JP3477974B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JP3477974B2
JP3477974B2 JP02907996A JP2907996A JP3477974B2 JP 3477974 B2 JP3477974 B2 JP 3477974B2 JP 02907996 A JP02907996 A JP 02907996A JP 2907996 A JP2907996 A JP 2907996A JP 3477974 B2 JP3477974 B2 JP 3477974B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
reference example
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02907996A
Other languages
Japanese (ja)
Other versions
JPH09220471A (en
Inventor
浩昭 金子
克雄 菅
秀俊 伊藤
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP02907996A priority Critical patent/JP3477974B2/en
Publication of JPH09220471A publication Critical patent/JPH09220471A/en
Application granted granted Critical
Publication of JP3477974B2 publication Critical patent/JP3477974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の内燃機
関から排出される排気ガス中の炭化水素(HC)、一酸
化炭素(CO)および窒素酸化物(NOx)を浄化する
排気ガス浄化用触媒に関し、特に酸素過剰雰囲気下での
NOxの浄化性能に優れる排気ガス浄化用触媒に関す
る。
TECHNICAL FIELD The present invention relates to exhaust gas purification for purifying hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) in exhaust gas discharged from an internal combustion engine of an automobile or the like. The present invention relates to a catalyst, and more particularly to an exhaust gas purifying catalyst that is excellent in NOx purification performance in an oxygen excess atmosphere.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題および地球温
暖化問題の関点から、低燃費自動車の実現が期待されて
おり、特にガソリン自動車に対しては希薄燃焼自動車の
開発が望まれている。希薄燃焼自動車においては、希薄
燃焼走行時の排気ガス雰囲気は、理論空燃状態(以下、
「ストイキ状態」と称す)に比べて酸素過剰雰囲気(以
下、「リーン雰囲気」と称す)となる。リーン雰囲気に
おいて、従来の三元触媒を適応させた場合には、過剰な
酸素の影響からNOx浄化作用が不十分となるという問
題があった。このためリーン雰囲気下においてもNOx
を浄化できる触媒の開発が望まれていた。
2. Description of the Related Art In recent years, fuel-efficient vehicles are expected to be realized from the viewpoints of exhaustion of petroleum resources and global warming, and particularly lean-burn vehicles are desired to be developed for gasoline vehicles. . In lean-burn vehicles, the exhaust gas atmosphere during lean-burn running is the theoretical air-fuel state (hereinafter,
An oxygen-excess atmosphere (hereinafter referred to as "lean atmosphere") is obtained as compared with a "stoichiometric state". When a conventional three-way catalyst is applied in a lean atmosphere, there is a problem that the NOx purification action becomes insufficient due to the influence of excess oxygen. Therefore, even in a lean atmosphere, NOx
There has been a demand for the development of a catalyst that can purify methane.

【0003】従来より、リーン雰囲気下におけるNOx
浄化性能を向上させる触媒は種々提案されており、大別
して2種類ある。一つは排気ガス中のHCを還元剤とし
てNOxを酸化して浄化するものであり、もう一つはリ
ーン雰囲気下でNOxを吸収し、ストイキ状態あるいは
燃料過剰(リッチ)雰囲気下でNOxを放出浄化するも
のである。
Conventionally, NOx in a lean atmosphere
Various catalysts for improving purification performance have been proposed, and there are roughly two types. One is to oxidize and purify NOx by using HC in the exhaust gas as a reducing agent, and the other is to absorb NOx in a lean atmosphere and release NOx in a stoichiometric state or an excess fuel (rich) atmosphere. It purifies.

【0004】前者の代表的なものとしては、例えば特開
昭63−100919号公報に、銅(Cu)をゼオライ
トに担持させた触媒が開示されている。
As a typical example of the former, Japanese Patent Laid-Open No. 63-100919 discloses a catalyst in which copper (Cu) is supported on zeolite.

【0005】一方、後者の代表的なものとしては、例え
ば特開平5−168860号公報に、ランタン等を白金
(Pt)に担持させてランタンをNOx吸収材として用
いる触媒が開示されている。
On the other hand, as a typical example of the latter, for example, Japanese Unexamined Patent Publication (Kokai) No. 5-168860 discloses a catalyst in which lanthanum or the like is supported on platinum (Pt) and lanthanum is used as an NOx absorbent.

【0006】しかし上記特開平5−168860号公報
に開示された触媒は、NOx吸収能力が不十分であると
いう問題があり、かかる問題を解決する目的で、例えば
特開平5−261287号公報、特開平5−31765
2号公報及び特開平6−31139号公報にアルカリ、
アルカリ土類金属を用いる排気ガス浄化用触媒が開示さ
れている。
However, the catalyst disclosed in JP-A-5-168860 has a problem that the NOx absorption capacity is insufficient. For the purpose of solving such a problem, for example, JP-A-5-261287, JP Kaihei 5-31765
No. 2 and JP-A-6-31139 disclose alkali,
An exhaust gas purifying catalyst using an alkaline earth metal is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記ア
ルカリ、アルカリ土類金属を用いた触媒にNOx吸収能
力を十分に保持させるためには、少量のアルカリ、アル
カリ土類金属では足らず、相当量のアルカリ、アルカリ
土類金属を用いなければならなかった。
However, in order to make the catalyst using the above-mentioned alkali or alkaline earth metal sufficiently retain the NOx absorption capacity, a small amount of alkali or alkaline earth metal is not enough, and a considerable amount of alkali is required. , Had to use alkaline earth metals.

【0008】またこの様なNOx吸収型の触媒において
は、リーン雰囲気で吸収したNOxをストイキあるいは
リッチ状態時に浄化しなければならないので、三元触媒
としての機能も同時に要求されるが、上述したように十
分なNOx吸収機能を得るために相当量のアルカリ、ア
ルカリ土類金属を添加すると、アルカリ、アルカリ土類
金属の強い塩基性が触媒性能に影響を及ぼして貴金属の
酸化能力を低下させ、三元触媒としての機能が不十分に
なるという問題があった。
Further, in such a NOx absorption type catalyst, since the NOx absorbed in the lean atmosphere must be purified in the stoichiometric or rich state, the function as a three-way catalyst is also required at the same time, but as described above. If a considerable amount of alkali or alkaline earth metal is added to obtain a sufficient NOx absorption function, the strong basicity of the alkali or alkaline earth metal will affect the catalytic performance and reduce the oxidizing ability of the noble metal. There is a problem that the function as the original catalyst becomes insufficient.

【0009】更に従来のNOx浄化触媒(例えばCu担
持ゼオライト触媒)や、NOx吸収触媒(例えばPt−
ランタン触媒)は、その特性上、前者は排気ガス中のH
C/NOx比が小さいと浄化作用が十分に得られず、ま
た後者ではリーン雰囲気で定常走行を行うとNOx吸収
量が飽和に達してやがて吸収作用が消失するという問題
があり、幅広い運転条件下でNOxを浄化することがで
きない。
Further, a conventional NOx purification catalyst (for example, a Cu-supported zeolite catalyst) and an NOx absorption catalyst (for example, Pt-
The lanthanum catalyst) has the characteristic that the former is H in exhaust gas.
If the C / NOx ratio is small, the purifying effect cannot be sufficiently obtained, and in the latter case, if steady running is performed in a lean atmosphere, there is a problem that the NOx absorption amount reaches saturation and eventually the absorption function disappears. Therefore, NOx cannot be purified.

【0010】従って、本発明の目的は、従来の触媒では
十分な活性を示さなかったリーン雰囲気下におけるNO
x浄化性能を向上させることができ、かつ三元触媒とし
ての機能を十分に発現することができる排気ガス浄化用
触媒を提供するにある。
Therefore, the object of the present invention is to provide NO in a lean atmosphere which has not been sufficiently activated by conventional catalysts.
It is intended to provide an exhaust gas purifying catalyst that can improve x purification performance and can sufficiently exhibit the function as a three-way catalyst.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を研究した結果、希土類金属とバリウムと遷移金属との
複合酸化物には酸素欠損が生成され、この生成された酸
素欠損を介してNOxの吸着を容易せしめ、リーン雰囲
気下でのNOx吸収能を向上させることを見出し、本発
明に到達した。
As a result of researching the above-mentioned problems, the present inventors have found that oxygen deficiency is generated in a composite oxide of a rare earth metal, barium, and a transition metal. As a result, they have found that the adsorption of NOx is facilitated and the NOx absorption capacity in a lean atmosphere is improved, and the present invention has been reached.

【0012】 請求項1記載の排気ガス浄化用触媒は、エ
ンジン排気気流中に触媒を少なくとも2個設け、排気流
れに対して上流側に銅担持ゼオライト触媒を配置し、下
流側にAサイト欠損型ペロブスカイト系複合酸化物を含
む下流側触媒を配置してなる排気ガス浄化用触媒であっ
て、該下流側触媒が、耐火性無機担体と、該耐火性無機
担体上に担持した希土類金属とバリウムと少なくとも1
種の遷移金属との複合酸化物及び、白金、ロジウムとパ
ラジウムから成る群より選ばれた少なくとも1種の金属
含み、該複合酸化物が次の一般式
[0012] The exhaust gas purifying catalyst according to claim 1 is
At least two catalysts are installed in the exhaust gas flow
On the other hand, a copper-supported zeolite catalyst was placed upstream and
Contains A-site deficient perovskite complex oxide on the flow side
It is an exhaust gas purification catalyst that has a downstream catalyst.
The downstream catalyst is a refractory inorganic carrier and the refractory inorganic carrier.
At least one of rare earth metal and barium supported on a carrier
Complex oxides with certain transition metals and platinum, rhodium and palladium
At least one metal selected from the group consisting of radium
ToAnd the complex oxide has the following general formula

【数2】 (式中、Ln=ランタン又はネオジウム、M及びNはマ
ンガン、コバルト、鉄、ニッケル及び銅から成る群より
選ばれる1種の金属、0<X<1、0≦Y≦1、0<α
<0.2を示す)で表わされることを特徴とする。
[Equation 2] (Wherein, Ln = lanthanum or neodymium, M and N are
From the group consisting of gangan, cobalt, iron, nickel and copper
One metal selected, 0 <X <1, 0 ≦ Y ≦ 1, 0 <α
<Indicating <0.2) .

【0013】また前記触媒のHC及びCO活性を更に向
上させるために、請求項2記載の排気ガス浄化用触媒
は、前記下流側触媒が、前記耐火性無機担体上に、前記
複合酸化物を含む触媒内層と、白金、ロジウムとパラジ
ウムから成る群より選ばれた少なくとも1種の金属を含
み前記複合酸化物を含まない触媒表層とを含むことを特
徴とする。
In order to further improve the HC and CO activities of the catalyst, the exhaust gas purifying catalyst according to claim 2 is characterized in that the downstream catalyst is on the refractory inorganic carrier.
Catalyst inner layer containing complex oxide, platinum, rhodium and palladium
Containing at least one metal selected from the group consisting of
And a catalyst surface layer that does not include the complex oxide.
To collect.

【0014】更に、請求項1および2に記載の排気ガスFurther, the exhaust gas according to claims 1 and 2.
浄化用触媒の好適な例として、請求項3記載の排気ガスExhaust gas according to claim 3, as a suitable example of the purification catalyst.
浄化用触媒は、特に、希土類金属はランタン(La)、The purification catalyst is, in particular, lanthanum (La) for rare earth metal,
ネオジウム(Nd)であり、遷移金属は、マンガン(MIt is neodymium (Nd), and the transition metal is manganese (M
n)、コバルト(Co)、鉄(Fe)、ニッケル(Nn), cobalt (Co), iron (Fe), nickel (N
i)、銅(Cu)から成る群より選ばれる少なくとも1i), at least 1 selected from the group consisting of copper (Cu)
種の金属であることを特徴とする。It is characterized by being a kind of metal.

【0015】請求項1乃至3の排気ガス浄化用触媒のN
Ox吸収能力を十分に得るため、請求項4の排気ガス浄
化用触媒は、前記式中、0.2≦X<1であることを特
徴とする。
The N of the exhaust gas purifying catalyst according to any one of claims 1 to 3.
In order to obtain sufficient Ox absorption capacity, the exhaust gas purifying catalyst according to claim 4 is characterized in that 0.2 ≦ X <1 in the above formula.

【0016】(削除)(Delete)

【0017】本発明の排気ガス浄化用触媒に用いられる
複合酸化物には、希土類金属とバリウムと少なくとも1
種の遷移金属が含まれる。希土類金属としては、ランタ
ン及びネオジウムが、また遷移金属としては、マンガ
ン、コバルト、鉄及び銅が好適に使用できる。
The complex oxide used in the exhaust gas purifying catalyst of the present invention contains at least one rare earth metal and barium.
Included are some transition metals. Lanthanum and neodymium can be suitably used as the rare earth metal, and manganese, cobalt, iron and copper can be suitably used as the transition metal.

【0018】このようなペロブスカイト酸化物のような
複合酸化物は、酸素欠損を生じ、この生成した酸素欠損
を介してNOxの吸着が容易になり、リーン雰囲気にお
いてNOxを吸収するという特性を利用することによ
り、NOxの浄化性能を向上させることが可能となって
いる。
A complex oxide such as the perovskite oxide causes oxygen vacancies, NOx is easily adsorbed through the generated oxygen vacancies, and NOx is absorbed in a lean atmosphere. This makes it possible to improve the NOx purification performance.

【0019】また、ペロブスカイト酸化物は触媒組成物
中のアルミナ系酸化物と固相反応を起こして活性が失活
する場合がある。これを抑制するために、アルミナ系酸
化物にランタン等をプリコートする方法や、ジルコニア
のようにペロブスカイトとの反応性が小さい材料を用い
る方法がある。これに対して本発明のようにペロブスカ
イト酸化物のAサイトを量論比から僅かに欠損させた
り、Bサイトを部分置換することにより、ペロブスカイ
ト酸化物と接する他の酸化物(アルミナ等)との間での
固相反応を抑制し、熱的安定性を向上させることが可能
となった。
Further, the perovskite oxide may undergo solid phase reaction with the alumina-based oxide in the catalyst composition to lose its activity. In order to suppress this, there is a method of pre-coating an alumina-based oxide with lanthanum or the like, and a method of using a material such as zirconia which has a small reactivity with perovskite. On the other hand, as in the present invention, the A-site of the perovskite oxide is slightly depleted from the stoichiometric ratio, or the B-site is partially replaced, so that the perovskite oxide may be in contact with another oxide (alumina or the like). It became possible to suppress the solid-phase reaction between the two and improve the thermal stability.

【0020】Aサイトの置換量は、0<X<1であり特
に限定されないが、NOx吸収能力を十分に得るために
は、特に、0.2≦X<1であることが好ましい。
The substitution amount of the A site is 0 <X <1 and is not particularly limited, but 0.2 ≦ X <1 is particularly preferable in order to obtain a sufficient NOx absorption capacity.

【0021】αの値は、0.2を超えると単相のペロブ
スカイト構造を構成しなくなるので0<α<0.2であ
ることが好ましい。Yの値は0≦Y≦1であるが、結晶
構造の安定性から、特に0≦Y≦0.5であることが好
ましい。
If the value of α exceeds 0.2, a single-phase perovskite structure will not be formed, so 0 <α <0.2 is preferable. The value of Y is 0 ≦ Y ≦ 1, but it is particularly preferably 0 ≦ Y ≦ 0.5 in view of the stability of the crystal structure.

【0022】また、NOx吸収材として機能する当該複
合酸化物の量は、NOx吸収作用を示す量であれば特に
限定されないが、30gより少ないと十分なNOx吸収
能力が得られず、200gより多く使用しても有意な特
性向上はみられない点から触媒担体1Lあたり30〜2
00gが好ましい。
The amount of the composite oxide that functions as a NOx absorbent is not particularly limited as long as it exhibits a NOx absorbing action, but if it is less than 30 g, a sufficient NOx absorbing ability cannot be obtained, and if it is more than 200 g. From the point that no significant improvement in properties is observed even when used, 30 to 2 per 1 L of catalyst carrier
00 g is preferred.

【0023】本発明の、排気ガス浄化用触媒に用いる貴
金属としては、白金、ロジウムおよびパラジウムから成
る群より選ばれる少なくとも1種が用いられる。例えば
PtとRh、PdとRh、Pdのみ等の種々の組み合わ
せが可能である。触媒中の前記貴金属の含有量は、NO
x吸収能とストイキ時の三元触媒性能が十分に得られれ
ば特に限定されないが、0.1gより少ないと十分な三
元性能が得られず、10gより多く使用しても有意な特
性向上はみられない点から触媒1Lあたり0.1〜10
gが好ましい。
As the noble metal used in the exhaust gas purifying catalyst of the present invention, at least one selected from the group consisting of platinum, rhodium and palladium is used. For example, various combinations such as Pt and Rh, Pd and Rh, and Pd alone are possible. The content of the noble metal in the catalyst is NO
There is no particular limitation as long as sufficient x absorption capacity and three-way catalyst performance during stoichiometry are obtained, but if it is less than 0.1 g, sufficient three-way performance cannot be obtained, and even if it is used in excess of 10 g, a significant improvement in properties is achieved. 0.1 to 10 per liter of catalyst from the point of not being seen
g is preferred.

【0024】貴金属を担持するための基材には貴金属の
分散性、特に耐久後の貴金属の分散性を確保するため、
比表面積の大きい耐熱性無機材料が適し、特に活性アル
ミナが好ましい。耐熱比表面積を高めるために希土類元
素やジルコニア等を添加した活性アルミナを使用しても
良い。活性アルミナの使用量は触媒1L当たり、50g
より少ないと十分な貴金属の分散性が得られず、300
gより多く使用すると性能低下がみられる点から50〜
300gであることが好ましい。
In order to ensure the dispersibility of the noble metal in the base material for supporting the noble metal, especially the noble metal after durability,
A heat-resistant inorganic material having a large specific surface area is suitable, and activated alumina is particularly preferable. In order to increase the heat-resistant specific surface area, activated alumina to which a rare earth element, zirconia or the like is added may be used. The amount of activated alumina used is 50 g per liter of catalyst
When the amount is less than 300, sufficient dispersibility of noble metal cannot be obtained, and
50-
It is preferably 300 g.

【0025】本発明で用いられる複合酸化物、特に部分
置換ペロブスカイト酸化物は、その部分置換量とともに
リーン雰囲気下でNOxを吸収する性能を発現させる
が、その吸収機構は、気相中のNOxが複合酸化物上で
NO2 に酸化され、複合酸化物表面のバリウムの近傍に
硝酸基あるいはそれに近い状態で吸収されるものと考え
られる。従ってリーン雰囲気下でNOxを有効に吸収す
るための複合酸化物の組成は、硝酸塩を容易に製造し得
るバリウムを含有し、更に、NOxをNO2 に酸化する
ことができる遷移金属元素を含有することが重要であ
る。
The composite oxide used in the present invention, particularly the partially substituted perovskite oxide, exhibits the ability to absorb NOx in a lean atmosphere together with the amount of partial replacement, but the absorption mechanism is that NOx in the gas phase is It is considered that the compound is oxidized to NO 2 on the composite oxide and is absorbed in the vicinity of barium on the surface of the composite oxide in a nitric acid group or a state close thereto. Therefore, the composition of the composite oxide for effectively absorbing NOx in a lean atmosphere contains barium, which can easily produce a nitrate, and further contains a transition metal element capable of oxidizing NOx to NO 2. This is very important.

【0026】また、請求項2記載の排気ガス浄化用触媒
は、前記複合酸化物を含有する触媒内層と、貴金属触媒
表層とを組み合わせて成る。前記貴金属触媒表層中に
は、三元性能の確保の点から、前記複合酸化物は含有さ
れてはならない。
An exhaust gas purifying catalyst according to a second aspect of the present invention comprises a catalyst inner layer containing the complex oxide and a noble metal catalyst surface layer in combination. The composite oxide should not be contained in the surface layer of the noble metal catalyst from the viewpoint of ensuring the three-way performance.

【0027】触媒表層中の貴金属は、HC及びCOの酸
化を促進し、NOxの還元効率を向上させるものであ
る。このような2層構造で構成されることにより、NO
x吸収機能を得ながら十分な三元触媒性能を確保するこ
とが可能となっている。
The noble metal in the catalyst surface layer promotes the oxidation of HC and CO and improves the NOx reduction efficiency. With such a two-layer structure, NO
It is possible to secure sufficient three-way catalyst performance while obtaining the x absorption function.

【0028】 また、排気ガス流に対して上流側に設けら
れたCu担持ゼオライト触媒の含有量は、NOx浄化作
用を示す量であれば特に限定されないが、100gより
少ないと十分なNOx還元性能が得られず、300gよ
り多く使用しても有意な性能向上はみられない点から触
媒担体1Lあたり100〜300gが好ましい。触媒活
性及び耐久性を向上させるために、例えばCo,Ca,
P,Ce,Nd等を添加してもよい。ゼオライトとして
は、Cuイオン交換後の活性が高くかつ耐熱性に優れる
ものが好ましく使用され、例えば、ペンタル型ゼオライ
ト、Y型ゼオライト、モルデナイト、フェリエライト等
がある。
Further, the content of the Cu-supporting zeolite catalyst provided on the upstream side with respect to the exhaust gas flow is not particularly limited as long as it exhibits a NOx purification action, but if it is less than 100 g, sufficient NOx reduction performance is obtained. It is preferably 100 to 300 g per 1 L of the catalyst carrier, because no significant improvement in performance is observed even if it is used in excess of 300 g. In order to improve catalytic activity and durability, for example, Co, Ca,
You may add P, Ce, Nd, etc. As the zeolite, those having high activity after Cu ion exchange and excellent heat resistance are preferably used, and examples thereof include pental-type zeolite, Y-type zeolite, mordenite, and ferrierite.

【0029】 当該Cu担持ゼオライト触媒と下流側触媒
の排気系への設置方法は、Cu担持ゼオライト触媒を排
気ガス流に対して上流側に、また下流側触媒を排気ガス
流に対して下流側に設置することが重要であり、例えば
1個の触媒コンバータ内に2種の触媒を装着して配置す
る方法や、前記2種の触媒を別々のコンバータに入れて
設置する方法等の公知の方法を用いることができる。触
媒の設置位置は特に限定されず、例えばマニホールド直
下位置や床下位置等があげられる。この触媒系の前段、
後段それぞれ1個ずつの触媒で浄化性能が十分でない場
合には、さらに前段、後段の何れかあるいは両方を複数
個としたり、多種触媒を追加しても良い。
The Cu-supporting zeolite catalyst and the downstream-side catalyst are installed in the exhaust system in such a manner that the Cu-supporting zeolite catalyst is upstream of the exhaust gas flow and the downstream catalyst is downstream of the exhaust gas flow. It is important to install a known method such as a method of mounting two types of catalysts in one catalytic converter and a method of placing the two types of catalysts in separate converters. Can be used. The installation position of the catalyst is not particularly limited, and examples thereof include a position directly under the manifold and a position under the floor. Before this catalyst system,
If the purification performance is not sufficient with only one catalyst in each of the latter stages, one or both of the former stage and the latter stage may be provided in plural, or various types of catalysts may be added.

【0030】 従来は、例えばCu担持ゼオライト触媒等
のNOx浄化触媒と、ペロブスカイト酸化物触媒等のN
Ox吸収触媒はその特性上、前者は排気ガス中のHC/
NOx比が小さいと浄化作用が十分に得られず、また後
者ではリーンで定常走行を行うとNOx吸収量が飽和に
達してやがて吸収作用が無くなるという問題があり、幅
広い運転条件下でNOxを浄化することができなかっ
た。 従って、本発明では、排気ガスを一度Cu担持ゼ
オライト触媒に接触させることで、後段のNOx吸収触
媒の吸収作用を高めている。その吸収作用は、例えばC
u担持ゼオライト触媒でNOx吸収に必要なNOxの酸
化が速やかに進行してNOx吸収材の働きを補助してい
ることや、Cu担持ゼオライト触媒がNOx吸収に好都
合なHC、NOx、O2 濃度に変換していることなどが
考えられる。
[0030] Conventionally, for example, a NOx purification catalyst such as a Cu-supported zeolite catalyst, N, such as perovskite oxide catalyst
Due to the characteristics of the Ox absorption catalyst, the former is HC /
If the NOx ratio is small, a sufficient purification effect cannot be obtained, and in the latter case, if steady running is performed lean, there is a problem that the absorption amount of NOx reaches saturation and eventually the absorption action disappears. I couldn't. Therefore, in the present invention, the exhaust gas is brought into contact with the Cu-supported zeolite catalyst once to enhance the absorption action of the NOx absorption catalyst in the subsequent stage. The absorbing action is, for example, C
Oxidation of NOx necessary for NOx absorption proceeds rapidly in the u-supported zeolite catalyst to assist the function of the NOx absorbent, and the Cu-supported zeolite catalyst provides HC, NOx and O 2 concentrations that are convenient for NOx absorption. It may be converted.

【0031】本発明に用いる複合酸化物は、複合酸化物
の各構成元素の硝酸塩、酢酸塩又は炭酸塩等を、所望す
る複合酸化物の組成比に混合し、仮焼成した後粉砕し
て、熱処理焼成する固相反応や、複合酸化物の各構成元
素の硝酸塩、酢酸塩又は炭酸塩等を、所望する複合酸化
物の組成比に混合し、水に溶解した後、NH4 OHやN
3 CO3 等のアルカリ溶液を滴下して沈殿物を生成
し、ろ過した後乾燥させて焼成する共沈法等の公知の方
法により調製することができる。
The composite oxide used in the present invention is prepared by mixing nitrates, acetates or carbonates of the respective constituent elements of the composite oxide in a desired composition ratio of the composite oxide, calcining and then pulverizing the mixture. Solid-state reaction of heat treatment and calcination, nitrate, acetate, carbonate, etc. of each constituent element of the composite oxide are mixed at a desired composition ratio of the composite oxide and dissolved in water, and then NH 4 OH or N
It can be prepared by a known method such as a coprecipitation method in which an alkaline solution such as H 3 CO 3 is added dropwise to form a precipitate, which is filtered, dried and calcined.

【0032】一方、貴金属担持活性アルミナに用いる触
媒調製用貴金属原料化合物としては、硝酸塩、炭酸塩、
アンモニウム塩、酢酸塩、ハロゲン化物、酸化物等を組
み合わせて使用することができるが、特に水溶性の塩を
使用することが触媒性能を向上させる観点から好まし
い。調製法としては特殊な方法に限定されず、成分の著
しい偏在を伴わない限り、公知の蒸発乾固法、沈殿法、
含浸法等の種々の方法を用いることができる。
On the other hand, the noble metal raw material compound for catalyst preparation used for the noble metal-supported activated alumina includes nitrates, carbonates,
Although ammonium salts, acetates, halides, oxides and the like can be used in combination, it is particularly preferable to use a water-soluble salt from the viewpoint of improving catalyst performance. The preparation method is not limited to a special method, and as long as there is no significant uneven distribution of components, known evaporation-drying method, precipitation method,
Various methods such as an impregnation method can be used.

【0033】例えば、アルミナに、貴金属成分を含む触
媒原料の水溶液又は分散液を含浸する。次いで、水を除
去して乾燥させ、残留物を300℃〜600℃の温度で
空気中及び/又は空気流通下で熱処理すると、貴金属担
持アルミナが得られる。
For example, alumina is impregnated with an aqueous solution or dispersion of a catalyst raw material containing a noble metal component. Next, water is removed and dried, and the residue is heat-treated at a temperature of 300 ° C. to 600 ° C. in the air and / or under the air flow to obtain a noble metal-supported alumina.

【0034】このようにして得られる本発明に用いる、
複合酸化物と、貴金属担持アルミナを粉砕してスラリー
とし、触媒担体にコートして、400〜900℃の温度
で焼成する。
Used in the present invention thus obtained,
The composite oxide and the noble metal-supported alumina are pulverized to form a slurry, which is coated on a catalyst carrier and calcined at a temperature of 400 to 900 ° C.

【0035】触媒担体としては、公知の触媒担体の中か
ら適宜選択して使用することができ、例えば耐火性材料
からなるモノリス構造を有するハニカム担体やメタル担
体等が挙げられる。この触媒担体の形状は、特に制限さ
れないが、通常はハニカム形状で使用することが好まし
く、このハニカム材料としては、一般に例えばセラミッ
クス等のコージェライト質のものが多く用いられるが、
フェライト系ステンレス等の金属材料からなるハニカム
を用いることも可能であり、更には触媒粉末そのものを
ハニカム形状に成形しても良い。触媒の形状をハニカム
状とすることにより、触媒と排気ガスの触媒面積が大き
くなり、圧力損失も抑えられるため自動車用等として用
いる場合に極めて有利である。
The catalyst carrier can be appropriately selected and used from known catalyst carriers, and examples thereof include a honeycomb carrier having a monolith structure made of a refractory material, a metal carrier and the like. The shape of the catalyst carrier is not particularly limited, but it is usually preferable to use it in a honeycomb shape, and as the honeycomb material, for example, a cordierite material such as ceramics is generally used,
It is also possible to use a honeycomb made of a metal material such as ferritic stainless steel, and further, the catalyst powder itself may be formed into a honeycomb shape. The honeycomb shape of the catalyst increases the catalyst area of the catalyst and the exhaust gas and suppresses the pressure loss, which is extremely advantageous when used for automobiles and the like.

【0036】[0036]

【実施例】本発明を次の参考例、実施例及び比較例によ
り説明する。参考例1 La,Ba,Mnの炭酸塩を出発原料とし、それぞれモ
ル比でLa:Ba:Mn=0.45:0.45:1とな
るように加え、ボールミルで粉砕混合した。この混合物
100重量部に対してクエン酸約64重量部と純水40
0重量部を加え、60±5℃で反応させた。反応終了
後、得られたスラリーを120℃で脱水して複合クエン
酸塩を得た。得られた複合クエン酸塩を600℃で1時
間大気中で仮焼成後、800℃で5時間本焼成してペロ
ブスカイト酸化物粉末(A1)を得た。活性アルミナ粉
末に硝酸パラジウム(Pd)水溶液を含浸し、乾燥後4
00℃で1時間焼成して、Pd担持活性アルミナ粉末
(イ)を得た。この粉末のPd濃度は6.7重量%であ
った。上記酸化物粉末(A1)720g、Pd担持活性
アルミナ粉末(イ)138g、活性アルミナ粉末42
g、純水900gを加えて磁性ボールミルに投入し、混
合粉砕してスラリー液を得た。このスラリー液をコーデ
ィエライト質モノリス担体に付着させ、空気流にて余剰
のスラリーを取り除いて130℃で乾燥した後、400
℃で1時間焼成してコート層重量250g/L−担体の
触媒を得た。
The present invention will be described with reference to the following reference examples, examples and comparative examples. Reference Example 1 A carbonate of La, Ba, and Mn was used as a starting material, and added at a molar ratio of La: Ba: Mn = 0.45: 0.45: 1, and the mixture was pulverized and mixed by a ball mill. About 100 parts by weight of this mixture and about 64 parts by weight of citric acid and 40 parts of pure water.
0 part by weight was added and the reaction was carried out at 60 ± 5 ° C. After the reaction was completed, the obtained slurry was dehydrated at 120 ° C. to obtain a complex citrate. The obtained composite citrate was pre-baked at 600 ° C. for 1 hour in the air and then main-baked at 800 ° C. for 5 hours to obtain a perovskite oxide powder (A1). Activated alumina powder was impregnated with an aqueous solution of palladium nitrate (Pd), and after drying 4
Firing was performed at 00 ° C. for 1 hour to obtain Pd-supported activated alumina powder (a). The Pd concentration of this powder was 6.7% by weight. 720 g of the above oxide powder (A1), 138 g of Pd-supporting activated alumina powder (a), and activated alumina powder 42
g, and 900 g of pure water were added, and the mixture was put into a magnetic ball mill and mixed and ground to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier, excess slurry was removed with an air stream, and the mixture was dried at 130 ° C.
The catalyst having a coat layer weight of 250 g / L-support was obtained by calcination at 1 ° C. for 1 hour.

【0037】参考例2 Nd,Ba,Mnの炭酸塩を出発原料とし、それぞれモ
ル比でNd:Ba:Mn=0.45:0.45:1とな
るように加えて、酸化物粉末(A2)を得、当該粉末
(A2)を用いた以外は、参考例1と同様にしてコート
層重量250g/L−担体の触媒を得た。
Reference Example 2 A carbonate of Nd, Ba, Mn was used as a starting material, and added in a molar ratio of Nd: Ba: Mn = 0.45: 0.45: 1, and an oxide powder (A2 Was obtained, and a catalyst having a coat layer weight of 250 g / L-support was obtained in the same manner as in Reference Example 1 except that the powder (A2) was used.

【0038】参考例3 La,Ba,Coの炭酸塩を出発原料とし、それぞれモ
ル比でLa:Ba:Co=0.45:0.45:1とな
るように加えて、酸化物粉末(A3)を得、当該粉末
(A3)を用いた以外は、参考例1と同様にしてコート
層重量250g/L−担体の触媒を得た。
Reference Example 3 Carbonate salts of La, Ba and Co were used as starting materials, and were added in a molar ratio of La: Ba: Co = 0.45: 0.45: 1, and an oxide powder (A3 Was obtained, and a catalyst having a coat layer weight of 250 g / L-support was obtained in the same manner as in Reference Example 1 except that the powder (A3) was used.

【0039】参考例4 Nd,Ba,Coの炭酸塩を出発原料とし、それぞれモ
ル比でNd:Ba:Co=0.45:045:1となる
ように加えて酸化物粉末(A4)を得、当該粉末(A
4)を用いた以外は、参考例1と同様にしてコート層重
量250g/L−担体の触媒を得た。
Reference Example 4 A carbonate of Nd, Ba, Co was used as a starting material, and added in a molar ratio of Nd: Ba: Co = 0.45: 045: 1 to obtain an oxide powder (A4). , The powder (A
A catalyst having a coat layer weight of 250 g / L-support was obtained in the same manner as in Reference Example 1 except that 4) was used.

【0040】参考例5 La,Ba,Mn,Coの炭酸塩を出発原料とし、それ
ぞれモル比でLa:Ba:Mn:Co=0.45:0.
45:0.5:0.5となるように加えて、酸化物粉末
(A5)を得、当該粉末(A5)を用いた以外は、参考
例1と同様にしてコート層重量250g/L−担体の触
媒を得た。
Reference Example 5 La, Ba, Mn and Co carbonates were used as starting materials, and each had a molar ratio of La: Ba: Mn: Co = 0.45: 0.
A coating layer weight of 250 g / L- was obtained in the same manner as in Reference Example 1 except that the oxide powder (A5) was used in addition to 45: 0.5: 0.5 and the powder (A5) was used. A support catalyst was obtained.

【0041】参考例6 Nd,Ba,Mn,Coの炭酸塩を出発原料とし、それ
ぞれモル比でNd:Ba:Mn:Co=0.45:0.
45:0.5:0.5となるように加えて、ペロブスカ
イト酸化物粉末(A6)を得、当該粉末(A6)を用い
た以外は、参考例1と同様にしてコート層重量250g
/L−担体の触媒を得た。
Reference Example 6 Carbonic acid salts of Nd, Ba, Mn and Co were used as starting materials, and Nd: Ba: Mn: Co = 0.45: 0.
In addition to 45: 0.5: 0.5, a perovskite oxide powder (A6) was obtained, and the weight of the coat layer was 250 g in the same manner as in Reference Example 1 except that the powder (A6) was used.
A / L-supported catalyst was obtained.

【0042】参考例7 La,Ba,Mn,Coの炭酸塩を出発原料とし、それ
ぞれモル比でLa:Ba:Mn:Co=0.4375:
0.4375:0.5:0.5となるように加えて、ペ
ロブスカイト酸化物粉末(A7)を得、当該粉末(A
7)を用いた以外は、参考例1と同様にしてコート層重
量250g/L−担体の触媒を得た。
Reference Example 7 A carbonate of La, Ba, Mn, and Co was used as a starting material, and each had a molar ratio of La: Ba: Mn: Co = 0.4375:
0.4375: 0.5: 0.5 so that a perovskite oxide powder (A7) is obtained.
A catalyst having a coat layer weight of 250 g / L-support was obtained in the same manner as in Reference Example 1 except that 7) was used.

【0043】参考例8 活性アルミナ粉末に硝酸ロジウム(Rh)水溶液を含浸
し、乾燥後400℃で、1時間焼成して、Rh担持活性
アルミナ粉末(ロ)を得た。この粉末のRh濃度は2.
0重量%であった。活性アルミナ粉末にジニトロジアミ
ン白金(Pt)水溶液を含浸し、乾燥後400℃で1時
間焼成して、Pt担持活性アルミナ粉末(ハ)を得た。
この粉末のPt濃度は4.0重量%であった。参考例1
で調製した酸化物粉末(A1)720g、上記Rh担持
活性アルミナ粉末(ロ)43.2g、上記Pt担持活性
アルミナ粉末(ハ)140.8g、活性アルミナ粉末9
6g、純水1000gを加えて磁性ボールミルに投入
し、混合粉砕してスラリー液を得た。このスラリー液を
コーディエライト質モノリス担体に付着させ、空気流に
て余剰のスラリーを取り除いて130℃で乾燥した後、
400℃で1時間焼成してコート層重量250g/L−
担体の触媒を得た。
Reference Example 8 Activated alumina powder was impregnated with an aqueous solution of rhodium nitrate (Rh), dried and calcined at 400 ° C. for 1 hour to obtain Rh-supported activated alumina powder (ii). The Rh concentration of this powder is 2.
It was 0% by weight. The activated alumina powder was impregnated with a dinitrodiamine platinum (Pt) aqueous solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pt-supported activated alumina powder (c).
The Pt concentration of this powder was 4.0% by weight. Reference example 1
720 g of oxide powder (A1) prepared above, 43.2 g of Rh-supporting activated alumina powder (b), 140.8 g of Pt-supporting activated alumina powder (c), and activated alumina powder 9
6 g and 1000 g of pure water were added, and the mixture was put into a magnetic ball mill and mixed and ground to obtain a slurry liquid. After attaching this slurry liquid to a cordierite monolith carrier, removing excess slurry with an air stream and drying at 130 ° C.,
The coating layer weight is 250 g / L- after baking at 400 ° C. for 1 hour.
A support catalyst was obtained.

【0044】参考例9 参考例2で調製した酸化物粉末(A2)を用いた以外
は、参考例8と同様にしてコート層重量250g/L−
担体の触媒を得た。
Reference Example 9 The coating layer weight was 250 g / L-as in Reference Example 8 except that the oxide powder (A2) prepared in Reference Example 2 was used.
A support catalyst was obtained.

【0045】参考例10 参考例3で調製した酸化物粉末(A3)を用いた以外
は、参考例8と同様にしてコート層重量250g/L−
担体の触媒を得た。
Reference Example 10 The coating layer weight was 250 g / L-as in Reference Example 8 except that the oxide powder (A3) prepared in Reference Example 3 was used.
A support catalyst was obtained.

【0046】参考例11 参考例4で調製した酸化物粉末(A4)を用いた以外
は、参考例8と同様にしてコート層重量250g/L−
担体の触媒を得た。
Reference Example 11 The coating layer weight was 250 g / L-as in Reference Example 8 except that the oxide powder (A4) prepared in Reference Example 4 was used.
A support catalyst was obtained.

【0047】参考例12 参考例5で調製した酸化物粉末(A5)を用いた以外
は、参考例8と同様にしてコート層重量250g/L−
担体の触媒を得た。
Reference Example 12 Coat layer weight 250 g / L-as in Reference Example 8 except that the oxide powder (A5) prepared in Reference Example 5 was used.
A support catalyst was obtained.

【0048】参考例13 参考例6で調製した酸化物粉末(A6)を用いた以外
は、参考例8と同様にしてコート層重量250g/L−
担体の触媒を得た。
Reference Example 13 The coating layer weight was 250 g / L-as in Reference Example 8 except that the oxide powder (A6) prepared in Reference Example 6 was used.
A support catalyst was obtained.

【0049】参考例14 参考例1で調製した酸化物粉末(A1)900g、活性
アルミナ粉末50g、水1000gを加えて磁性ボール
ミルに投入し、混合粉砕してスラリー液を得た。このス
ラリー液をコーディエライト質モノリス担体に付着さ
せ、空気流にて余剰のスラリーを取り除いて130℃で
乾燥した後、400℃で1時間焼成してコート層重量2
00g/L−担体の内層触媒を得た。参考例8で調製し
たRh担持活性アルミナ粉末(ロ)216g、参考例8
で調製したPt担持活性アルミナ粉末(ハ)504g、
活性アルミナ粉末280g、水1000gを加えて磁性
ボールミルに投入し、混合粉砕してスラリー液を得た。
このスラリー液を上記モノリス担体に付着させ、空気流
にて余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成してコート層重量50g/L
−担体の表層触媒を得た。前記内層触媒と表層触媒とを
組み合わせてトータルで250g/L−担体の触媒を得
た。
Reference Example 14 900 g of the oxide powder (A1) prepared in Reference Example 1, 50 g of activated alumina powder and 1000 g of water were added to a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier, excess slurry was removed with an air stream, dried at 130 ° C., and then calcined at 400 ° C. for 1 hour to give a coat layer weight of 2
An inner layer catalyst of 00 g / L-support was obtained. 216 g of Rh-supporting activated alumina powder (ii) prepared in Reference Example 8, Reference Example 8
504 g of Pt-supported activated alumina powder (C) prepared in
280 g of activated alumina powder and 1000 g of water were added, and the mixture was put into a magnetic ball mill and mixed and ground to obtain a slurry liquid.
This slurry liquid was attached to the above monolith carrier, excess slurry was removed with an air stream, dried at 130 ° C., and then baked at 400 ° C. for 1 hour to give a coat layer weight of 50 g / L.
-A support surface catalyst was obtained. The inner layer catalyst and the surface layer catalyst were combined to obtain a catalyst of 250 g / L-support in total.

【0050】参考例15 参考例3で調製した酸化物粉末(A3)を用いた以外
は、参考例14と同様にしてコート層重量250g/L
−担体の触媒を得た。
Reference Example 15 The coating layer weight was 250 g / L in the same manner as in Reference Example 14 except that the oxide powder (A3) prepared in Reference Example 3 was used.
-Support catalyst was obtained.

【0051】実施例1 0.2モル/Lの硝酸銅水溶液5.2kgとゼオライト
粉末2kgとを混合して攪拌した後、ろ過する作業を繰
り返した後、乾燥、焼成し、Cu担持ゼオライト粉末を
得た。この粉末のCu担持濃度は5%であった。この粉
末を810g、シリカゾル(固形分20%)450g、
純水540gを磁性ボールミルに投入し、混合粉砕して
スラリー液を得た。このスラリー液をコーディエライト
質モノリス担体に付着させ、空気流にて余剰のスラリー
を取り除いて130℃で乾燥した後、400℃で1時間
焼成してコート層重量250g/L−担体のCu担持ゼ
オライト触媒を得た。このCu担持ゼオライト触媒を排
気流れの上流側に、また参考例1で得られた触媒を下流
側に配置した。
Example 1 A 0.2 mol / L copper nitrate aqueous solution (5.2 kg) and zeolite powder (2 kg) were mixed and stirred, and after repeating the operation of filtering, drying and firing were carried out to obtain a Cu-supporting zeolite powder. Obtained. The Cu supported concentration of this powder was 5%. 810 g of this powder, 450 g of silica sol (solid content 20%),
540 g of pure water was put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier, excess slurry was removed with an air stream, dried at 130 ° C., and then calcined at 400 ° C. for 1 hour to support a coating layer weight of 250 g / L-supporting Cu. A zeolite catalyst was obtained. This Cu-supported zeolite catalyst was arranged on the upstream side of the exhaust flow, and the catalyst obtained in Reference Example 1 was arranged on the downstream side.

【0052】実施例2 実施例1で得られたCu担持ゼオライト触媒を排気流れ
の上流側に、また参考例8で得られた触媒を下流側に配
置した。
Example 2 The Cu-supported zeolite catalyst obtained in Example 1 was placed upstream of the exhaust flow, and the catalyst obtained in Reference Example 8 was placed downstream.

【0053】実施例3 実施例1で得られたCu担持ゼオライト触媒を排気流れ
の上流側に、また参考例14で得られた触媒を下流側に
配置した。
Example 3 The Cu-supported zeolite catalyst obtained in Example 1 was placed upstream of the exhaust flow, and the catalyst obtained in Reference Example 14 was placed downstream.

【0054】参考例16 La,Ba,Feの炭酸塩を出発原料として、それぞれ
モル比でLa:Ba:Fe=0.45:0.45:1と
なるように加えて、酸化物粉末(A8)を得、当該粉末
(A8)を用いた以外は、参考例1と同様にしてコート
層重量250g/L−担体の触媒を得た。
Reference Example 16 A carbonate of La, Ba and Fe was used as a starting material and added in a molar ratio of La: Ba: Fe = 0.45: 0.45: 1 to obtain an oxide powder (A8). Was obtained, and a catalyst having a coat layer weight of 250 g / L-support was obtained in the same manner as in Reference Example 1 except that the powder (A8) was used.

【0055】参考例17 La,Ba,Niの炭酸塩を出発原料として、それぞれ
モル比でLa:Ba:Ni=0.45:0.45:1と
なるように加えて、酸化物粉末(A9)を得、当該粉末
(A9)を用いた以外は、参考例1と同様にしてコート
層重量250g/L−担体の触媒を得た。
Reference Example 17 Using carbonates of La, Ba and Ni as starting materials, each was added in a molar ratio of La: Ba: Ni = 0.45: 0.45: 1, and an oxide powder (A9) was added. Was obtained, and a catalyst having a coat layer weight of 250 g / L-support was obtained in the same manner as in Reference Example 1 except that the powder (A9) was used.

【0056】比較例1 活性アルミナ粉末に硝酸パラジウム(Pd)水溶液を含
浸し、乾燥後400℃で1時間焼成して、Pd担持活性
アルミナ粉末(ニ)を得た。この粉末のPd濃度は2重
量%であった。前記Pd担持活性アルミナ粉末(ニ)6
30g、活性アルミナ粉末270g、純水900gを加
えて磁性ボールミルに投入し、混合粉砕してスラリー液
を得た。このスラリー液をコーディエライト質モノリス
担体に付着させ、空気流にて余剰のスラリーを取り除い
て130℃で乾燥した後、400℃で1時間焼成してコ
ート層重量200g/L−担体の触媒を得た。
Comparative Example 1 Activated alumina powder was impregnated with an aqueous solution of palladium nitrate (Pd), dried and calcined at 400 ° C. for 1 hour to obtain Pd-supported activated alumina powder (d). The Pd concentration of this powder was 2% by weight. Pd-supported activated alumina powder (d) 6
30 g, activated alumina powder 270 g, and pure water 900 g were added, charged into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier, excess slurry was removed with an air stream, dried at 130 ° C., and then calcined at 400 ° C. for 1 hour to obtain a catalyst having a coat layer weight of 200 g / L-carrier. Obtained.

【0057】比較例2 活性アルミナ粉末に硝酸ロジウム(Rh)水溶液を含浸
し、乾燥後400℃で1時間焼成して、Rh担持活性ア
ルミナ粉末(ホ)を得た。この粉末のRh濃度は1.0
重量%であった。活性アルミナ粉末にジニトロジアミン
白金(Pt)水溶液を含浸し、乾燥後400℃で1時間
焼成して、Pt担持活性アルミナ粉末(ヘ)を得た。こ
の粉末のPt濃度は2.0重量%であった。前記Rh担
持活性アルミナ粉末(ホ)155g、前記Pt担持活性
アルミナ粉末(ヘ)500g、活性アルミナ粉末340
g、水1000gを加えて磁性ボールミルに投入し、混
合粉砕してスラリー液を得た。このスラリー液をコーデ
ィエライト質モノリス担体に付着させ、空気流にて余剰
のスラリーを取り除いて130℃で乾燥した後、400
℃で1時間焼成してコート層重量140g/L−担体の
触媒を得た。
Comparative Example 2 Activated alumina powder was impregnated with a rhodium nitrate (Rh) aqueous solution, dried and calcined at 400 ° C. for 1 hour to obtain Rh-supported activated alumina powder (e). The Rh concentration of this powder is 1.0
% By weight. The activated alumina powder was impregnated with a dinitrodiamine platinum (Pt) aqueous solution, dried and then baked at 400 ° C. for 1 hour to obtain a Pt-supported activated alumina powder (f). The Pt concentration of this powder was 2.0% by weight. 155 g of the Rh-supported activated alumina powder (e), 500 g of the Pt-supported activated alumina powder (f), and the activated alumina powder 340
g and 1000 g of water were added, and the mixture was put into a magnetic ball mill and mixed and ground to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolithic carrier, excess slurry was removed with an air stream, and the mixture was dried at 130 ° C.
It was calcined at 1 ° C. for 1 hour to obtain a catalyst having a coat layer weight of 140 g / L-support.

【0058】比較例3 参考例15で得られたCu担持ゼオライト触媒を排気流
れの上流側に、また比較例2で得られた触媒を下流側に
配置した。
Comparative Example 3 The Cu-supporting zeolite catalyst obtained in Reference Example 15 was placed upstream of the exhaust flow, and the catalyst obtained in Comparative Example 2 was placed downstream.

【0059】前記参考例1〜17、実施例1〜3及び比
較例1〜3の触媒及び触媒システムについての組成を表
1に示す。
The compositions of the catalysts and catalyst systems of Reference Examples 1 to 17, Examples 1 to 3 and Comparative Examples 1 to 3 are shown in Table 1.

【0060】[0060]

【表1】 [Table 1]

【0061】試験例1 前記参考例1〜17、実施例1〜3 及び比較例1〜3の
触媒及び触媒システムについて、以下の条件で初期及び
耐久後の触媒活性評価を行った。活性評価には、自動車
の排気ガスを模したモデルガスを用いる自動評価装置を
用いた。
Test Example 1 With respect to the catalysts and catalyst systems of Reference Examples 1 to 17, Examples 1 to 3 and Comparative Examples 1 to 3, the catalyst activity was evaluated under the following conditions at the initial stage and after the durability test. For the activity evaluation, an automatic evaluation device using a model gas imitating automobile exhaust gas was used.

【0062】評価条件 (ストイキ雰囲気) HC 1665ppm (プロピレン1110ppm、プロパン555ppm) CO 0.6% NO 500ppm H2 0.2% O2 0.62% H2 O 10% N2 バランス 総ガス流量 40L/分 (リーン雰囲気) HC 1665ppm (プロピレン1110ppm、プロパン555ppm) CO 0.2% NO 500ppm H2 0% O2 4.5% H2 O 10% N2 バランス 総ガス流量 40L/分 評価温度 350℃耐久条件 エンジン4.4Lの排気系に触媒を装着し、600℃、
30時間ストイキ条件で耐久を行った。触媒活性評価
は、ストイキ雰囲気で90秒、その後リーン雰囲気で9
0秒経た後のストイキ及びリーン雰囲気の平均転化率を
測定し、このストイキ雰囲気平均転化率とリーン雰囲気
平均転化率とを平均してトータル転化率とした。この評
価を初期及び耐久後に各々行ない、触媒活性評価値を以
下の式により決定した。
Evaluation conditions (Stoichi atmosphere) HC 1665 ppm (Propylene 1110 ppm, Propane 555 ppm) CO 0.6% NO 500 ppm H 2 0.2% O 2 0.62% H 2 O 10% N 2 balance Total gas flow rate 40 L / Min (lean atmosphere) HC 1665ppm (Propylene 1110ppm, Propane 555ppm) CO 0.2% NO 500ppm H 20 % O 2 4.5% H 2 O 10% N 2 balance Total gas flow rate 40L / min Evaluation temperature 350 ° C endurance Condition A catalyst is attached to the exhaust system of the engine 4.4L, 600 ℃,
Durability was performed under stoichiometric conditions for 30 hours. The catalyst activity was evaluated in a stoichiometric atmosphere for 90 seconds and then in a lean atmosphere for 9 seconds.
The average conversion rate of the stoichiometric and lean atmosphere after 0 seconds was measured, and the average conversion rate of the stoichiometric atmosphere and the average conversion rate of the lean atmosphere were averaged to obtain the total conversion rate. This evaluation was performed at the initial stage and after the durability test, and the catalytic activity evaluation value was determined by the following formula.

【数3】 得られた触媒活性評価結果を表2に示す。比較例に比べ
て実施例は、触媒活性が高く、後述する本発明の効果を
確認することができた。
[Equation 3] Table 2 shows the obtained catalytic activity evaluation results. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention described later could be confirmed.

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【発明の効果】以上説明してきたように、本発明によれ
ば排気ガス浄化用触媒の構成を特定したことにより、リ
ーン雰囲気においてNOxを有効に吸収することがで
き、従来の触媒では十分な活性が得られないリーン雰囲
気下におけるNOxの浄化性能を向上させ、また複合酸
化物と接する他の酸化物(アルミナ等)との間での固相
反応を抑制し、熱的安定性を向上させることができると
いう優れた効果が得られる。
As described above, according to the present invention, by specifying the structure of the exhaust gas purifying catalyst, NOx can be effectively absorbed in the lean atmosphere, and the conventional catalyst has sufficient activity. To improve the purification performance of NOx in a lean atmosphere in which no oxygen is obtained, and to suppress the solid phase reaction between other oxides (alumina, etc.) in contact with the composite oxide to improve the thermal stability. The excellent effect of being able to do is obtained.

【0065】また、本発明によれば、排気ガス浄化用触
媒の構成を、複合酸化物を内層に、貴金属担持層を表層
にする2層構造としたことにより、上記効果に加えて、
NOx吸収機能を得ながら十分な三元触媒性能を確保す
ることが可能となる。
Further, according to the present invention, the exhaust gas purifying catalyst has a two-layer structure in which the complex oxide is the inner layer and the noble metal-supporting layer is the surface layer.
It is possible to secure sufficient three-way catalyst performance while obtaining the NOx absorption function.

【0066】また、本発明の排気ガス浄化用触媒は、排
気気流に対して上流側に銅担持ゼオライト含有触媒を、
下流側に本発明による上記触媒を配置することにより、
上記効果に加えてよりNOx吸収触媒の吸収作用を向上
させることができるという優れた効果が得られる。
Further, the exhaust gas purifying catalyst of the present invention comprises a copper-containing zeolite-containing catalyst on the upstream side of the exhaust gas flow.
By arranging the above catalyst according to the present invention on the downstream side,
In addition to the above effects, an excellent effect that the absorption action of the NOx absorption catalyst can be further improved is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/36 102H 104A (72)発明者 関場 徹 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平2−258063(JP,A) 特開 平7−136518(JP,A) 特開 平6−315634(JP,A) 特開 平4−131137(JP,A) 特開 平1−139145(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86,53/94 F01N 3/28 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI B01D 53/36 102H 104A (72) Inventor Toru Sekiba 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (56) Reference Documents JP-A-2-258063 (JP, A) JP-A-7-136518 (JP, A) JP-A-6-315634 (JP, A) JP-A-4-131137 (JP, A) JP-A-1- 139145 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86, 53/94 F01N 3/28

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エンジン排気気流中に触媒を少なくとも
2個設け、排気流れに対して上流側に銅担持ゼオライト
触媒を配置し、下流側にAサイト欠損型ペロブスカイト
系複合酸化物を含む下流側触媒を配置してなる排気ガス
浄化用触媒であって、該下流側触媒が、耐火性無機担体
と、該耐火性無機担体上に担持した希土類金属とバリウ
ムと少なくとも1種の遷移金属との複合酸化物及び、白
金、ロジウムとパラジウムから成る群より選ばれた少な
くとも1種の金属を含み、該複合酸化物が次の一般式 【数1】 (式中、Ln=ランタン又はネオジウム、M及びNはマ
ンガン、コバルト、鉄、ニッケル及び銅から成る群より
選ばれる1種の金属、0<X<1、0≦Y≦1、0<α
<0.2を示す)で表わされることを特徴とする、排気
ガス浄化用触媒。
1. A downstream catalyst comprising at least two catalysts in an engine exhaust gas flow, a copper-supported zeolite catalyst disposed upstream of the exhaust gas flow, and an A-site deficient perovskite complex oxide downstream. An exhaust gas purifying catalyst, wherein the downstream catalyst is a composite refractory inorganic support, a rare earth metal supported on the refractory inorganic support, barium, and at least one transition metal. things and, platinum, seeing containing at least one metal selected from the group consisting of rhodium and palladium, the composite oxide is of the following formula ## EQU1 ## (Wherein, Ln = lanthanum or neodymium, M and N are
From the group consisting of gangan, cobalt, iron, nickel and copper
One metal selected, 0 <X <1, 0 ≦ Y ≦ 1, 0 <α
<Indicating <0.2), an exhaust gas purifying catalyst.
【請求項2】 前記下流側触媒は、前記耐火性無機担体
上に、前記複合酸化物を含む触媒内層と、白金、ロジウ
ムとパラジウムから成る群より選ばれた少なくとも1種
の金属を含み前記複合酸化物を含まない触媒表層とを含
むことを特徴とする、請求項1記載の排気ガス浄化用触
媒。
2. The downstream catalyst comprises, on the refractory inorganic carrier, an inner catalyst layer containing the composite oxide and at least one metal selected from the group consisting of platinum, rhodium and palladium. The exhaust gas purifying catalyst according to claim 1, further comprising a catalyst surface layer containing no oxide.
【請求項3】 前記希土類金属はランタン、ネオジウム
であり、遷移金属は、マンガン、コバルト、鉄、ニッケ
ル及び銅から成る群より選ばれる少なくとも1種の金属
であることを特徴とする、請求項1または2記載の排気
ガス浄化用触媒。
3. The rare earth metal is lanthanum or neodymium, and the transition metal is at least one metal selected from the group consisting of manganese, cobalt, iron, nickel and copper. Or the exhaust gas purifying catalyst according to 2.
【請求項4】 前記式中、0.2≦X<1であることを
特徴とする、請求項1乃至3のいずれかの排気ガス浄化
用触媒。
4. The exhaust gas purifying catalyst according to claim 1, wherein 0.2 ≦ X <1 in the above formula.
JP02907996A 1996-02-16 1996-02-16 Exhaust gas purification catalyst Expired - Fee Related JP3477974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02907996A JP3477974B2 (en) 1996-02-16 1996-02-16 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02907996A JP3477974B2 (en) 1996-02-16 1996-02-16 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH09220471A JPH09220471A (en) 1997-08-26
JP3477974B2 true JP3477974B2 (en) 2003-12-10

Family

ID=12266344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02907996A Expired - Fee Related JP3477974B2 (en) 1996-02-16 1996-02-16 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3477974B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030024085A (en) * 2001-09-17 2003-03-26 현대자동차주식회사 A catalyst for reduction of emitted gases from automobile with lean-burn engine and the manufacturing method thereof
KR101971638B1 (en) * 2017-08-28 2019-04-23 희성촉매 주식회사 NOx-TRAPPING CATALYST HAVING NON-PLATINUM-GROUP-METAL NOx-TRAPPING LAYER

Also Published As

Publication number Publication date
JPH09220471A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
US10260395B2 (en) Nitrous oxide removal catalysts for exhaust systems
JP3493792B2 (en) Exhaust gas purification catalyst
JP3788141B2 (en) Exhaust gas purification system
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JP3493879B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JP3477974B2 (en) Exhaust gas purification catalyst
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JP3764760B2 (en) Catalyst for purifying exhaust gas from lean burn engine and purification method
JPH09225264A (en) Catalyst for purifying exhaust gas
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH07155605A (en) Exhaust gas purifying catalyst and production thereof
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP3338889B2 (en) Exhaust gas purification device
JPH10128123A (en) Catalyst for purification of exhaust gas and its preparation
JPH06210174A (en) Catalyst for purification of exhaust gas and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees