JP3474125B2 - Organic wastewater treatment method and treatment apparatus - Google Patents

Organic wastewater treatment method and treatment apparatus

Info

Publication number
JP3474125B2
JP3474125B2 JP14002599A JP14002599A JP3474125B2 JP 3474125 B2 JP3474125 B2 JP 3474125B2 JP 14002599 A JP14002599 A JP 14002599A JP 14002599 A JP14002599 A JP 14002599A JP 3474125 B2 JP3474125 B2 JP 3474125B2
Authority
JP
Japan
Prior art keywords
sludge
biological treatment
treatment
organic wastewater
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14002599A
Other languages
Japanese (ja)
Other versions
JP2000325983A (en
Inventor
慶東 名和
幹夫 井手
陽一郎 杉原
和夫 田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP14002599A priority Critical patent/JP3474125B2/en
Publication of JP2000325983A publication Critical patent/JP2000325983A/en
Application granted granted Critical
Publication of JP3474125B2 publication Critical patent/JP3474125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、有機性廃水を生物
処理して浄化する処理方法及び処理装置に関するもので
あり、さらに詳しくは生物処理槽で発生する余剰汚泥の
発生量を減少させることのできる有機性廃水の処理方法
及び処理装置に関するものである。 【0002】 【従来の技術】従来、下水処理施設などの廃水処理施設
から大量に発生する生汚泥や生物処理槽由来の余剰汚泥
は脱水後、産業廃棄物として埋め立て処分したり、焼却
処分している。しかし、近年、埋め立て地の確保が困難
になるとともに、大量の余剰汚泥を焼却処分すると設備
費、維持管理費が高くなるため、余剰汚泥の減量化が求
められている。 【0003】余剰汚泥の生物的な減量化法としては、好
気性消化法や嫌気性消化法によって処理する方法が知ら
れている。しかしながら、好気性消化法や嫌気性消化法
は、10日間以上という長時間の滞留時間を必要とする
割に、減量化率が低いという問題点があり、近年はほと
んど用いられていない。 【0004】こうした問題点を解消するために、生物処
理槽由来の余剰汚泥を破砕することにより、生分解性を
向上させて生物処理による分解速度を高め、破砕した余
剰汚泥を廃水の生物処理槽に返送して生物的に分解し、
余剰汚泥の発生量を減らす方法が提案されており、特開
平6−206088号公報では、余剰汚泥をオゾン処理
した後、廃水の生物処理槽へ返送して分解し、余剰汚泥
発生量を減少させる方法が提案されている。しかしなが
ら、この方法ではオゾン処理槽の取り扱いが複雑であ
り、排オゾン処理の問題があった。 【0005】また、DE4030668A1では、余剰
汚泥を湿式媒体撹拌式ミルなどにより磨砕処理した後、
廃水の生物処理槽へ返送して分解し、余剰汚泥発生量を
減少させる方法が提案されている。湿式媒体撹拌式ミル
処理とは、破砕媒体(ビーズ)を充填したミル室に汚泥
を連続的に導入し、ディスクやピンを備えた撹拌軸を高
速回転させることによりビーズを撹拌し、撹拌されたビ
ーズ間に生じる剪断摩擦力により汚泥を破砕する方法で
あり、破砕媒体としては、一般的に真比重が2.5程度
のガラスビーズが用いられている。しかしながら、ガラ
スビーズを用いたミル処理では、運転、設備費用の削減
のために汚泥を濃縮した場合など、導入する汚泥の濃度
(粘度)が高くなると、十分な破砕効果が得られなくな
るという問題点があった。また、破砕された汚泥はスリ
ットやスクリーンを有するビーズ分離部で分離されてミ
ル室外へ排出されるが、汚泥が十分に破砕されていない
と、ビーズが汚泥と共にビーズ分離部へと流動してしま
い、分離部で目詰まりを起こしてミルの運転が不可能と
なるという問題点があった。 【0006】 【発明が解決しようとする課題】本発明は、このような
課題を解決するもので、有機性廃水を生物処理して浄化
する際に発生する余剰汚泥の量を、汚泥破砕方法として
湿式媒体撹拌式ミルを用いて経済的に減少させる有機性
廃水の処理方法と、その方法に使用する装置を提供する
ことを目的としている。 【0007】 【課題を解決するための手段】本発明者等は、このよう
な課題を解決するために鋭意検討した結果、有機性廃水
を生物処理工程で処理する際に発生する汚泥を、一定の
真比重を有する破砕媒体を用いた湿式媒体攪拌式ミルで
処理することにより、汚泥濃度の高い汚泥であっても、
効率的かつ安定して難分解性成分の発生を伴わずに汚泥
を破砕することができるので、破砕した汚泥を前記生物
処理工程へ返送することにより、余剰汚泥の発生量を大
幅に減少できることを見出し、本発明に到達した。すな
わち、発明は、有機性廃水を生物処理槽において処理
した後、処理液を固液分離して分離水は処理水として放
流させ、分離汚泥は前記生物処理槽に返送する有機性廃
水の処理方法において、生物処理槽に返送する汚泥の
ち、該有機性廃水のBODの同化により増殖する汚泥固
形物量の0.5〜5倍に相当する固形物量の汚泥を、
砕媒体として真比重5.0以上のビーズを用いた湿式媒
体攪拌式ミル処理によって破砕した後、前記生物処理槽
へ返送することを特徴とする有機性廃水の処理方法を要
旨とするものである。 【0008】 【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の対象となる有機性廃水としては、通常の生物処
理法により処理される有機物を含有する廃水であれば特
に限定されるものではなく、家庭排水、し尿、食料品製
造業廃水などの産業廃水などが挙げられる。本発明にお
ける生物処理方法としては、このような有機性廃水を生
物処理汚泥の存在下において生物処理を行うものであれ
ば特に限定されるものではなく、有機性廃水を曝気槽で
活性汚泥の存在下で曝気する好気的処理や、嫌気的処理
が挙げられる。 【0009】生物処理槽から排出される処理液を固液分
離する方法としては、膜による分離や沈殿槽による分離
が挙げられる。固液分離後の分離水は処理水として放流
される。また、分離汚泥は、必要に応じて一部を余剰汚
泥として引き抜き、大部分は返送汚泥として生物処理槽
に返送される。 【0010】本発明においては、生物処理槽に返送され
る返送汚泥の一部又は全部を湿式媒体撹拌式ミルを用い
て破砕してから前記生物処理槽へ返送する。なお、破砕
処理する(湿式媒体撹拌式ミルに導入する)汚泥として
は、生物処理槽から排出される処理液そのものや、固液
分離後の分離汚泥でもよいが、通常、処理液の汚泥濃度
は0.1〜1重量%程度であり、固液分離後の分離汚泥
の汚泥濃度でも0.2〜2重量%程度と低いため、これ
らの汚泥を汚泥濃縮装置を用いて濃縮しておくことが望
ましい。汚泥を濃縮して汚泥濃度を高くしてから湿式媒
体撹拌式ミルで破砕処理すると、処理液を直接導入した
場合と比べて、処理量が減るため破砕装置がコンパクト
になり、さらに処理時間を大幅に短縮することができる
ので運転費を大幅に低減することができる。汚泥濃縮装
置としては、特に限定されるものではなく、通常の汚泥
の濃縮に用いられる遠心濃縮機、浮上濃縮機などが挙げ
られる。濃縮後の汚泥濃度としては、流動性を示す範囲
であれば特に限定されるものではないが、8重量%以下
であることが好ましく、さらに、2〜7重量%であるこ
とが好ましい。汚泥の濃度が8重量%を超えると、汚泥
の流動性がほとんどなくなり、また、湿式媒体撹拌式ミ
ルのビーズ分離部が目詰まりを起こす可能性が高くなる
ため、水道水、処理水、原水などを用いて希釈などをし
ておくことが好ましい。また、汚泥の濃度が低くなる
と、運転費用、設備費が高くなり、2重量%より低くな
れば特に高くなるので好ましくない。 【0011】破砕する生物処理汚泥の量としては、廃水
のBODの同化により増殖する汚泥の固形物量(破砕処
理を行わない場合に発生する余剰汚泥量と等しい)と、
湿式媒体攪拌式ミル処理により可溶化した可溶化汚泥の
一部も生物処理工程で汚泥になるため、その増殖量とを
考慮して目標の減量化率になるように適宜設定すればよ
く、具体的には、廃水のBODの同化により増殖する汚
泥の固形物量の0.5〜5倍の固形物量が必要であり
特に1〜3倍の固形物量が好ましい。破砕処理する汚泥
の量が廃水のBODの同化により増殖する汚泥の固形物
量の0.5倍の固形物量より少ないと、汚泥減量の効果
が少なくなり、また、5倍の固形物量より多くしても破
砕処理に要する消費電力などが増大するだけで、汚泥減
量の効果はさほど向上しない。 【0012】ミルに汚泥を供給する方法としては、汚泥
供給ポンプを用いればよく、汚泥供給ポンプとしては、
汚泥を吐出できるものであれば特に限定されるものでは
なく、渦巻きポンプ、渦巻き斜流ポンプ、斜流ポンプ、
軸流ポンプ、スクリューポンプ、一軸ねじポンプ、プラ
ンジャーポンプ、チューブポンプなどが挙げられる。 【0013】湿式媒体撹拌式ミル処理に使用される破砕
媒体(ビーズ)としては、真比重が5.0以上であるこ
とが必要であり、特に、真比重が5.0〜7.0のビー
ズを使用することが好ましい。真比重が5.0〜7.0
に当てはまる材質としては、ジルコニアが挙げられる。
また、ジルコニアは、ガラスビーズと比較して摩耗する
ことが少ないため、ビーズの補充にかかるランニングコ
ストも低くなるために経済的であるという利点もある。
破砕媒体の真比重が5.0より小さい場合には汚泥の濃
度が高くなると十分に汚泥を破砕することができず、こ
のためビーズ分離部で目詰まりが起こってミルの運転が
不可能になる。また、破砕媒体の真比重を7.0より大
きくしても汚泥の破砕効果の向上がほとんどなく、撹拌
に必要な動力が大きくなるので好ましくない。 【0014】また、破砕媒体の粒径としては、0.05
〜2.0mmφが好ましく、特に0.25〜1.0mm
φが好ましい。ビーズの粒径が2.0mmφより大きい
と、ビーズ間の空隙が大きくなるため汚泥を構成する数
μm〜数十μmのバクテリアなどの微生物を破砕しにく
くなるために好ましくない。また、ビーズの粒径が0.
05mmφより小さいと、ビーズ分離部のスクリーンな
ど間隙も狭くすることが必要となり、このため、ビーズ
分離部で分離することが困難となるため好ましくない。 【0015】湿式媒体撹拌式ミル処理の条件のうち、ビ
ーズ充填率としては、破砕効果及び消費電力から50〜
100%、特に70〜90%が好ましく、ディスク(ピ
ン)先端周速としては、3〜30m/秒、特に5〜20
m/秒が好ましい。また、ミル室の向きとしては、縦
型、横型のいずれでもよく、破砕媒体を撹拌するための
撹拌装置としてはディスク型、ピン型、ピンディスク型
などが挙げられる。 【0016】湿式媒体撹拌式ミル処理における汚泥の滞
留時間としては、導入する汚泥濃度や用いる破砕媒体な
どによって適宜設定するものであり、特に限定されるも
のではないが、通常20秒〜20分が好ましく、特に3
0秒〜10分が好ましい。滞留時間が20秒よりも短い
と汚泥が十分に破砕されていない可能性があり、また、
20分より長くしても消費電力が増大するだけで、破砕
効果はさほど向上しない。また、処理温度としては、6
0℃以下が好ましく、特に4〜40℃が好ましい。処理
温度が60℃より高いと、汚泥成分の一部が熱変性して
難分解性物質となり、処理水の水質が悪化する可能性が
あるために好ましくない。通常、ミル処理により破砕し
た汚泥の温度は、処理前の汚泥に比べて10〜30℃程
度上昇するため、夏場のように温度が高い場合は冷却水
を用いて冷却することが好ましい。冷却は湿式媒体撹拌
式ミルのミル室は、通常、二重ジャケット構造になって
いるので、この間に冷却水を通すことにより容易に行う
ことができる。 【0017】また、ミル処理終了後は、次の運転立ち上
げを容易に行うために、ミル室内を水により洗浄するこ
とが望ましい。洗浄する水としては、水道水、処理水、
原水などを用いて行えばよい。洗浄する水の量および時
間は適宜設定すればよいが、洗浄水の汚泥濃度が1重量
%以下になるまで洗浄することが好ましい。 【0018】次に、本発明の有機性廃水の処理装置につ
いて、図面を参照しながら説明する。図1〜図3は本発
明の有機性廃水の処理装置の一例を示す概略図である。
本発明の有機性廃水の処理装置は、生物処理槽5、固液
分離装置7、湿式媒体撹拌式ミル12からなるものであ
り、ミルに用いられる破砕媒体の真比重が5.0以上で
ある。 【0019】図1において、家庭排水、し尿、食料品製
造業廃水などの産業廃水などの有機性廃水4は生物処理
槽5に供給されて生物処理される。生物処理された処理
液6の一部は破砕媒体13として真比重5.0以上のビ
ーズが充填された湿式媒体撹拌式ミル12に供給され、
破砕処理される。破砕処理された生物処理汚泥6は可溶
化汚泥14となり、返送汚泥10とともに、生物処理槽
5に返送される。残りの生物処理汚泥6は固液分離装置
7へ送られ、処理水8と、分離汚泥9に分離される。分
離汚泥9の大部分は返送汚泥10として前記生物処理槽
5へ返送され、効率的な生物処理のために生物処理槽5
の汚泥濃度をほぼ一定に維持し、生物処理槽5の汚泥濃
度が高くなると、余剰な汚泥は余剰引き抜き汚泥11と
して引き抜かれる。図2において、処理液6は全て固液
分離装置7へ送られており、分離汚泥9の一部を破砕媒
体13として真比重5.0以上のビーズを用いる湿式媒
体撹拌式ミル12に供給している。図3においては分離
汚泥9の一部を汚泥濃縮装置15において濃縮した後、
濃縮汚泥16を破砕媒体13として真比重5.0以上の
ビーズを用いる湿式媒体撹拌式ミル12に供給してい
る。 【0020】本発明においては、有機性廃水を生物処理
して浄化する際に発生する汚泥を汚泥破砕工程で破砕し
て可溶化し、さらに生物処理工程で処理することによ
り、汚泥は炭酸ガスと水などに分解され余剰汚泥の大幅
な減量化が実現する。また、本発明における汚泥破砕方
法は、汚泥濃度の高い汚泥に対しても十分な破砕効果が
得られるため、処理時間が短く、比較的小型の設備で経
済的に汚泥の減量化が実現できる。また、難分解性成分
の発生を伴わない汚泥破砕方法であるため、破砕汚泥を
生物処理してもその処理水質が悪化するというおそれが
ほとんどない。 【0021】 【実施例】次に、本発明を実施例によって具体的に説明
する。 実施例1、比較例1 図3に示した処理フローにしたがって、5m3の曝気槽
5を用い、化学工場廃水4を、1日当たり6m3供給し
た。曝気槽5の水温は25℃、曝気槽5の溶存酸素濃度
は2.0mg/Lとし、汚泥濃度は3g/Lになるよう
に適宜汚泥を余剰引き抜き汚泥11として引き抜いた。
曝気槽5で処理された処理液6は沈殿槽7で固液分離し
て、分離水は処理水8として系外に排出し、分離汚泥9
は返送汚泥10として曝気槽5に返送した。分離汚泥9
の一部を、汚泥濃縮装置15(アムコン(株)社製(M
A−05−K型))を用いて汚泥濃度を50g/L(約
5重量%)に濃縮した。濃縮汚泥16は汚泥供給ポンプ
(兵神装備(株)社製(NE20型))を用いて1.4
L/分で湿式媒体攪拌式ミル12に供給した。 【0022】湿式媒体撹拌式ミルは、アシザワ(株)社
製(LMK型)を用い、ミル室に破砕媒体13として、
0.5mmφのジルコニアビーズ((株)ニッカトー社
製、真比重6.0)をビーズ充填率85%で充填し、デ
ィスク先端周速14m/秒、滞留時間2分、処理温度3
0±2℃で処理を行い可溶化し、可溶化汚泥14は曝気
槽5へ返送した。汚泥破砕量は汚泥破砕をしない系[比
較例1]で発生した余剰汚泥の2.7倍の固形物量
(2.5kg/日)とした。なお、湿式媒体撹拌式ミル
処理は1日2〜3回、各30分程度ずつ行ったが、湿式
媒体撹拌式ミル12の経路の閉塞は起こらなかった。 【0023】図4は本発明の減量化効果を示す図であ
り、縦軸に曝気槽の汚泥濃度を一定としたときの35日
間処理での累積余剰汚泥発生量を示している。図4か
ら、比較例1では余剰汚泥が33kg発生したのに対し
て、実施例1では発生量が1.9kg(94%減量化)
に減少しており、生物処理汚泥の一部を汚泥破砕処理し
て汚泥を可溶化し、曝気槽へ返送することにより、系外
へ排出する汚泥量が大幅に減少することがわかる。ま
た、水質については化学工場廃水のBODが715mg
/L、COD92mg/L、SS51mg/Lであった
のに対して、処理水は比較例1がBOD5.6mg/
L、COD13mg/L、SS13mg/L、実施例1
がBOD12mg/L、COD19g/L、SS21
mg/Lであり、汚泥破砕処理することにより処理水は
悪化するがその影響は軽微であることがわかる。 【0024】比較例2 湿式媒体攪拌式ミルの破砕媒体として0.5mmφのガ
ラスビーズ(Silibeads社製、真比重2.5)を用いた
以外は実施例1と同様に有機性廃水の処理を行った。そ
の結果、湿式媒体撹拌式ミル12の運転開始後2分で湿
式媒体撹拌式ミル12の経路が閉塞し、それ以上の運転
ができなかった。 【0025】 【発明の効果】本発明によれば、有機性廃水の生物処理
によって発生する余剰汚泥を経済的かつ安定して減量化
することができる。このため、汚泥埋め立てコスト低減
が図れ、また、汚泥焼却といった工程の設備の簡素化、
コスト低減が図れる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment method and a treatment apparatus for purifying organic wastewater by biological treatment, and more particularly, to a wastewater generated in a biological treatment tank. The present invention relates to a method and an apparatus for treating organic wastewater, which can reduce the amount of excess sludge generated. [0002] Conventionally, raw sludge generated in large quantities from wastewater treatment facilities such as sewage treatment facilities and surplus sludge derived from biological treatment tanks are dewatered and then landfilled as industrial waste or incinerated. I have. However, in recent years, it has become difficult to secure landfill sites, and incineration and disposal of a large amount of excess sludge increases equipment costs and maintenance costs. Therefore, it is required to reduce excess sludge. As a method of biologically reducing excess sludge, a method of treating the sludge by an aerobic digestion method or an anaerobic digestion method is known. However, aerobic digestion and anaerobic digestion require a long residence time of 10 days or more, but have a problem in that the weight loss rate is low, and are hardly used in recent years. [0004] In order to solve these problems, the excess sludge derived from the biological treatment tank is crushed to improve the biodegradability and increase the decomposition rate by the biological treatment. To be biologically degraded,
A method for reducing the amount of generated excess sludge has been proposed. In Japanese Patent Application Laid-Open No. 6-206088, after excess sludge is treated with ozone, the sludge is returned to a biological treatment tank for decomposition to reduce the amount of generated excess sludge. A method has been proposed. However, in this method, handling of the ozone treatment tank is complicated, and there is a problem of waste ozone treatment. [0005] In DE 40 30 668 A1, after surplus sludge is ground by a wet medium stirring type mill or the like,
A method has been proposed in which wastewater is returned to a biological treatment tank and decomposed to reduce the amount of excess sludge generated. The wet medium agitation type mill treatment means that the sludge is continuously introduced into a mill chamber filled with a crushing medium (beads), and the beads are agitated by rotating a stirring shaft equipped with disks and pins at a high speed. This is a method of crushing sludge by a shear frictional force generated between beads, and glass beads having a true specific gravity of about 2.5 are generally used as a crushing medium. However, in the case of milling using glass beads, when the concentration (viscosity) of the sludge to be introduced becomes high, such as when the sludge is concentrated to reduce operation and equipment costs, a sufficient crushing effect cannot be obtained. was there. In addition, the crushed sludge is separated at the bead separation unit having slits and screens and discharged to the outside of the mill chamber.If the sludge is not sufficiently crushed, the beads flow to the bead separation unit together with the sludge. In addition, there is a problem that the operation of the mill becomes impossible due to clogging in the separation section. SUMMARY OF THE INVENTION [0006] The present invention solves the above-mentioned problems, and uses the amount of excess sludge generated when organic wastewater is biologically treated and purified as a sludge crushing method. It is an object of the present invention to provide a method for treating organic wastewater, which is economically reduced by using a wet medium stirring mill, and an apparatus used for the method. The present inventors have conducted intensive studies to solve such problems, and as a result, have been able to reduce the amount of sludge generated when treating organic wastewater in a biological treatment process. By treating with a wet medium stirring mill using a crushing medium having a true specific gravity, even if the sludge has a high sludge concentration,
Since the sludge can be crushed efficiently and stably without generation of the hardly decomposable component, by returning the crushed sludge to the biological treatment step, it is possible to significantly reduce the amount of excess sludge generated. Heading, the present invention has been reached. That is, the present invention treats organic wastewater in a biological treatment tank, then separates the treatment liquid into solid and liquid, discharges the separated water as treated water, and separates the sludge into the biological treatment tank. in the method, the sale of sludge returned to the biological treatment tank
That is, sludge solids that grow due to assimilation of the BOD of the organic wastewater
The sludge having a solid content equivalent to 0.5 to 5 times the amount of the shaped material is crushed by a wet medium stirring mill using beads having a true specific gravity of 5.0 or more as a crushing medium, and then returned to the biological treatment tank. The gist of the invention is a method for treating organic wastewater. Hereinafter, the present invention will be described in detail.
The organic wastewater targeted by the present invention is not particularly limited as long as it is a wastewater containing an organic substance treated by a normal biological treatment method, and may be used in industrial wastewater, human waste, food manufacturing wastewater, and the like. Wastewater and the like. The biological treatment method in the present invention is not particularly limited as long as such organic wastewater is subjected to biological treatment in the presence of biologically treated sludge. An aerobic treatment in which aeration is performed underneath, and an anaerobic treatment are exemplified. As a method for solid-liquid separation of the treatment liquid discharged from the biological treatment tank, separation by a membrane or separation by a sedimentation tank can be mentioned. The separated water after solid-liquid separation is discharged as treated water. In addition, the separated sludge is partially withdrawn as surplus sludge as necessary, and most of the separated sludge is returned to the biological treatment tank as returned sludge. In the present invention, part or all of the returned sludge returned to the biological treatment tank is crushed using a wet medium stirring mill and then returned to the biological treatment tank. The sludge to be crushed (to be introduced into the wet medium stirring mill) may be the treatment liquid itself discharged from the biological treatment tank or the separated sludge after solid-liquid separation, but usually, the sludge concentration of the treatment liquid is Since the sludge concentration of the separated sludge after solid-liquid separation is as low as about 0.2 to 2% by weight, these sludges may be concentrated using a sludge concentration device. desirable. If the sludge is concentrated to increase the sludge concentration and then crushed with a wet medium agitating mill, the crushing equipment will be more compact and the processing time will be greatly reduced, as compared with the case where the processing liquid is directly introduced, resulting in a smaller amount of processing. Therefore, the operating cost can be significantly reduced. The sludge concentrator is not particularly limited, and examples thereof include a centrifugal concentrator and a flotation concentrator used for normal sludge concentration. The concentration of the sludge after concentration is not particularly limited as long as it is within a range showing fluidity, but is preferably 8% by weight or less, and more preferably 2 to 7% by weight. If the concentration of the sludge exceeds 8% by weight, the sludge has almost no fluidity, and the bead separation portion of the wet medium stirring mill is more likely to be clogged. Therefore, tap water, treated water, raw water, etc. It is preferable to carry out dilution with the use of On the other hand, when the concentration of the sludge is low, the operation cost and the equipment cost are high, and when it is lower than 2% by weight, it becomes particularly high, which is not preferable. [0011] The amount of biologically treated sludge to be crushed includes the solid matter amount of sludge that is multiplied by assimilation of the BOD of wastewater (equal to the amount of excess sludge generated without crushing treatment).
Since part of the solubilized sludge solubilized by the wet medium stirring mill treatment also becomes sludge in the biological treatment step, it may be appropriately set so as to have a target reduction rate in consideration of the growth amount, and Specifically, a solid amount of 0.5 to 5 times the solid amount of the sludge that grows due to the assimilation of the BOD of the wastewater is required ,
In particular, a solid content of 1 to 3 times is preferable. If the amount of sludge to be crushed is less than 0.5 times the solid content of the sludge that grows due to the assimilation of the BOD of the wastewater, the effect of sludge reduction is reduced, and more than 5 times the solid content. However, only the power consumption required for the crushing treatment increases, and the effect of sludge reduction does not improve so much. As a method for supplying sludge to the mill, a sludge supply pump may be used.
There is no particular limitation as long as it can discharge sludge, and a vortex pump, a vortex mixed flow pump, a mixed flow pump,
Examples include an axial flow pump, a screw pump, a single screw pump, a plunger pump, and a tube pump. The crushing medium (beads) used in the wet medium agitating mill must have a true specific gravity of 5.0 or more, and in particular, beads having a true specific gravity of 5.0 to 7.0. It is preferred to use True specific gravity is 5.0 to 7.0
As a material applicable to the above, zirconia can be mentioned.
Zirconia also has the advantage that it is economical because it is less likely to wear than glass beads, and the running cost for replenishing the beads is reduced.
If the true specific gravity of the crushing medium is smaller than 5.0, the sludge cannot be sufficiently crushed if the concentration of the sludge is high, and thus the clogging occurs in the bead separation section, and the operation of the mill becomes impossible. . Further, even if the true specific gravity of the crushing medium is larger than 7.0, the crushing effect of the sludge is hardly improved, and the power required for stirring is undesirably increased. The particle size of the crushing medium is 0.05
~ 2.0mmφ is preferred, especially 0.25-1.0mm
φ is preferred. If the particle size of the beads is larger than 2.0 mmφ, voids between the beads become large, and it is difficult to crush microorganisms such as bacteria of several μm to several tens μm that constitute the sludge, which is not preferable. In addition, the particle size of the beads is 0.
If the diameter is smaller than 05 mmφ, it is necessary to narrow the gap such as the screen of the bead separation section, and it is difficult to separate the beads at the bead separation section. [0015] Among the conditions of the wet medium stirring mill treatment, the bead filling rate is 50 to 50 from the viewpoint of the crushing effect and the power consumption.
100%, especially 70 to 90% is preferable, and the peripheral speed of the disk (pin) tip is 3 to 30 m / sec, particularly 5 to 20 m / s.
m / sec is preferred. The orientation of the mill chamber may be any of a vertical type and a horizontal type, and examples of a stirring device for stirring the crushing medium include a disk type, a pin type, and a pin disk type. The residence time of the sludge in the wet medium stirring mill treatment is appropriately set depending on the sludge concentration to be introduced, the crushing medium to be used, and the like, and is not particularly limited, but is usually 20 seconds to 20 minutes. Preferred, especially 3
0 seconds to 10 minutes is preferred. If the residence time is shorter than 20 seconds, the sludge may not be sufficiently crushed,
Even if it is longer than 20 minutes, only the power consumption increases, but the crushing effect does not improve much. The processing temperature is 6
0 ° C or lower is preferable, and 4 to 40 ° C is particularly preferable. If the treatment temperature is higher than 60 ° C., part of the sludge component is thermally denatured to become a hardly decomposable substance, and the quality of the treated water may be deteriorated. Usually, the temperature of the sludge crushed by the mill treatment is increased by about 10 to 30 ° C. as compared with the sludge before the treatment, and therefore, when the temperature is high as in summer, it is preferable to cool the sludge using cooling water. Cooling can be easily performed by passing cooling water during the cooling, since the mill chamber of the wet medium stirring type mill usually has a double jacket structure. After the completion of the mill treatment, it is desirable to wash the inside of the mill chamber with water in order to easily start the next operation. Tap water, treated water,
It may be performed using raw water or the like. The amount and time of water to be washed may be set as appropriate, but it is preferable to wash until the sludge concentration of the washing water becomes 1% by weight or less. Next, an organic wastewater treatment apparatus of the present invention will be described with reference to the drawings. 1 to 3 are schematic views showing an example of the organic wastewater treatment apparatus of the present invention.
The organic wastewater treatment apparatus of the present invention comprises a biological treatment tank 5, a solid-liquid separation device 7, and a wet medium stirring mill 12, and the true specific gravity of the crushing medium used in the mill is 5.0 or more. . In FIG. 1, organic wastewater 4 such as domestic wastewater, night soil, industrial wastewater such as food manufacturing wastewater is supplied to a biological treatment tank 5 for biological treatment. A part of the biologically treated liquid 6 is supplied as a crushing medium 13 to a wet medium stirring mill 12 filled with beads having a true specific gravity of 5.0 or more,
Crushed. The biologically treated sludge 6 subjected to the crushing treatment becomes the solubilized sludge 14 and is returned to the biological treatment tank 5 together with the returned sludge 10. The remaining biologically treated sludge 6 is sent to a solid-liquid separation device 7 where it is separated into treated water 8 and separated sludge 9. Most of the separated sludge 9 is returned to the biological treatment tank 5 as return sludge 10, and the biological treatment tank 5 is used for efficient biological treatment.
When the sludge concentration in the biological treatment tank 5 is increased while maintaining the sludge concentration in the biological treatment tank 5 excessively, excess sludge is withdrawn as excess withdrawn sludge 11. In FIG. 2, all the processing liquid 6 is sent to a solid-liquid separation device 7, and a part of the separated sludge 9 is supplied as a crushing medium 13 to a wet medium stirring mill 12 using beads having a true specific gravity of 5.0 or more. ing. In FIG. 3, after a part of the separated sludge 9 is concentrated in the sludge concentration device 15,
The concentrated sludge 16 is supplied to a wet medium stirring mill 12 using beads having a true specific gravity of 5.0 or more as a crushing medium 13. In the present invention, sludge generated when biologically treating and purifying organic wastewater is crushed and solubilized in a sludge crushing step, and further treated in a biological treatment step, so that the sludge is converted into carbon dioxide gas. It is decomposed into water and the like, and the excess sludge is greatly reduced. In addition, the method for crushing sludge in the present invention can obtain a sufficient crushing effect even for sludge having a high sludge concentration, so that the treatment time is short, and sludge reduction can be realized economically with relatively small equipment. Further, since the method is a sludge crushing method that does not involve generation of a hardly decomposable component, even if biological treatment is performed on the crushed sludge, there is almost no risk that the quality of the treated water is deteriorated. Next, the present invention will be described in detail with reference to examples. Example 1 and Comparative Example 1 According to the processing flow shown in FIG. 3, 6 m 3 of chemical factory wastewater 4 was supplied per day using a 5 m 3 aeration tank 5. The water temperature of the aeration tank 5 was set at 25 ° C., the dissolved oxygen concentration of the aeration tank 5 was set at 2.0 mg / L, and the sludge was appropriately withdrawn so as to have a sludge concentration of 3 g / L as excess sludge 11.
The treatment liquid 6 treated in the aeration tank 5 is solid-liquid separated in the precipitation tank 7, and the separated water is discharged out of the system as treated water 8, and separated sludge 9
Was returned to the aeration tank 5 as returned sludge 10. Separated sludge 9
Is partially converted to a sludge concentrator 15 (Amcon Corporation) (M
A-05-K type)) to concentrate the sludge concentration to 50 g / L (about 5% by weight). The concentrated sludge 16 was prepared by using a sludge supply pump (manufactured by Heishin Kiki Co., Ltd. (NE20 type)) at 1.4.
It was fed to the wet medium stirring mill 12 at L / min. The wet medium stirring type mill is manufactured by Ashizawa Co., Ltd. (LMK type), and the crushing medium 13 is set in the mill chamber.
0.5 mmφ zirconia beads (manufactured by Nikkato Co., Ltd., true specific gravity 6.0) are filled at a bead filling rate of 85%, the disk tip peripheral speed is 14 m / sec, the residence time is 2 minutes, the processing temperature is 3
The treatment was carried out at 0 ± 2 ° C. for solubilization, and the solubilized sludge 14 was returned to the aeration tank 5. The amount of sludge crushing was set to a solid amount (2.5 kg / day) 2.7 times the amount of excess sludge generated in the system without sludge crushing (Comparative Example 1). The wet medium stirring mill treatment was performed two to three times a day for about 30 minutes each, but the passage of the wet medium stirring mill 12 was not blocked. FIG. 4 is a graph showing the effect of reducing the amount of sludge according to the present invention. The vertical axis indicates the accumulated amount of excess sludge generated during 35 days of treatment when the sludge concentration in the aeration tank is kept constant. From FIG. 4, it is found that in Comparative Example 1, 33 kg of excess sludge was generated, whereas in Example 1, the amount of generated sludge was 1.9 kg (94% reduction).
It can be seen that by sludge crushing a part of the biologically treated sludge to solubilize the sludge and returning it to the aeration tank, the amount of sludge discharged out of the system is greatly reduced. Regarding water quality, the BOD of chemical factory wastewater is 715 mg.
/ L, COD 92 mg / L and SS 51 mg / L, whereas the treated water of Comparative Example 1 had a BOD of 5.6 mg / L.
L, COD 13 mg / L, SS 13 mg / L, Example 1
There BOD12mg / L, COD19 m g / L, SS21
mg / L, and it can be seen that the treated water deteriorates due to the sludge crushing treatment, but the effect is slight. Comparative Example 2 The treatment of organic wastewater was carried out in the same manner as in Example 1, except that 0.5 mmφ glass beads (manufactured by Silibaads, true specific gravity 2.5) were used as a crushing medium of a wet medium stirring mill. Was. As a result, the path of the wet medium stirring mill 12 was blocked two minutes after the start of operation of the wet medium stirring mill 12, and further operation was not possible. According to the present invention, excess sludge generated by biological treatment of organic wastewater can be economically and stably reduced. For this reason, sludge landfill costs can be reduced, and equipment for processes such as sludge incineration can be simplified,
Cost reduction can be achieved.

【図面の簡単な説明】 【図1】本発明の有機性廃水の処理方法の工程の概略の
一例を示す図である。 【図2】本発明の有機性廃水の処理方法の工程の概略の
他の例を示す図である。 【図3】本発明の有機性廃水の処理方法の工程の概略の
他の例を示す図である。 【図4】汚泥破砕処理による有機性廃水の処理での汚泥
発生量に対する影響を示す図である。 【符号の説明】 1 生物処理工程 2 固液分離工程 3 汚泥破砕工程 4 有機性廃水 5 生物処理槽 6 処理液 7 固液分離装置 8 処理水 9 分離汚泥 10 返送汚泥 11 余剰引き抜き汚泥 12 湿式媒体撹拌式ミル 13 破砕媒体 14 可溶化汚泥 15 汚泥濃縮装置 16 濃縮汚泥
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of a schematic process of an organic wastewater treatment method of the present invention. FIG. 2 is a diagram showing another example of the outline of the steps of the method for treating organic wastewater of the present invention. FIG. 3 is a diagram showing another example of the outline of the steps of the method for treating organic wastewater of the present invention. FIG. 4 is a diagram showing the effect on the amount of sludge generated in the treatment of organic wastewater by the sludge crushing treatment. [Description of Signs] 1 Biological treatment step 2 Solid-liquid separation step 3 Sludge crushing step 4 Organic wastewater 5 Biological treatment tank 6 Treatment liquid 7 Solid-liquid separator 8 Treatment water 9 Separated sludge 10 Returned sludge 11 Excessive extraction sludge 12 Wet medium Agitation mill 13 Crushing medium 14 Solubilized sludge 15 Sludge thickener 16 Thickened sludge

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−279988(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 11/00 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-2000-279988 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/12 C02F 11/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 有機性廃水を生物処理槽において処理し
た後、処理液を固液分離して分離水は処理水として放流
させ、分離汚泥は前記生物処理槽に返送する有機性廃水
の処理方法において、生物処理槽に返送する汚泥の
ち、該有機性廃水のBODの同化により増殖する汚泥固
形物量の0.5〜5倍に相当する固形物量の汚泥を、
砕媒体として真比重5.0以上のビーズを用いた湿式媒
体攪拌式ミル処理によって破砕した後、前記生物処理槽
へ返送することを特徴とする有機性廃水の処理方法。
(57) [Claims 1] After treating organic wastewater in a biological treatment tank, the treatment liquid is separated into solid and liquid, and the separated water is discharged as treated water. in the method of treating organic waste water to be returned to, sales of sludge returned to the biological treatment tank
That is, sludge solids that grow due to assimilation of the BOD of the organic wastewater
The sludge having a solid content equivalent to 0.5 to 5 times the amount of the shaped material is crushed by a wet medium stirring mill using beads having a true specific gravity of 5.0 or more as a crushing medium, and then returned to the biological treatment tank. A method for treating organic wastewater.
JP14002599A 1999-05-20 1999-05-20 Organic wastewater treatment method and treatment apparatus Expired - Lifetime JP3474125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14002599A JP3474125B2 (en) 1999-05-20 1999-05-20 Organic wastewater treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14002599A JP3474125B2 (en) 1999-05-20 1999-05-20 Organic wastewater treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2000325983A JP2000325983A (en) 2000-11-28
JP3474125B2 true JP3474125B2 (en) 2003-12-08

Family

ID=15259208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14002599A Expired - Lifetime JP3474125B2 (en) 1999-05-20 1999-05-20 Organic wastewater treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP3474125B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438883B2 (en) * 2006-11-15 2014-03-12 日鉄住金環境株式会社 Method for treating organic wastewater and chemicals used in the method
US8603339B2 (en) 2007-08-28 2013-12-10 Diamond Engineering Co., Ltd. Activated sludge material, method for reducing excess sludge production in bioreactor, and method of controlling bioreactor

Also Published As

Publication number Publication date
JP2000325983A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
EP1310461A1 (en) Method for treating organic waste water
JPH10235315A (en) Treatment of fluid organic waste
JP2003033780A (en) Method for wastewater treatment
JP3474125B2 (en) Organic wastewater treatment method and treatment apparatus
JP3853971B2 (en) Aerobic digestion method of excess sludge
JP2007021285A (en) Method and apparatus for reducing volume of excess sludge
US5019267A (en) Process for mesophilic or thermophilic aerobico-enzymic conditioning of liquid organic substances and biomass
JP2000354887A (en) Treatment method of organic wastewater
JP4525161B2 (en) Anaerobic treatment equipment
JP3488371B2 (en) Sludge crushing method
JP3853922B2 (en) Method for removing phosphorus from organic sludge
JP2001340889A (en) Treating method for organic wastewater
DE102006038450A1 (en) Method for treating material mixture from wastes containing e.g. organically convertible material, comprises supplying the mixture to a common process step and intensively washing the partial retention of the mixture
JP2005349304A (en) Method and apparatus for volume reduction of surplus sludge
JP2006075730A (en) Anaerobic treatment device
JP3961246B2 (en) Method and apparatus for treating organic wastewater
JP2004148136A (en) Sewage treatment method and treatment equipment therefor
JP2007117867A (en) Method and equipment for treating organic solid
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP4192079B2 (en) Sludge treatment apparatus and sludge treatment method
JP2001038393A (en) Movable device for crushing sludge
JP2003093908A (en) Wet medium stirring mill and crushing method of sludge using the same
JP2001205289A (en) Method for treating organic wastewater
JP3493783B2 (en) Aerobic treatment of organic wastewater
JP2001276866A (en) Method for treating organic wastewater

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term