20 汚泥移送ポンプ 31 密閉型曝気槽(生物反応槽) 32 遠心分離機(固液分離手段) 33 酸素製造機 34 曝気装置(曝気手段) 35 撹拌機 36 処理水出口 37 排ガス調整弁 38 高濃度酸素供給口 41 密閉型曝気槽(生物反応槽) 43 酸素製造機 44 曝気装置(曝気手段) 45 撹拌機 46 処理水出口 47 排ガス調整弁 48 高濃度酸素ガス供給口 50 加圧ポンプ槽 51 加圧ポンプ 52 加圧浮上槽(固液分離手段) 52a 汚泥掻寄機 53 酵母汚泥 54 循環水ポンプ 56 加圧タンク 57 混合機 58 汚泥移送ポンプ 1 screen 2 Flow rate adjustment tank 3 Yeast reaction tank (biological reaction tank) 4 Pressure floating means (solid-liquid separation means) 5 treated water tank 10 Stirrer 11 Pressure aeration means (biological reaction tank) 12 compressor 13 Throttle valve 14 Pressurizing pump 15 Floating separation tank (solid-liquid separation means) 16 Sludge attracting device 17 Sludge storage tank 18 Return pipeline 19 Sludge return pump 20 Sludge transfer pump 31 Sealed aeration tank (biological reaction tank) 32 Centrifuge (solid-liquid separation means) 33 oxygen production machine 34 Aeration device (aeration means) 35 stirrer 36 Treated water outlet 37 Exhaust gas control valve 38 High-concentration oxygen supply port 41 Sealed aeration tank (biological reaction tank) 43 oxygen production machine 44 Aeration device (aeration means) 45 stirrer 46 Treated water outlet 47 Exhaust gas control valve 48 High-concentration oxygen gas supply port 50 pressure pump tank 51 Pressurizing pump 52 Pressure floating tank (solid-liquid separation means) 52a Sludge attractor 53 Yeast sludge 54 circulating water pump 56 Pressurized tank 57 Mixer 58 Sludge transfer pump

フロントページの続き (56)参考文献 特開 平6−170389(JP,A) 特開 平7−108295(JP,A) 特開 平6−62837(JP,A) 特開 平3−275195(JP,A) 村上定瞭(外2名),生活排水中の油 分除去対策 生活排水中の油分の性状と 処理における問題,環境技術,日本,環 境技術研究協会,1997年 3月30日,第 26巻3月号,155−159頁 (58)調査した分野(Int.Cl.7,DB名) C02F 3/00 - 3/34 Continuation of front page (56) Reference JP-A-6-170389 (JP, A) JP-A-7-108295 (JP, A) JP-A-6-62837 (JP, A) JP-A-3-275195 (JP , A) Murakami's clarification (2 people outside), measures to remove oil from domestic wastewater Properties of oil in domestic wastewater and problems in processing, environmental technology, Japan, Japan Society for Environmental Technology Research, March 30, 1997, Vol. 26, March issue, pp. 155-159 (58) Fields investigated (Int.Cl. 7 , DB name) C02F 3/00-3/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 生物分解されにくい飽和脂肪酸の組成比
率が高い難分解性の植物油脂を含有する有機性廃水と飽
和脂肪酸を効率よく酸化分解する難分解性脂質資化性酵
母を1種または2種以上含む汚泥とを混合して好気性
生物学的処理を行う密閉された生物反応槽と、該生物反
応槽混合液を高酸素濃度ガスで曝気する高酸素濃度曝気
手段と、生物反応槽混合液を処理水と汚泥とに固液分離
する固液分離手段とを備えたことを特徴とする有機性廃
水処理装置。
1. A composition ratio of saturated fatty acids that are hardly biodegradable
High rate hardly decomposable you containing vegetable oil organic wastewater and saturated <br/> sum fatty efficiently oxidative decomposing Persistence lipid assimilation enzyme
Mother by mixing one or more kinds on including sludge, and bioreactor which is sealed performing aerobic biological treatment, high oxygen aerated organism reactor mixture at a high oxygen concentration gas An organic wastewater treatment apparatus comprising a concentration aeration means and a solid-liquid separation means for performing solid-liquid separation of a biological reaction tank mixed liquid into treated water and sludge.
【請求項2】 生物分解されにくい飽和脂肪酸の組成比
率が高い難分解性の植物油脂を含有する有機性廃水と飽
和脂肪酸を効率よく酸化分解する難分解性脂質資化性酵
母を1種または2種以上含む汚泥とを混合して好気性
生物学的処理を行う密閉された生物反応槽と、該生物反
応槽混合液を加圧状態で空気曝気する加圧曝気手段と、
生物反応槽混合液を処理水と汚泥とに固液分離する固液
分離手段とを備えたことを特徴とする有機性廃水処理装
置。
2. A composition ratio of saturated fatty acids that are hardly biodegradable
High rate hardly degradable organic waste water and a saturated fatty acid efficiently oxidative decomposing Persistence lipid assimilation enzyme containing vegetable oil
Mother by mixing one or more kinds on including sludge, and biological reaction tank sealed performing aerobic biological treatment, pressurization of air aerating said biological reactor mixture under pressure Aeration means,
An organic wastewater treatment apparatus comprising: a solid-liquid separation means for separating a biological reaction tank mixed liquid into treated water and sludge.
【請求項3】 固液分離手段は、加圧浮上手段または遠
心分離手段であることを特徴とする請求項1または2に
記載の有機性廃水処理装置。
3. A solid-liquid separation means, organic waste water processing device according to claim 1 or 2, characterized in that the floatation good stage or centrifugation means.
【請求項4】 生物分解されにくい飽和脂肪酸の組成比
率が高い難分解性の植物油脂を含有する有機性廃水は植
物油製造工程から排出される廃水であることを特徴と
する請求項1から3のいずれかに記載の有機性廃水処理
装置。
4. A composition ratio of saturated fatty acids that are hardly biodegradable
High rate organic wastewater containing hardly decomposable vegetable fat organic waste water treatment device according to any one of claims 1 to 3, characterized in that the waste water discharged from the vegetable oil fat manufacturing process.
JP04887199A 1999-02-25 1999-02-25 Organic wastewater treatment equipment Expired - Fee Related JP3478988B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04887199A JP3478988B2 (en) 1999-02-25 1999-02-25 Organic wastewater treatment equipment
MYPI99003953A MY126466A (en) 1999-02-25 1999-09-13 Apparatus for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04887199A JP3478988B2 (en) 1999-02-25 1999-02-25 Organic wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2000246284A JP2000246284A (en) 2000-09-12
JP3478988B2 true JP3478988B2 (en) 2003-12-15

Family

ID=12815363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04887199A Expired - Fee Related JP3478988B2 (en) 1999-02-25 1999-02-25 Organic wastewater treatment equipment

Country Status (2)

Country Link
JP (1) JP3478988B2 (en)
MY (1) MY126466A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200401180A (en) * 2004-08-03 2006-02-04 Ekeroth Lars Process for carrying out continuous or periodically aerated, biological purification of water in a loop reactor and reactor for carrying out the process
JP2008049343A (en) * 2007-11-09 2008-03-06 Nishihara Environment Technology Inc Organic waste water treatment device
JP6064573B2 (en) * 2012-12-12 2017-01-25 栗田工業株式会社 Feed additives and mixed feed
JP6064572B2 (en) * 2012-12-12 2017-01-25 栗田工業株式会社 Production method of feed additives
CN104891668A (en) * 2015-05-05 2015-09-09 北京师范大学 High-concentration yeast-based schedulable waste water rapid treatment technology
CN113060903A (en) * 2021-03-27 2021-07-02 郑州青城环境保护技术有限公司 Efficient full-automatic integrated treatment system for slaughter comprehensive processing sewage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
村上定瞭(外2名),生活排水中の油分除去対策 生活排水中の油分の性状と処理における問題,環境技術,日本,環境技術研究協会,1997年 3月30日,第26巻3月号,155−159頁

Also Published As

Publication number Publication date
MY126466A (en) 2006-10-31
JP2000246284A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
Cammarota et al. Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high fat contents
US8308944B2 (en) System and method for treating wastewater via phototactic heterotrophic microorganism growth
US6605220B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
US7879237B2 (en) Method for biological disposal of organic wastewater and biological disposal apparatus
JP4655974B2 (en) Waste water treatment method and treatment apparatus
JP3478988B2 (en) Organic wastewater treatment equipment
JP5948651B2 (en) Surplus sludge generation suppression method and organic wastewater treatment method
WO2010064608A1 (en) Method of treating water and water treatment tank
CA2425147A1 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
JPH03275195A (en) Treatment of waste water containing lipid
KR100817792B1 (en) Advanced swage and waste water treatment method and apparatus use of micro filter, and cultured bacillus species bacteria etc
JPH05146798A (en) Treatment of oils and fats containing waste water
JP2003000227A (en) New microorganism and organic waste water treating apparatus using the same
JP2561441B2 (en) Treatment method of oil-containing wastewater
WO2002012135A1 (en) Waste treatment process
JP2000005789A (en) Treatment of organic waste water and device therefor
JP2003200191A (en) Organic wastewater treatment apparatus
JP4524541B2 (en) Method and apparatus for treating oil-containing water
JP2023077601A (en) Treatment method for methane fermentation digestive liquid and treatment system for methane fermentation digestive liquid
JP2002018481A (en) Apparatus for treating oil-bearing water
JP2002018458A (en) Method for treating wastewater containing animal and vegetable oil
CN102963976A (en) Organic wastewater processing method and organic wastewater processing system
AU2001277397B2 (en) Waste treatment process
Terpstra Patent survey on process biochemistry
Nguyễn et al. Determination of operation factors in treating piggery wastewater by membrane bioreactor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees