JP3478160B2 - A method for predicting the useful life of lightweight cellular concrete - Google Patents

A method for predicting the useful life of lightweight cellular concrete

Info

Publication number
JP3478160B2
JP3478160B2 JP08835699A JP8835699A JP3478160B2 JP 3478160 B2 JP3478160 B2 JP 3478160B2 JP 08835699 A JP08835699 A JP 08835699A JP 8835699 A JP8835699 A JP 8835699A JP 3478160 B2 JP3478160 B2 JP 3478160B2
Authority
JP
Japan
Prior art keywords
carbonation
content
cellular concrete
weight
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08835699A
Other languages
Japanese (ja)
Other versions
JP2000283895A (en
Inventor
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP08835699A priority Critical patent/JP3478160B2/en
Publication of JP2000283895A publication Critical patent/JP2000283895A/en
Application granted granted Critical
Publication of JP3478160B2 publication Critical patent/JP3478160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の壁や屋
根、床などに使用されるALC(軽量気泡コンクリー
ト)の耐用年数の予測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the service life of ALC (lightweight aerated concrete) used for walls, roofs and floors of buildings.

【0002】[0002]

【従来の技術】補強用鉄筋を内蔵して、板状に形成した
ALCからなるALCパネルは、建築物の壁や屋根、床
などに使用される。ALCパネルの耐久性は、実際の使
用段階において最も重要な問題であり、耐用年数を予測
する方法が望まれている。
2. Description of the Related Art ALC panels made of plate-shaped ALC having reinforcing bars built-in are used for walls, roofs and floors of buildings. The durability of the ALC panel is the most important issue in the actual use stage, and a method of predicting the service life is desired.

【0003】該ALCパネルは、珪石等の珪酸質原料
と、セメントや生石灰等の石灰質原料とを主原料とし、
これらの微粉末に水とアルミニウム粉末等の添加物を加
えて、スラリー状とした後、補強用鉄筋を配置した型枠
内に流し込み、アルミニウム粉末の反応により発泡さ
せ、石灰質原料の反応により半硬化させて、所定寸法に
形成した後、オートクレーブによる高温高圧水蒸気養生
を行って製造される。該ALCパネルは、絶乾かさ比重
0.5程度の軽量で、耐火性、断熱性、施工性に優れて
いるため、建築材料として広く使用されている。
The ALC panel is mainly composed of siliceous materials such as silica stone and calcareous materials such as cement and quicklime.
Water and aluminum powder and other additives are added to these fine powders to form a slurry, which is then poured into a formwork in which reinforcing bars are placed, foamed by the reaction of the aluminum powder, and semi-cured by the reaction of the calcareous raw material. Then, after being formed into a predetermined size, it is manufactured by performing high temperature high pressure steam curing by an autoclave. Since the ALC panel is lightweight with an absolute dry bulk density of about 0.5 and is excellent in fire resistance, heat insulation and workability, it is widely used as a building material.

【0004】ALCパネルを使用する立場から判断する
際、ALCにひび割れが発生したり、パネル強度が低下
した場合に、ALCの耐久性は劣化したと認識される。
これは、特に、製造時からの年数が分からないALCに
対しては、有効な判断手段となる。ALCの耐久性が劣
化する要因、言い換えるとひび割れの発生やパネル強度
低下の要因は、外的な要因と内的な要因に大別される。
When judging from the standpoint of using the ALC panel, it is recognized that the durability of the ALC is deteriorated when the ALC is cracked or the panel strength is lowered.
This is an effective judgment means especially for ALC whose years from the time of manufacture are unknown. The factors that deteriorate the durability of the ALC, in other words, the factors that cause cracking and decrease the panel strength are roughly classified into external factors and internal factors.

【0005】外的な要因とは、地震や躯体の変形、風圧
などである。これらは、建物の設計や不可避な自然現象
が原因であり、ALC自身の問題である場合は少ない。
一方、内的な要因としては、凍害、塩害、炭酸化、乾燥
収縮等が考えられる。
External factors include an earthquake, deformation of a skeleton, wind pressure, and the like. These are caused by the design of the building and inevitable natural phenomena, and are rarely problems of ALC itself.
On the other hand, internal factors include frost damage, salt damage, carbonation, drying shrinkage and the like.

【0006】内的な要因の中で凍害は、寒冷地特有のも
のであり、仕上げやシーリング、窓周りなどの施工方法
によって回避できることから、ALC自身の問題ではな
い場合が多い。
Of the internal factors, frost damage is peculiar to cold regions and can be avoided by a construction method such as finishing, sealing, and window surroundings, so it is often not a problem of ALC itself.

【0007】また、ALCパネルの内部補強用鉄筋には
予め防錆処理(鉄筋防錆)が施されており、塩水による
ALCの耐久性の劣化は、この鉄筋防錆が不十分である
場合に問題となる。従って、塩害は、正常に製造された
ALCパネルにおいて、ALCの耐久性を議論する場合
の要因としては適切でない。
In addition, the reinforcing bars for internal reinforcement of the ALC panel have been previously subjected to anticorrosion treatment (corrosion prevention), and the deterioration of the durability of the ALC due to salt water is caused when the anticorrosion is insufficient. It becomes a problem. Therefore, salt damage is not appropriate as a factor when discussing the durability of ALC in a normally manufactured ALC panel.

【0008】炭酸化とは、ALCの主要鉱物であるトバ
モライトが、炭酸ガスと水分が存在する環境下で、シリ
カゲルと炭酸カルシウムに分解する反応であり、仕上げ
等の施工が適切に施された場合にも、徐々に進行するこ
とが知られている。また、炭酸化することによりALC
は収縮し(炭酸化収縮)、さらに炭酸化したALCは乾
燥収縮率が大きくなり、乾燥収縮と湿潤膨張の繰り返し
によるひび割れの発生やパネル強度の低下につながるこ
とが懸念される。そこで、ALC自身の問題となる劣化
要因としては、炭酸化とそれに伴う長さ変化(炭酸化収
縮と乾燥収縮)に注目することが必要である。
Carbonation is a reaction in which tobermorite, which is the main mineral of ALC, is decomposed into silica gel and calcium carbonate in an environment where carbon dioxide gas and water are present. However, it is known that it will progress gradually. In addition, by carbonating ALC
Is contracted (carbonation contraction), and further the carbonized ALC has a large dry contraction rate, which may cause cracking due to repeated dry contraction and wet expansion and a decrease in panel strength. Therefore, it is necessary to pay attention to carbonation and its accompanying change in length (carbonation contraction and drying contraction) as a deterioration factor which is a problem of ALC itself.

【0009】しかし、これまでALCの炭酸化と劣化の
関係についてはほとんど分かっていない。従って、AL
Cの耐久性に基づいて、耐用年数を予測する方法は確立
されておらず、建築物の設計者や使用者は、どの程度の
経過年数で建て替え、リフォーム、補修などを行えば良
いのかが正確には分からなかった。
However, until now, little has been known about the relationship between carbonation and deterioration of ALC. Therefore, AL
A method for predicting the service life based on the durability of C has not been established, and it is accurate for the designers and users of buildings to know how many years have passed before rebuilding, remodeling, or repairing. I didn't understand.

【0010】[0010]

【発明が解決しようとする課題】このような従来の事情
に鑑み、本発明者らは、ALCの炭酸化の進行と劣化の
関係を明らかにし、非常に簡便で迅速な方法により、A
LCの耐用年数を予測する方法を提供することを目的と
する。
In view of the above conventional circumstances, the present inventors have clarified the relationship between the progress of ALC carbonation and the deterioration thereof, and by using a very simple and rapid method,
It is intended to provide a method of predicting the useful life of LC.

【0011】[0011]

【課題を解決するための手段】本発明の軽量気泡コンク
リートの耐用年数予測方法では、建築後、補修されずに
X年経過した軽量気泡コンクリートにおいて、全酸化カ
ルシウム含有量(重量%)、および600〜900℃に
おける重量減少量に相当する炭酸ガス含有量(重量%)
を測定し、{(炭酸ガス含有量)×56/44}/(全
酸化カルシウム含有量)×100なる式で得られる炭酸
化度が、Y(%)である軽量気泡コンクリートは、50
X/Y(年)の耐用年数を有し、50X/Y−X(年)
の余命であると予測する。
According to the method of predicting the useful life of a lightweight cellular concrete of the present invention, the total content of calcium oxide (% by weight) and 600 in the lightweight cellular concrete which has not been repaired and X years have passed after construction. Carbon dioxide gas content (% by weight) corresponding to the weight loss at 900 ° C
And the degree of carbonation obtained by the formula {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 100 is Y (%) is 50%.
Has a useful life of X / Y (year), 50X / Y-X (year)
Predict the life expectancy of.

【0012】また、建築後、X2 年経過した軽量気泡コ
ンクリートにおいて、炭酸化度がY2 (%)であり、最
新の補修より後で、建築後X1 年経過した時の炭酸化度
がY1 (%)である軽量気泡コンクリートは、{(X2
−X1 )/(Y2 −Y1 )}×(50−Y2 )+X
2 (年)の耐用年数を有し、{(X2 −X1 )/(Y2
−Y1 )}×(50−Y2 )(年)の余命であると予測
する。炭酸化度の測定は、前述と同様に行う。
In addition, the lightweight cellular concrete X 2 years after construction has a carbonation degree of Y 2 (%), and the carbonation degree X 1 year after construction after the latest repair is The lightweight cellular concrete with Y 1 (%) is {(X 2
-X 1) / (Y 2 -Y 1)} × (50-Y 2) + X
Has a useful life of 2 (years), {(X 2 -X 1 ) / (Y 2
-Y 1 )} × (50−Y 2 ) (year). The carbonation degree is measured as described above.

【0013】以上の式において、負の年数の余命が算出
された場合は、既に耐用年数をすぎたものと判断され
る。
In the above equation, when the life expectancy of a negative number of years is calculated, it is judged that the useful life has already passed.

【0014】[0014]

【発明の実施の形態】本発明者らは、ALCの炭酸化と
耐久性の劣化との関係を調べるため、実際の建物からA
LCパネルを取り外し、様々な調査分析を行った。
BEST MODE FOR CARRYING OUT THE INVENTION In order to investigate the relationship between carbonation of ALC and deterioration of durability, the inventors of the present invention used an A
The LC panel was removed and various research analyzes were performed.

【0015】建物履歴として、建築年、部位、方角、建
築時の仕上げ、仕上げ補修とその内容を調べた。
As the building history, the year of construction, site, direction, finishing at the time of construction, finishing repair and their contents were examined.

【0016】外観調査として、各ALCパネルの表裏面
におけるひび割れの有無を目視により確認した。ここ
で、地震や躯体の変形によると思われる大きなひび割れ
は対象とせず、網目状のひび割れだけを対象とした。
As a visual inspection, the presence or absence of cracks on the front and back surfaces of each ALC panel was visually confirmed. Here, we did not target large cracks that might be caused by an earthquake or deformation of the skeleton, but only meshed cracks.

【0017】炭酸化度は、パネルの厚さ方向に5層に均
等に分割し、屋外側表面層について、全酸化カルシウム
(CaO)含有量(重量%)を、化学分析法(ICP−
AES)で測定し、炭酸ガス(CO2 )含有量(重量
%)を、熱分析法、具体的には熱重量−示差熱分析装置
(TG−DTA)による600〜900℃の減少重量か
ら算出し、下式(数1)から求めた。
The degree of carbonation was equally divided into 5 layers in the thickness direction of the panel, and the total calcium oxide (CaO) content (% by weight) in the outdoor side surface layer was determined by a chemical analysis method (ICP-
AES), and the carbon dioxide (CO 2 ) content (% by weight) is calculated from the weight loss from 600 to 900 ° C. by a thermal analysis method, specifically, a thermogravimetric-differential thermal analyzer (TG-DTA). Then, it was calculated from the following formula (Equation 1).

【0018】[0018]

【数1】炭酸化度(%)={(炭酸ガス含有量)×56
/44}/(全酸化カルシウム含有量)×100
## EQU1 ## Carbonation degree (%) = {(carbon dioxide gas content) × 56
/ 44} / (total calcium oxide content) x 100

【0019】実際の診断のための測定では、ALCパネ
ルの屋外側表面部分からサンプリングするので、本実施
例では、前記のように5層に分割したうち、屋外側表面
層のサンプルから得られた炭酸化度について測定した。
In the actual measurement for diagnosis, sampling is performed from the outdoor side surface portion of the ALC panel. Therefore, in this example, the sample was obtained from the outdoor side surface layer among the five layers as described above. The degree of carbonation was measured.

【0020】図1に、ALCパネル経過年数と、屋外側
表面部分の炭酸化度の関係を、ひび割れの有無の分類と
共に示す。経過年数につれて、炭酸化度が50%までは
直線的に増加し、その後炭酸化度の増加は緩やかにな
り、炭酸化度60%で飽和して、それ以上には増加して
いない。ひび割れの有無の観点からは、炭酸化度50〜
60%のサンプルのすべてにひび割れが発生しており、
炭酸化度0〜50%のサンプルにはひび割れが発生して
いなかった。
FIG. 1 shows the relationship between the age of the ALC panel and the carbonation degree of the surface portion on the outdoor side together with the classification of presence or absence of cracks. The degree of carbonation increases linearly up to 50% with the lapse of years, and thereafter, the degree of carbonation gradually increases, becomes saturated at the degree of carbonation of 60%, and does not increase further. From the viewpoint of the presence or absence of cracks, the carbonation degree is 50-
All 60% of the samples are cracked,
No cracks were generated in the samples having a carbonation degree of 0 to 50%.

【0021】すなわち、炭酸化度が50%以上であるA
LCパネルではすべてひび割れが発生しており、劣化し
ていると判断される。また、劣化する時点までは、経過
年数にほぼ比例して炭酸化度が増加することが分かっ
た。
That is, A having a carbonation degree of 50% or more
All of the LC panels had cracks and were judged to be deteriorated. It was also found that the degree of carbonation increases almost in proportion to the number of years elapsed until it deteriorates.

【0022】様々な条件において、炭酸化度が50%ま
では、炭酸化度が経過年数にほぼ比例して増加するかど
うかを確認するため、ALCを促進炭酸化試験に供し、
経過時間に対する炭酸化度の変化を調べた。
Under various conditions, ALC was subjected to an accelerated carbonation test in order to confirm whether or not the carbonation degree increased substantially in proportion to the elapsed years up to a carbonation degree of 50%.
The change in carbonation degree with time was examined.

【0023】図2に、3種類の条件で、具体的には温度
20℃、相対湿度90%、炭酸ガス3体積%の条件、温
度20℃、相対湿度70%、炭酸ガス3体積%の条件、
および温度20℃、相対湿度70%、炭酸ガス1体積%
の条件で、促進炭酸化させたALCの経過日数に対する
炭酸化度の変化を示す。図2から、どの条件において
も、炭酸化度50%までは直線的に増加し、それ以降、
炭酸化度の増加は緩やかとなり、炭酸化度は60%で飽
和して、60%以上には増加しなかった。
FIG. 2 shows three kinds of conditions, specifically, a temperature of 20 ° C., a relative humidity of 90% and a carbon dioxide gas of 3% by volume, and a temperature of 20 ° C., a relative humidity of 70% and a carbon dioxide of 3% by volume. ,
And temperature 20 ° C, relative humidity 70%, carbon dioxide 1% by volume
The change of the carbonation degree with respect to the elapsed days of ALC which accelerated carbonation was shown on condition of. From FIG. 2, under any condition, the carbonation degree increases linearly up to 50%, and thereafter,
The increase in the carbonation degree was moderate, the carbonation degree was saturated at 60%, and did not increase to more than 60%.

【0024】この結果から、ある一定条件において使用
されるALCの炭酸化度の増加分は、経過時間に比例す
ると考えられる。つまり、図3に示すように、建築後に
補修を施されていないALCの炭酸化度は、経過年数に
比例し、炭酸化度が50%に達するまで該比例関係が一
様であり、炭酸化度が50%に達すると、耐用年数を超
過したと考えられる。
From this result, it is considered that the increment of carbonation degree of ALC used under a certain constant condition is proportional to the elapsed time. That is, as shown in FIG. 3, the carbonation degree of ALC that has not been repaired after construction is proportional to the number of years elapsed, and the proportionality is uniform until the carbonation degree reaches 50%. When the degree reaches 50%, it is considered that the service life has been exceeded.

【0025】従って、補修を行わなかった軽量気泡コン
クリートにおいて、本発明の耐用年数予測方法は、次の
ようになる。
Therefore, in the lightweight cellular concrete which has not been repaired, the service life prediction method of the present invention is as follows.

【0026】建築後、補修されずにX年経過した軽量気
泡コンクリートにおいて、全酸化カルシウム含有量(重
量%)、および600〜900℃における重量減少量に
相当する炭酸ガス含有量(重量%)を測定し、{(炭酸
ガス含有量)×56/44}/(全酸化カルシウム含有
量)×100なる式で得られる炭酸化度が、Y(%)で
ある軽量気泡コンクリートは、50X/Y(年)の耐用
年数を有し、50X/Y−X(年)の余命であると予測
する。
In the lightweight cellular concrete that has not been repaired for X years after construction, the total calcium oxide content (% by weight) and the carbon dioxide gas content (% by weight) corresponding to the weight reduction amount at 600 to 900 ° C. are determined. A lightweight cellular concrete having a carbonation degree of Y (%) measured by the formula {(carbon dioxide gas content) × 56/44} / (total calcium oxide content) × 100 is 50X / Y ( It has a useful life of (year) and is expected to have a life expectancy of 50X / Y-X (year).

【0027】さらに、図4に示すように、建築後に補修
を施されたALCの炭酸化度は、補修を施されるまでの
経過年数に比例し、補修を施された後の経過年数に比例
した炭酸化度が加わると考えられる。従って、最新の補
修以降の比例関係により、炭酸化度が50%に達する
と、耐用年数を超過したと考えられる。
Further, as shown in FIG. 4, the carbonation degree of the ALC repaired after construction is proportional to the number of years elapsed until the repair is performed, and is proportional to the number of years elapsed after the repair is performed. It is considered that the degree of carbonation is added. Therefore, it is considered that the service life was exceeded when the carbonation degree reached 50% due to the proportional relationship since the latest repair.

【0028】従って、補修を行った軽量気泡コンクリー
トにおいて、本発明の耐用年数予測方法は、次のように
なる。
Therefore, in the repaired lightweight cellular concrete, the service life prediction method of the present invention is as follows.

【0029】建築後、X2 年経過した軽量気泡コンクリ
ートにおいて、炭酸化度がY2 (%)であり、最新の補
修より後で、建築後X1 年経過した時の炭酸化度がY1
(%)である軽量気泡コンクリートは、{(X2
1 )/(Y2 −Y1 )}×(50−Y2 )+X
2 (年)の耐用年数を有し、{(X2 −X1 )/(Y2
−Y1 )}×(50−Y2 )(年)の余命であると予測
する。炭酸化度の測定は、前述と同様に行う。
The carbonation degree is Y 2 (%) in the lightweight cellular concrete X 2 years after the construction, and the carbonation degree Y 1 year after the construction is Y 1 after the latest repair.
(%) Lightweight cellular concrete is {(X 2
X 1) / (Y 2 -Y 1)} × (50-Y 2) + X
Has a useful life of 2 (years), {(X 2 -X 1 ) / (Y 2
-Y 1 )} × (50−Y 2 ) (year). The carbonation degree is measured as described above.

【0030】本発明の耐用年数の予測方法の利点は、少
量のサンプリングにより、迅速、簡便に耐用年数の予測
が正確にできることにある。
The advantage of the method of predicting the useful life of the present invention is that the useful life can be accurately predicted quickly and easily by sampling a small amount.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明の方
法によれば、少量のサンプリングにより、迅速、簡便に
耐用年数の予測が正確にできる。
As described in detail above, according to the method of the present invention, the useful life can be accurately predicted quickly and easily by a small amount of sampling.

【0032】補修を行っていなければ、1回の測定で耐
用年数が正確に予測でき、経過年数を引いた余命によ
り、建築物の保守計画を効果的にかつ合理的に立案でき
るという特徴を有する。
If no repair is performed, the service life can be accurately predicted by one measurement, and the maintenance plan of the building can be effectively and reasonably planned due to the remaining life minus the elapsed years. .

【0033】補修を行っていても、補修内容の検討など
を必要とせずに、一定期間を跨いで2回の測定を実施す
れば耐用年数が正確に予測できるという顕著な効果を有
する。
Even if the repair is performed, there is a remarkable effect that the service life can be accurately predicted by performing the measurement twice over a certain period without the need to examine the repair content.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ALCパネル経過年数と、屋外側表面部分の
ALCの炭酸化度と、ひび割れの有無との関係を示す相
関図である。
FIG. 1 is a correlation diagram showing the relationship between the age of an ALC panel, the carbonation degree of ALC on the outdoor surface portion, and the presence or absence of cracks.

【図2】 促進炭酸化されたALCの経過日数に対する
炭酸化度の変化を示すグラフである。
FIG. 2 is a graph showing changes in carbonation degree with respect to the elapsed days of ALC that has been subjected to accelerated carbonation.

【図3】 建築後に補修を行わなかったALCの経過年
数に対する炭酸化度の変化の模式図である。
FIG. 3 is a schematic diagram of changes in carbonation degree with respect to the number of years of ALC that has not been repaired after construction.

【図4】 建築後に補修を行ったALCの経過年数に対
する炭酸化度の変化の模式図である。
FIG. 4 is a schematic diagram of changes in carbonation degree with respect to the number of years of ALC repaired after construction.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01M 19/00 G01N 33/38 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01M 19/00 G01N 33/38

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 建築後、補修されずにX年経過した軽量
気泡コンクリートにおいて、全酸化カルシウム含有量
(重量%)、および600〜900℃における重量減少
量に相当する炭酸ガス含有量(重量%)を測定し、
{(炭酸ガス含有量)×56/44}/(全酸化カルシ
ウム含有量)×100なる式で得られる炭酸化度がY
(%)である軽量気泡コンクリートは、50X/Y
(年)の耐用年数を有すると予測する耐用年数予測方
法。
1. In a lightweight cellular concrete that has not been repaired for X years after construction, the total calcium oxide content (% by weight) and the carbon dioxide gas content (% by weight) corresponding to the weight reduction amount at 600 to 900 ° C. ) Is measured,
The degree of carbonation obtained by the formula {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 100 is Y
(%) Lightweight cellular concrete is 50X / Y
A service life prediction method for predicting a service life of (year).
【請求項2】 建築後、補修されずにX年経過した軽量
気泡コンクリートにおいて、全酸化カルシウム含有量
(重量%)、および600〜900℃における重量減少
量に相当する炭酸ガス含有量(重量%)を測定し、
{(炭酸ガス含有量)×56/44}/(全酸化カルシ
ウム含有量)×100なる式で得られる炭酸化度がY
(%)である軽量気泡コンクリートは、50X/Y−X
(年)の余命であると予測する耐用年数予測方法。
2. In a lightweight cellular concrete that has not been repaired for X years after construction, the total calcium oxide content (% by weight) and the carbon dioxide gas content (% by weight) corresponding to the weight reduction amount at 600 to 900 ° C. ) Is measured,
The degree of carbonation obtained by the formula {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 100 is Y
(%) Lightweight cellular concrete is 50X / Y-X
A method for predicting the life expectancy of (years).
【請求項3】 建築後、X2 年経過した軽量気泡コンク
リートにおいて、全酸化カルシウム含有量(重量%)、
および600〜900℃における重量減少量に相当する
炭酸ガス含有量(重量%)を測定し、{(炭酸ガス含有
量)×56/44}/(全酸化カルシウム含有量)×1
00なる式で得られる炭酸化度がY2(%)であり、最
新の補修より後で、建築後X1 年経過した時の炭酸化度
がY1(%)である軽量気泡コンクリートは、{(X2
−X1 )/(Y2 −Y1 )}×(50−Y2 )+X
2 (年)の耐用年数を有すると予測する耐用年数予測方
法。
3. A lightweight cellular concrete X 2 years after the construction, the total calcium oxide content (% by weight),
And the carbon dioxide content (% by weight) corresponding to the weight reduction amount at 600 to 900 ° C. was measured and {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 1
The lightweight cellular concrete whose carbonation degree obtained by the formula 00 is Y 2 (%) and whose carbonation degree is Y 1 (%) at the time of X 1 year after construction after the latest repair is {(X 2
-X 1) / (Y 2 -Y 1)} × (50-Y 2) + X
A service life prediction method that predicts that the service life will be 2 (years).
【請求項4】 建築後、X2 年経過した軽量気泡コンク
リートにおいて、全酸化カルシウム含有量(重量%)、
および600〜900℃における重量減少量に相当する
炭酸ガス含有量(重量%)を測定し、{(炭酸ガス含有
量)×56/44}/(全酸化カルシウム含有量)×1
00なる式で得られる炭酸化度がY2(%)であり、最
新の補修より後で、建築後X1 年経過した時の炭酸化度
がY1(%)である軽量気泡コンクリートは、{(X2
−X1 )/(Y2 −Y1 )}×(50−Y2 )(年)の
余命であると予測する耐用年数予測方法。
4. The total content of calcium oxide (% by weight) in lightweight cellular concrete X 2 years after construction,
And the carbon dioxide content (% by weight) corresponding to the weight reduction amount at 600 to 900 ° C. was measured and {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 1
The lightweight cellular concrete whose carbonation degree obtained by the formula 00 is Y 2 (%) and whose carbonation degree is Y 1 (%) at the time of X 1 year after construction after the latest repair is {(X 2
-X 1 ) / (Y 2 -Y 1 )} × (50-Y 2 ) (year) Life expectancy predicting method for predicting the remaining life.
JP08835699A 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete Expired - Lifetime JP3478160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08835699A JP3478160B2 (en) 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08835699A JP3478160B2 (en) 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JP2000283895A JP2000283895A (en) 2000-10-13
JP3478160B2 true JP3478160B2 (en) 2003-12-15

Family

ID=13940546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08835699A Expired - Lifetime JP3478160B2 (en) 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP3478160B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490975B2 (en) * 2001-01-10 2004-01-26 関西ペイント株式会社 Deterioration prediction method for building exterior materials
JP3519383B2 (en) * 2001-07-25 2004-04-12 住友金属鉱山シポレックス株式会社 Deterioration diagnosis system for lightweight cellular concrete panels
JP3988688B2 (en) * 2003-06-27 2007-10-10 株式会社大林組 Concrete crack diagnostic apparatus and method, computer program, computer-readable recording medium
CN101377464B (en) * 2008-09-19 2010-06-02 孙炳全 Method for non-destroyed real time continuously testing for concrete carbonization depth
JP5333775B2 (en) * 2009-12-24 2013-11-06 住友金属鉱山シポレックス株式会社 Degradation diagnosis method for lightweight cellular concrete horizontal members
JP2014190903A (en) * 2013-03-28 2014-10-06 Clion Co Ltd Calculation method of carbonation degree of light-weight air bubble concrete panel
JP2016139429A (en) * 2016-03-24 2016-08-04 日本建築検査協会株式会社 Concrete building useful life calculation method, concrete building useful life calculation program, and concrete building useful life calculation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552840A (en) * 1991-08-27 1993-03-02 Misawa Homes Co Ltd Method for measuring carbonating degree of concrete building material
JPH05310480A (en) * 1992-05-12 1993-11-22 Asahi Chem Ind Co Ltd Lightweight cellular concrete excellent in performance of carbonatization resistance
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure
JP3451617B2 (en) * 1998-10-22 2003-09-29 住友金属鉱山株式会社 Deterioration quantitative evaluation method of steam cured lightweight cellular concrete
JP3451616B2 (en) * 1998-12-14 2003-09-29 住友金属鉱山株式会社 Durability diagnostic method for lightweight cellular concrete

Also Published As

Publication number Publication date
JP2000283895A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
Tang et al. Recent durability studies on concrete structure
Uranjek et al. Influence of freeze–thaw cycles on mechanical properties of historical brick masonry
Zhou et al. Carbonation-induced and chloride-induced corrosion in reinforced concrete structures
Bamforth et al. International review of chloride ingress into structural concrete: A trl report (Trl 359)
Kwon et al. Prediction of durability for RC columns with crack and joint under carbonation based on probabilistic approach
Lahdensivu Durability properties and actual deterioration of Finnish concrete facades and balconies
Köliö et al. Evaluation of a carbonation model for existing concrete facades and balconies by consecutive field measurements
Malheiro et al. Effect of carbonation on the chloride diffusion of mortar specimens exposed to cyclic wetting and drying
JP3451616B2 (en) Durability diagnostic method for lightweight cellular concrete
JP3478160B2 (en) A method for predicting the useful life of lightweight cellular concrete
Venkatesh et al. Condition assessment of existing concrete building using non-destructive testing methods for effective repair and restoration-a case study
JP5333775B2 (en) Degradation diagnosis method for lightweight cellular concrete horizontal members
Rashid et al. Durability and performance of ferrocement infill wall panel
Nordström Steel fibre corrosion in cracks: durability of sprayed concrete
Shahroodi Development of test methods for assessment of concrete durability for use in performance-based specifications
Bochen et al. Service life assessment of renders on the basis of changes of physical and mechanical properties during simulated weathering
Alhassan The effects of materials and micro-climate variations on predictions of carbonation rate in reinforced concrete in the inland environment
Kus et al. Microenvironmental characterization of rendered autoclaved aerated concrete
Harrison Concrete properties: setting and hardening
Smits et al. Research concerning the durability assessment of lime masonry mortars
崔家琿 Study on technology for prevention and diagnosis of early frost damage of concrete
Umap et al. Application of Non-destructive Testing (NDT) Techniques on Reinforced Concrete Structure: A Review
Brooks Elasticity, shrinkage
Vatta Administration of Agreements for Durable Material Structures
JP2003177083A (en) Method for estimating degree of deterioration of alc panel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

EXPY Cancellation because of completion of term