JP3470983B2 - Manufacturing method of synthetic quartz glass member - Google Patents

Manufacturing method of synthetic quartz glass member

Info

Publication number
JP3470983B2
JP3470983B2 JP9155594A JP9155594A JP3470983B2 JP 3470983 B2 JP3470983 B2 JP 3470983B2 JP 9155594 A JP9155594 A JP 9155594A JP 9155594 A JP9155594 A JP 9155594A JP 3470983 B2 JP3470983 B2 JP 3470983B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
fluorine
glass member
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9155594A
Other languages
Japanese (ja)
Other versions
JPH07291635A (en
Inventor
久利 大塚
和雄 代田
政俊 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9155594A priority Critical patent/JP3470983B2/en
Publication of JPH07291635A publication Critical patent/JPH07291635A/en
Application granted granted Critical
Publication of JP3470983B2 publication Critical patent/JP3470983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成石英ガラス部材の製
造方法、特にはOH基、フッ素原子を適宜に含有するA
rFエキシマレーザーあるいはγ線照射用レンズ素材と
して有用とされる合成石英ガラス部材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a synthetic quartz glass member, and particularly to A containing an OH group and a fluorine atom appropriately.
The present invention relates to a method for producing a synthetic quartz glass member that is useful as a lens material for rF excimer laser or γ-ray irradiation.

【0002】[0002]

【従来の技術】従来、エキシマレーザーなどの紫外線領
域あるいはγ線などの放射線用の光学用部材としては、
高OH基含有品を得る直接火炎法あるいはシリカ焼結体
の溶融からなるスート法で製造された合成石英ガラス部
材が使用されているが、光源の波長がより短波長化に進
むにつれて、例えばArFエキシマレーザー(193nm) の
ように高エネルギーを有する光源を上記合成石英ガラス
部材に照射すると、エネルギー密度が高いためにレーザ
ー光の透過率が数%低下したり、構造欠陥などのために
本質的なダメージが生ずるという問題点があり、したが
ってこれについてはArFエキシマレーザーなどの高エ
ネルギー光を照射しても大幅な透過率低下を起さない素
材の提供が求められている。
2. Description of the Related Art Conventionally, as an optical member for ultraviolet rays such as excimer laser or radiation such as γ ray,
A synthetic quartz glass member manufactured by a direct flame method for obtaining a product containing a high OH group or a soot method consisting of melting a silica sintered body is used, but as the wavelength of the light source is further shortened, for example, ArF is used. When the synthetic quartz glass member is irradiated with a light source having a high energy such as an excimer laser (193 nm), the energy density is high, so that the transmittance of the laser beam is reduced by several percent, and the structure is essentially defective due to structural defects. There is a problem that damage occurs. Therefore, it is required to provide a material that does not cause a significant decrease in transmittance even when irradiated with high energy light such as ArF excimer laser.

【0003】そのため、この合成石英ガラスの構造を強
固なものとするということから、これにフッ素を導入す
る方法が提案されており、このものは≡Si−O結合と
同程度の強い結合力を有する≡Si−Fを有しており、
γ線などの放射線照射をしても構造的に安定であり、≡
Si−F+γ線→≡Si・+Fの反応は生じないのでこ
のものは真空で紫外線を照射しても高い透過率を示すと
いわれている(K.Awazu et al, J.Appl. Phys. 69(8),1
5 April 1991)。
Therefore, a method of introducing fluorine into the synthetic quartz glass has been proposed in order to strengthen the structure of the synthetic quartz glass, and this one has a strong binding force equivalent to that of the ≡Si—O bond. Having ≡Si-F,
It is structurally stable even when exposed to radiation such as γ-rays,
Since the reaction of Si-F + γ ray → ≡Si · + F does not occur, it is said that this one shows high transmittance even when it is irradiated with ultraviolet rays in vacuum (K. Awazu et al, J. Appl. Phys. 69 ( 8), 1
5 April 1991).

【0004】[0004]

【発明が解決しようとする課題】このフッ素を合成石英
ガラス中に導入する方法としては四塩化けい素を酸水素
火炎中で火炎加水分解させて多孔質シリカ焼結体を形成
し、これを石英ガラス製炉芯管内で不活性ガスなどで希
釈されたフッ素化合物、例えばSiF4、CF4 、SF6、C3F8
などの中で 1,200℃程度で熱処理したのち、さらに 1,6
00℃まで昇温して透明ガラス化する方法が知られている
が、この方法では1)四塩化けい素が塩素を含有してお
り、ガラス中に塩素が残存するため、塩素脱水処理が必
要となる、2)石英製炉心管内の高温でフッ素処理する
ために、石英製炉心管がフッ素によりエッチングされて
消耗頻度が激しくなる、という不利がある。
As a method of introducing this fluorine into the synthetic quartz glass, silicon tetrachloride is subjected to flame hydrolysis in an oxyhydrogen flame to form a porous silica sintered body, which is then subjected to quartz. Fluorine compounds diluted with inert gas in the glass furnace core tube, such as SiF 4 , CF 4 , SF 6 , C 3 F 8
After heat-treating at about 1,200 ℃ in
A method is known in which the temperature is raised to 00 ° C to form a transparent glass. In this method, 1) since silicon tetrachloride contains chlorine and chlorine remains in the glass, chlorine dehydration treatment is required. 2) There is a disadvantage that the quartz core tube is etched by the fluorine and the consumption frequency increases because the fluorine treatment is performed at a high temperature in the quartz core tube.

【0005】また、これについては塩素を含有しないシ
ラン化合物と塩素を含まないフッ素化合物を混合し、こ
れを酸水素火炎中に導入して多孔質シリカ焼結体を形成
し、透明ガラス化してフッ素をドープするという方法も
提案されている(特公昭 62-9536号公報参照)が、この
方法では1)ガラス中のOH基含有量を0ppm とするこ
とが目的とされているために、フッ素をSi化合物のS
iとの供給比で8〜13モル%ドープするとOH基含有量
が0〜 50ppm程度の範囲に制御されるために、これを 5
0ppm以上含有させることが非常に困難になり、2)OH
基含有量が0〜50ppm程度となると、波長 245nmで酸素
欠陥≡Si−Si≡よる吸収が生じてしまい、3)大口
径サイズのものが得られなくなるという不利があり、こ
れはまた耐レーザ性、耐放射線性の弱いものになるとい
う欠点がある。
Further, regarding this, a silane compound containing no chlorine and a fluorine compound containing no chlorine are mixed, and this is introduced into an oxyhydrogen flame to form a porous silica sintered body, which is made into a transparent glass to produce fluorine. Although a method of doping Fluorine has been proposed (see Japanese Patent Publication No. 62-9536), this method 1) aims to make the OH group content in the glass 0 ppm, and Si compound S
When the doping ratio with i is 8 to 13 mol%, the OH group content is controlled to a range of 0 to 50 ppm.
It becomes very difficult to contain 0ppm or more, and 2) OH
When the group content is about 0 to 50 ppm, there is a disadvantage that absorption due to oxygen defects ≡Si-Si≡ occurs at a wavelength of 245 nm, and 3) a large diameter size cannot be obtained, which is also laser resistance. However, there is a drawback that the radiation resistance becomes weak.

【0006】[0006]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した合成石英ガラス部材の製造方法に
関するもので、これは塩素を含まないシラン化合物と塩
素を含まないフッ素化合物の混合物を、酸水素火炎中に
導入して多孔質シリカ焼結体を形成し、これを真空中ま
たは不活性ガス雰囲気中で加熱溶融してガラス化するフ
ッ素含有合成石英ガラス部材の製造方法において、供給
するシラン化合物とフッ素化合物との混合比をフッ素原
子/(けい素原子+フッ素原子)比で10〜40モル%の範
囲とし、シリカ焼結体形成時に生成するシリカ粒子の単
位重量部当りの受熱量が単位時間当り20kcal/g・時以上
となるようにすることを特徴とするものである。
The present invention relates to a method for producing a synthetic quartz glass member which solves the above disadvantages and problems, and it is a mixture of a chlorine-free silane compound and a chlorine-free fluorine compound. Is introduced into an oxyhydrogen flame to form a porous silica sintered body, which is heated and melted in a vacuum or in an inert gas atmosphere to be vitrified, and the method for producing a fluorine-containing synthetic quartz glass member is supplied. The mixing ratio of the silane compound and the fluorine compound to be used is within a range of 10 to 40 mol% in terms of fluorine atom / (silicon atom + fluorine atom), and the silica particles produced during the formation of the silica sintered body per unit weight part. The feature is that the amount of heat is 20 kcal / g · hour or more per unit time.

【0007】すなわち、本願発明者らは耐エキシマレー
ザー性、耐放射線性などの耐性のすぐれた合成石英ガラ
スについてはOH基含有量が 50ppm以上、好ましくは10
0ppm以上、フッ素含有量が1,000ppm以上、好ましくは1,
500ppm以上のものとすることがよく、このものは耐性
(透過率の低下)が良好になるという知見に基づいて、
この種の合成石英ガラス部材の製造方法について種々検
討した結果、これについては公知の塩素を含まないシラ
ン化合物と塩素を含まないフッ素化合物との混合物を酸
水素火炎中に導入して多孔質シリカ焼結体を形成させ、
これを真空中または不活性ガス雰囲気下で加熱溶融して
ガラス化するフッ素含有合成石英ガラスの製造方法にお
いて、供給するシラン化合物とフッ素化合物との混合比
がフッ素原子/(けい素原子+フッ素原子)比で10〜40
モル%の範囲とすると得られる合成石英ガラス中のフッ
素含有量を1,000ppm以上とすることができるし、OH基
含有量も 50ppm以上とすることができ、また、シリカ焼
結体形成時に生成するシリカ粒子の単位重量部当りの受
熱量が単位時間当り20kcal/g・時未満になるようにする
とフッ素の脱水効果によってOH基含有量が0ppm にな
り易いが、これを20kcal/g・時以上、好ましくは25〜35
kcal/g・時とすると得られる合成石英ガラス中のフッ素
含有量は1,000ppm以上で、OH基含有量を 50ppm以上と
することができることを見出して本発明を完成させた。
以下にこれをさらに詳述する。
That is, the inventors of the present invention have an OH group content of 50 ppm or more, preferably 10 or less for synthetic quartz glass having excellent resistance to excimer laser resistance and radiation resistance.
0ppm or more, fluorine content is 1,000ppm or more, preferably 1,
It is preferable to set it to 500 ppm or more, and based on the finding that resistance (decrease in transmittance) becomes good,
As a result of various studies on the production method of this kind of synthetic quartz glass member, a known mixture of a silane compound containing no chlorine and a fluorine compound containing no chlorine was introduced into an oxyhydrogen flame to produce a porous silica calcined product. To form a union,
In the method for producing a fluorine-containing synthetic quartz glass in which this is heated and melted in a vacuum or in an inert gas atmosphere to be vitrified, the mixing ratio of the silane compound and the fluorine compound supplied is fluorine atom / (silicon atom + fluorine atom). ) Ratio 10-40
When the content is in the range of mol%, the fluorine content in the obtained synthetic quartz glass can be 1,000 ppm or more, the OH group content can be 50 ppm or more, and it is generated when the silica sintered body is formed. If the amount of heat received per unit weight part of silica particles is less than 20 kcal / g.hr per unit time, the OH group content tends to be 0 ppm due to the dehydration effect of fluorine. Preferably 25-35
The present invention has been completed by finding that the fluorine content in the synthetic quartz glass obtained when kcal / g · hr is 1,000 ppm or more and the OH group content can be 50 ppm or more.
This will be described in more detail below.

【0008】[0008]

【作用】本発明は合成石英ガラス部材の製造方法、特に
はエキシマレーザーや放射線などの透過率が良好な合成
石英ガラス部材の製造方法に関するものであり、これは
塩素を含有しないシラン化合物と塩素を含まないフッ素
化合物との混合物を酸水素火炎中に導入して多孔質シリ
カ焼結体を形成させ、これを真空中または不活性ガス雰
囲気中で加熱溶融してガラス化するフッ素含有合成石英
ガラス部材の製造方法において、供給するシラン化合物
とフッ素化合物との混合比をフッ素原子/(けい素原子
+フッ素原子)比で10〜40モル%の範囲とすると共に、
シリカ焼結体形成時に生成するシリカ粒子の単位重量部
当りの受熱量を単位時間当り20kcal/g・時以上とするこ
とを特徴とするものであるが、これによればフッ素含有
量が1,000ppm以上であり、OH基含有量が 50ppm以上で
ある合成石英ガラス部材が容易に得られるので、このも
のを耐レーザー特性、特にはArFエキシマレーザー性
や放射線の照射にも透過率が低下することがないものと
することができるという有利性が与えられる。
The present invention relates to a method for producing a synthetic quartz glass member, and more particularly to a method for producing a synthetic quartz glass member having good transmittance for excimer laser, radiation, etc., which contains chlorine-free silane compounds and chlorine. A fluorine-containing synthetic quartz glass member that introduces a mixture with a fluorine compound that does not contain it into an oxyhydrogen flame to form a porous silica sintered body, which is heated and melted in a vacuum or in an inert gas atmosphere to be vitrified. In the manufacturing method, the mixing ratio of the silane compound and the fluorine compound supplied is within a range of 10 to 40 mol% in terms of a fluorine atom / (silicon atom + fluorine atom) ratio,
It is characterized in that the amount of heat received per unit weight part of the silica particles generated during the formation of the silica sintered body is 20 kcal / g.hour or more per unit time, but according to this, the fluorine content is 1,000 ppm. As described above, a synthetic quartz glass member having an OH group content of 50 ppm or more can be easily obtained. Therefore, this product has a laser resistance property, in particular, an ArF excimer laser property, and the transmittance may be reduced even when irradiated with radiation. The advantage is given that it can be absent.

【0009】本発明で使用される塩素を含まないシラン
化合物は一般式 R1 nSi(OR2)4-nで示され、このR1 、R
2 はメチル基、エチル基、プロピル基、ブチル基などの
炭素数1〜4のアルキル基、nは0〜4の整数であるも
の、例えばテトラメトキシシラン、メチルトリメトキシ
シラン、テトラエトキシシランなどとされる。また、こ
こに使用される塩素を含まないフッ素化合物は一般式Ca
HbFcで示され、a、b、cが1≦a≦3、0≦b≦7、
1≦c≦8である、例えば CF4、CHF3、C2F6、C3F8など
とされる。
[0009] silane compound containing no chlorine for use in the present invention have the general formula R 1 n Si (OR 2) indicated by 4-n, the R 1, R
2 is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group, n is an integer of 0 to 4, for example, tetramethoxysilane, methyltrimethoxysilane, tetraethoxysilane, etc. To be done. The chlorine-free fluorine compound used here has the general formula C a
H b F c , where a, b and c are 1 ≦ a ≦ 3, 0 ≦ b ≦ 7,
1 ≦ c ≦ 8, for example, CF 4 , CHF 3 , C 2 F 6 , C 3 F 8 and the like.

【0010】このシラン化合物とフッ素化合物とは予め
混合され、この混合物が酸水素火炎中に導入され、この
酸水素火炎中での火炎加水分解で発生したフッ素を含有
するシリカ微粒子が耐熱性担体上に堆積されて多孔質シ
リカ焼結体とされるのであるが、この混合物中における
シリカ化合物とフッ素化合物との混合比をフッ素原子/
(けい素原子+フッ素原子)比でこれが10モル%以下で
あると得られる合成石英ガラス中のフッ素含有量が1,00
0ppm未満となり、これが40モル%を越えると得られる合
成石英ガラス中のOH基含有量が 50ppm未満となってし
まうので、これは10〜40モル%の範囲とする必要があ
る。
The silane compound and the fluorine compound are mixed in advance, the mixture is introduced into an oxyhydrogen flame, and silica fine particles containing fluorine generated by flame hydrolysis in the oxyhydrogen flame are placed on the heat-resistant carrier. It is deposited as a porous silica sintered body, and the mixture ratio of the silica compound and the fluorine compound in this mixture is fluorine atom /
If the ratio of (silicon atom + fluorine atom) is 10 mol% or less, the fluorine content in the synthetic quartz glass obtained is 1,00.
Since it becomes less than 0 ppm, and when it exceeds 40 mol%, the OH group content in the obtained synthetic quartz glass becomes less than 50 ppm, it is necessary to set it in the range of 10 to 40 mol%.

【0011】また、この場合にはこの混合物の酸水素火
炎中で発生したフッ素を含むシリカ微粒子の堆積により
多孔質シリカ焼結体が形成されるが、このシリカ粒子に
ついてはその単位重量部当りの受熱量が単位時間当り20
kcal/g・時未満であると焼結温度が低下するためにフッ
素が固定化し易くなり、フッ素の脱水効果によって≡S
i−F結合の生成量が増加してフッ素の固定率が上昇
し、このフッ素の脱水効果によって得られる合成石英ガ
ラス中のOH基含有量が0ppm になり易く、これを 50p
pm以上とすることが非常に難しくなるので、これはその
受熱量を単位時間当り20kcal/g・時以上とすることが必
要とされる。
Further, in this case, a porous silica sintered body is formed by depositing silica fine particles containing fluorine generated in the oxyhydrogen flame of this mixture. Heat received is 20 per unit time
If it is less than kcal / g · hour, the sintering temperature will be lowered and fluorine will be easily fixed, and ≡S due to the dehydration effect of fluorine.
The production rate of i-F bond increases and the fixing rate of fluorine rises, and the OH group content in the synthetic quartz glass obtained by the dehydration effect of fluorine easily becomes 0 ppm.
Since it becomes very difficult to make it more than pm, it is necessary to set the heat receiving amount to 20 kcal / g · hour or more per unit time.

【0012】したがって、この本発明によれば得られる
合成石英ガラスをフッ素の含有量が1,000ppm以上でOH
基含有量が 50ppm以上のものとすることができるので、
この合成石英ガラス部材はArFエキシマレーザーやγ
線などの放射線を照射したときでも耐性のすぐれたもの
となり、照射時に透過率が低下することもなくなるの
で、このものはエキシマレーザー、特にArFエキシマ
レーザー用光学用レンズ、種々の光学用石英マスク基
板、耐紫外線、または耐放射線用ファイバーなどに有用
な素材になるという有利性が与えられる。
Therefore, the synthetic quartz glass obtained according to the present invention has a fluorine content of 1,000 ppm or more and OH.
Since the group content can be 50 ppm or more,
This synthetic quartz glass member is made of ArF excimer laser and γ
It has excellent resistance even when it is irradiated with radiation such as rays, and the transmittance does not decrease when it is irradiated. Therefore, this product is an optical lens for excimer lasers, especially ArF excimer lasers, and various quartz mask substrates for optics. It has the advantage of becoming a useful material for fibers for UV, UV, or radiation resistance.

【0013】つぎに本発明による合成石英ガラス部材の
製造方法を図面に基づいて説明する。図1は本発明によ
る合成石英ガラス部材を製造するための多孔質ガラス焼
結体製造装置の縦断面図を示したものであるが、これは
図1に示されているように酸水素火炎形成用石英製バー
ナー1のノズル2に水素10、酸素9、11などの可燃性ガ
スと支燃性ガスを供給して酸水素火炎3を形成させる。
この酸水素火炎3の中に原料であるシラン化合物として
のアルコキシシラン4とフッ素化合物5を導入してフッ
素原子を含有するシラン微粒子6を生成させ、これを回
転している石英製あるいはカーボン製などの耐熱性担体
7の上に堆積させ、これを軸方向に連続的に引き上げて
多孔質シリカ焼結体を製造する。
Next, a method of manufacturing the synthetic quartz glass member according to the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a porous glass sintered body manufacturing apparatus for manufacturing a synthetic quartz glass member according to the present invention, which shows an oxyhydrogen flame formation as shown in FIG. The oxyhydrogen flame 3 is formed by supplying a combustible gas such as hydrogen 10, oxygen 9 and 11 and a combustion supporting gas to the nozzle 2 of the quartz burner 1 for use.
Into the oxyhydrogen flame 3, an alkoxysilane 4 as a raw material, a silane compound, and a fluorine compound 5 are introduced to generate silane fine particles 6 containing a fluorine atom, which are made of rotating quartz or carbon. Is deposited on the heat-resistant carrier 7 and continuously pulled up in the axial direction to produce a porous silica sintered body.

【0014】また、このときのシラン化合物とフッ素化
合物との混合比はフッ素原子/(けい素原子+フッ素原
子)比で前記したように10〜40モル%とされ、このシラ
ン粒子の単位重量部当りの受熱量はこれを単位時間当り
20kcal/g・時以上、好ましくは25〜35kcal/g・時とする
ために、原料シラン化合物、フッ素化合物などの原料ガ
スと水素などの燃料ガスの燃焼熱量を計算より求め、所
望の熱量となるように原料ガスと燃焼ガスの流量が調整
された状態において供給される。
The mixing ratio of the silane compound and the fluorine compound at this time is 10 to 40 mol% in terms of the fluorine atom / (silicon atom + fluorine atom) ratio as described above, and the unit weight part of the silane particles is The amount of heat received per unit of time
In order to obtain 20 kcal / g.hr or more, preferably 25 to 35 kcal / g.hr., The calorific value of combustion of the raw material gas such as the raw material silane compound and the fluorine compound and the fuel gas such as hydrogen is calculated to obtain the desired calorific value. Thus, the raw material gas and the combustion gas are supplied in a state where the flow rates thereof are adjusted.

【0015】このようにして作られたフッ素を含有する
多孔質シリカ焼結体は 300mmφ×500mmLで嵩密度が 0.4
0g/cm3以上のものとなるが、このものは真空溶解炉中に
耐熱体担体の上端部をカーボン製治具などで固定して設
置し、0.01Torrの真空下またはアルゴンガスなどの不活
性ガス雰囲気下での大気圧または減圧下に、 1,200〜1,
300℃まで昇温して5時間以上保持したのち、さらに 1,
450〜 1,550℃まで昇温して1時間程度保持することに
よって、 200mmφ×300mmLの透明な合成石英ガラス部材
とされるが、このものは石英ガラス中におけるOH基含
有量が 50ppm以上、フッ素含有量が1,000ppm以上のもの
となるので、このものは例えばArFエキシマレーザー
を光源とする紫外線領域の光学素材用途、放射線などの
ファイバ用に有用とされる。
The fluorine-containing porous silica sintered body thus prepared has a bulk density of 0.4 mm and a diameter of 300 mmφ × 500 mmL.
It will be 0 g / cm 3 or more, but this is installed by fixing the upper end of the heat resistant carrier in a vacuum melting furnace with a jig made of carbon etc., under a vacuum of 0.01 Torr or inert gas such as argon gas. 1,200 to 1, under atmospheric pressure or reduced pressure in a gas atmosphere
After raising the temperature to 300 ℃ and holding it for 5 hours or more,
By raising the temperature to 450-1550 ° C and holding it for about 1 hour, a transparent synthetic quartz glass member with a diameter of 200 mm x 300 mmL is produced, which has a OH group content of 50 ppm or more and a fluorine content of 5% or more. Since the content is 1,000 ppm or more, it is useful for optical materials in the ultraviolet region using an ArF excimer laser as a light source and for fibers such as radiation.

【0016】[0016]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1〜3 図1の装置を用いて原料シラン化合物としてのメチルト
リメトキシシラン[CH3Si(OCH3)3] 2,000g/時をフッ素化
合物としてのCHF3・フロン23[昭和電工(株)製商品
名]の表1に示した量、36L/時または 220L/時と混合
(F混合比10または40モル%)し、これを水素ガス5Nm
3/時と酸素6Nm3/時で石英製多重管バーナーに導入して
形成した酸水素火炎中に供給してフッ素を含有したシリ
カ微粒子を生成させ、これを 20rpmで回転している石英
製担体上に吹き付けて堆積させて軸方向に一定速度で引
き上げたところ、大きさが 300mmφ×500mmLである多孔
質シリカ焼結体が得られ、このときのシリカ微粒子1g
当りの燃焼熱量は原料ガスと燃焼ガスの燃焼熱量より計
算していずれも26kcal/g・時であった。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Examples 1 to 3 Methyltrimethoxysilane [CH 3 Si (OCH 3 ) 3 ] 2,000 g / hr as a raw material silane compound using the apparatus of FIG. 1 as CHF 3 · CFC 23 as a fluorine compound [Showa Denko ) Product name] in the amount shown in Table 1 and mixed with 36 L / hour or 220 L / hour (F mixing ratio 10 or 40 mol%), and hydrogen gas 5 Nm
The silica carrier, which was supplied at the time of 3 / hr and oxygen 6Nm 3 / hr, was introduced into the oxyhydrogen flame formed by introducing it into the quartz multi-tube burner to produce silica particles containing fluorine, which were rotated at 20 rpm. When it was sprayed on top and deposited and pulled up at a constant speed in the axial direction, a porous silica sintered body with a size of 300 mmφ x 500 mmL was obtained.
The combustion heat quantity per unit was 26 kcal / g · hour calculated from the combustion heat quantities of the raw material gas and the combustion gas.

【0017】ついで、この多孔質シリカ焼結体を真空溶
解炉中に設置し、炉内を0.01Torrとして室温から 1,250
℃まで10℃/分の昇温速度で昇温して10時間保持してか
ら、1,500℃まで3℃/分の昇温速度で昇温して透明ガ
ラス化したところ、大きさが200mmφ×300mmLで重さが1
8kgの透明石英ガラス部材が得られたので、これを厚さ
10mmtに切断して赤外分光光度計で 2.7μmの波長での
吸収ピークからOH基含有量を求め、またフッ素含有量
についてはこのガラスを切断して粉砕したのち、放射化
分析(原子炉:TRIGA-II型、武蔵工業大学原子力研究所
所有)により熱中性子を2分間照射してGe検出器によ
り定量したところ、表1に併記したとおりの結果が得ら
れ、けい素原子とフッ素原子との混合比とガラス中のO
H基含有量とフッ素原子含有量との関係について図2に
示したとおりの結果が得られた。
Next, this porous silica sintered body is placed in a vacuum melting furnace, and the inside of the furnace is set to 0.01 Torr and the temperature is changed from room temperature to 1,250.
The temperature was raised to 10 ° C at a rate of 10 ° C / min and held for 10 hours, and then it was raised to 1,500 ° C at a rate of 3 ° C / min to form a transparent glass. The size was 200 mmφ x 300 mmL. And weighs 1
Since 8 kg of transparent quartz glass member was obtained,
The OH group content was determined from the absorption peak at a wavelength of 2.7 μm with an infrared spectrophotometer after cutting into 10 mmt, and regarding the fluorine content, this glass was cut and crushed, followed by activation analysis (reactor: TRIGA-II type, owned by Musashi Institute of Technology Atomic Energy Research Institute), was irradiated with thermal neutrons for 2 minutes and quantified with a Ge detector. The results shown in Table 1 were obtained. Mixing ratio and O in glass
Regarding the relationship between the H group content and the fluorine atom content, the results as shown in FIG. 2 were obtained.

【0018】比較例1〜3 実施例におけるCHF3・フロン23(前出)の供給量を表1
に示したように10、36、 400L/時とし、フッ素原子混合
比を3、10、55とし、シリカ1g の受熱量を15または36
kcal/g・時としたほかは実施例と同様に処理して多孔質
シリカ焼結体を製作し、これを実施例と同様に処理して
合成石英ガラス部材を作ったところ、このOH基含有
量、フッ素含有量について表1に併記したとおりの結果
が得られた。
Comparative Examples 1 to 3 Table 1 shows the supply amount of CHF 3 · Freon 23 (described above) in Examples.
As shown in Fig. 10, 10, 36, 400 L / hour, fluorine atom mixing ratios, 3, 10, 55, and the heat receiving amount of 1 g of silica is 15 or 36.
A porous silica sintered body was manufactured by the same process as in Example except that kcal / g · hour was used, and this was processed in the same manner as in Example to manufacture a synthetic quartz glass member. Regarding the amount and the fluorine content, the results as shown in Table 1 were obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明は合成石英ガラス部材の製造方法
に関するものであり、これは前記したように塩素を含有
しないシラン化合物と塩素を含まないフッ素化合物との
混合物を酸水素火炎中に導入して多孔質シリカ焼結体を
形成し、これを真空中または不活性ガス雰囲気中で加熱
溶融してガラス化するフッ素含有合成石英ガラス部材の
製造方法において、供給するシラン化合物とフッ素化合
物との混合比を10〜40モル%の範囲とし、シリカ焼結体
形成時に生成するシリカ粒子の単位重量部当りの受熱量
が単位時間当り20kcal/g・時以上となるようにすること
を特徴とするものであるが、これによればOH基含有量
が 50ppm以上でフッ素含有量が1,000ppm以上であり、し
たがってArFエキシマレーザーを光源とする紫外線領
域の光学素材用途に使用することができ、放射線などの
ファイバーに有用とされる合成石英ガラス部材を容易
に、かつ安価に得ることができるという有利性が与えら
れる。
As described above, the present invention relates to a method for producing a synthetic quartz glass member, which comprises introducing a mixture of a chlorine-free silane compound and a chlorine-free fluorine compound into an oxyhydrogen flame. In the method for producing a fluorine-containing synthetic quartz glass member in which a porous silica sintered body is formed by heating and melting it in a vacuum or an inert gas atmosphere to vitrify, a silane compound and a fluorine compound to be supplied are mixed. Characterized in that the ratio is in the range of 10 to 40 mol% and the amount of heat received per unit weight part of the silica particles generated during the formation of the silica sintered body is 20 kcal / g · hour or more per unit time. However, according to this, the OH group content is 50 ppm or more and the fluorine content is 1,000 ppm or more. Therefore, it can be used for optical material applications in the ultraviolet region using an ArF excimer laser as a light source. It is possible, a fiber synthetic quartz glass member which is useful in such easy radiation, and advantages are given that can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合成石英ガラス部材を製造するための
多孔質シリカ焼結体製造装置の縦断面図を示したもので
ある。
FIG. 1 is a vertical cross-sectional view of a porous silica sintered body manufacturing apparatus for manufacturing a synthetic quartz glass member of the present invention.

【図2】本発明で製造された合成石英ガラス部材の製造
時における供給フッ素化合物の混合比と得られた合成石
英ガラス中のOH基量とフッ素含有量との関係図を示し
たものである。
FIG. 2 is a diagram showing the relationship between the mixing ratio of fluorine compounds supplied during the production of the synthetic quartz glass member produced according to the present invention and the amount of OH groups and the fluorine content in the obtained synthetic quartz glass. .

【符号の説明】[Explanation of symbols]

1…酸水素火炎形成用石英製バーナー 2…バーナーノズル 3…酸水素火炎 4…シラン化合物 5…フッ素化合物 6…シリカ微粒子 7…耐熱性担体 8…多孔質シリカ焼結体 9…酸素 10…水素 11…酸素 12…キャリヤーガス 1. Quartz burner for forming oxyhydrogen flame 2 ... Burner nozzle 3 ... oxyhydrogen flame 4 ... silane compound 5 ... Fluorine compound 6 ... Silica fine particles 7 ... Heat resistant carrier 8 ... Porous silica sintered body 9 ... oxygen 10 ... Hydrogen 11 ... oxygen 12 ... Carrier gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝田 政俊 新潟県中頸城郡頸城村大字西福島28番地 の1 信越化学工業株式会社 合成技術 研究所内 (56)参考文献 特開 平5−147966(JP,A) 特開 昭59−162143(JP,A) 特開 昭62−252335(JP,A) 特開 昭59−184740(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 8/04,20/00 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masatoshi Takita Masatoshi Takita 28-1 Nishi-Fukushima, Kubiki-mura, Nakakubiki-gun, Niigata Shin-Etsu Chemical Co., Ltd. Synthesis Technology Laboratory , A) JP 59-162143 (JP, A) JP 62-252335 (JP, A) JP 59-184740 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) C03B 8 / 04,20 / 00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩素を含有しないシラン化合物の少なく
とも1種と塩素を含有しないフッ素化合物の少なくとも
1種の混合物を、酸水素火炎中に導入して多孔質シリカ
焼結体を形成し、これを真空中または不活性ガス雰囲気
中で加熱溶融してガラス化するフッ素含有合成石英ガラ
ス部材の製造方法において、供給するシラン化合物とフ
ッ素化合物との混合比をフッ素原子/(けい素原子+フ
ッ素原子)比で10〜40モル%の範囲とし、シリカ焼結体
形成時に生成するシリカ粒子の単位重量部当りの受熱量
が単位時間当り20kcal/g・時以上となるようにすること
を特徴とする合成石英ガラス部材の製造方法。
1. A mixture of at least one chlorine-free silane compound and at least one chlorine-free fluorine compound is introduced into an oxyhydrogen flame to form a porous silica sintered body. In the method for producing a fluorine-containing synthetic quartz glass member that is heated and melted in a vacuum or in an inert gas atmosphere to be vitrified, the mixing ratio of the silane compound and the fluorine compound supplied is fluorine atom / (silicon atom + fluorine atom). The ratio is in the range of 10 to 40 mol%, and the amount of heat received per unit weight part of the silica particles generated during the formation of the silica sintered body is 20 kcal / g / hour or more. Method for manufacturing quartz glass member.
【請求項2】 シラン化合物が一般式 R1 nSi(OR2)
4-n(ここにR1 、R2 は炭素数1〜4のアルキル基、
nは0〜4の整数)で示されるものである請求項1に記
載した合成石英ガラス部材の製造方法。
2. The silane compound has the general formula R 1 n Si (OR 2 ).
4-n (wherein R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms,
The method for manufacturing a synthetic quartz glass member according to claim 1, wherein n is an integer of 0 to 4.
【請求項3】 フッ素化合物が一般式CaHbFc(ここに
a、b、cは1≦a≦3、0≦b≦7、1≦c≦8)で
示されるものである請求項1に記載した合成石英ガラス
部材の製造方法。
3. The fluorine compound is represented by the general formula C a H b F c (where a, b and c are 1 ≦ a ≦ 3, 0 ≦ b ≦ 7, 1 ≦ c ≦ 8). Item 2. A method for manufacturing a synthetic quartz glass member according to item 1.
【請求項4】 合成石英ガラス部材がOH基含有量 50p
pm以上、フッ素含有量1,000ppm以上、塩素がフリーであ
る請求項1に記載した合成石英ガラス部材の製造方法。
4. The synthetic quartz glass member has an OH group content of 50 p.
The method for producing a synthetic quartz glass member according to claim 1, wherein pm or more, fluorine content is 1,000 ppm or more, and chlorine is free.
【請求項5】 合成石英ガラス部材がエキシマレーザー
ステッパーなどのレンズ素材、光学用ガラス基板に用い
られるものである請求項1に記載した合成石英ガラス部
材の製造方法。
5. The method for producing a synthetic quartz glass member according to claim 1, wherein the synthetic quartz glass member is used for a lens material such as an excimer laser stepper and an optical glass substrate.
【請求項6】 合成石英ガラス基板が紫外線用および放
射線用ファイバーに用いられるものである請求項1に記
載した合成石英ガラス部材の製造方法。
6. The method for producing a synthetic quartz glass member according to claim 1, wherein the synthetic quartz glass substrate is used for ultraviolet and radiation fibers.
JP9155594A 1994-04-28 1994-04-28 Manufacturing method of synthetic quartz glass member Expired - Lifetime JP3470983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9155594A JP3470983B2 (en) 1994-04-28 1994-04-28 Manufacturing method of synthetic quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9155594A JP3470983B2 (en) 1994-04-28 1994-04-28 Manufacturing method of synthetic quartz glass member

Publications (2)

Publication Number Publication Date
JPH07291635A JPH07291635A (en) 1995-11-07
JP3470983B2 true JP3470983B2 (en) 2003-11-25

Family

ID=14029759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9155594A Expired - Lifetime JP3470983B2 (en) 1994-04-28 1994-04-28 Manufacturing method of synthetic quartz glass member

Country Status (1)

Country Link
JP (1) JP3470983B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067521A (en) * 1996-08-22 1998-03-10 Nikon Corp Fluorine containing quartz glass, production of the same, and projection recording system
EP0835848A3 (en) * 1996-08-21 1998-06-10 Nikon Corporation Fluorine-containing silica glass, its method of manufacture and a projection exposure apparatus comprising the glass
US6291377B1 (en) 1997-08-21 2001-09-18 Nikon Corporation Silica glass and its manufacturing method
JP3965734B2 (en) * 1997-09-11 2007-08-29 株式会社ニコン Quartz glass and method for producing the same
TW440548B (en) * 1997-05-14 2001-06-16 Nippon Kogaku Kk Synthetic silica glass optical member and method of manufacturing the same
US6782716B2 (en) 1999-02-12 2004-08-31 Corning Incorporated Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
US6682859B2 (en) 1999-02-12 2004-01-27 Corning Incorporated Vacuum ultraviolet trasmitting silicon oxyfluoride lithography glass
JP2000264671A (en) 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd Synthetic quartz glass member
JP4453939B2 (en) * 1999-09-16 2010-04-21 信越石英株式会社 Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
JP4496421B2 (en) * 1999-12-27 2010-07-07 信越化学工業株式会社 Method for producing synthetic quartz glass
JP2002060248A (en) * 2000-08-10 2002-02-26 Mitsubishi Cable Ind Ltd Quartz-base optical fiber
JP4400136B2 (en) * 2003-08-05 2010-01-20 ウシオ電機株式会社 Short arc type mercury vapor discharge lamp

Also Published As

Publication number Publication date
JPH07291635A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
CA2056271C (en) Uv light-permeable glass and article comprising the same
JP3470983B2 (en) Manufacturing method of synthetic quartz glass member
JP2004203736A (en) Method of manufacturing high purity fused silica
JP3007510B2 (en) Manufacturing method of synthetic quartz glass member
EP1067096B1 (en) Quartz glass members for excimer laser, and their method of manufacture
JP2001146434A (en) Optical material for ultraviolet ray and method for producing the material
JPH0791084B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JPH06199532A (en) Production of quartz glass member for excimer laser
JP3748183B2 (en) Core glass, method for producing the same, preform for optical fiber, and method for producing optical fiber
US6990836B2 (en) Method of producing fluorine-containing synthetic quartz glass
JP3705501B2 (en) Method for producing synthetic quartz glass member for excimer laser optical material
JPH0867530A (en) Optical glass for ultraviolet light
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
EP1178688A2 (en) Image decoding device and image decoding method
JP2000086259A (en) Optical material for vacuum ultraviolet ray
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
US6672111B2 (en) Method and apparatus for adding metals to fused silica
JPH06263468A (en) Production of glass base material
JPS6289B2 (en)
JP4162952B2 (en) Synthetic quartz glass manufacturing method and porous quartz glass manufacturing apparatus
JPH1059730A (en) Production of synthetic quartz glass

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

EXPY Cancellation because of completion of term