JP3468060B2 - Transmission ratio infinitely variable transmission - Google Patents

Transmission ratio infinitely variable transmission

Info

Publication number
JP3468060B2
JP3468060B2 JP30317897A JP30317897A JP3468060B2 JP 3468060 B2 JP3468060 B2 JP 3468060B2 JP 30317897 A JP30317897 A JP 30317897A JP 30317897 A JP30317897 A JP 30317897A JP 3468060 B2 JP3468060 B2 JP 3468060B2
Authority
JP
Japan
Prior art keywords
variable transmission
continuously variable
transmission
gear ratio
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30317897A
Other languages
Japanese (ja)
Other versions
JPH11141646A (en
Inventor
一浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30317897A priority Critical patent/JP3468060B2/en
Publication of JPH11141646A publication Critical patent/JPH11141646A/en
Application granted granted Critical
Publication of JP3468060B2 publication Critical patent/JP3468060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両などに採用さ
れる無段変速機、特に変速比無限大無段変速機の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a continuously variable transmission adopted in a vehicle or the like, and particularly to an continuously variable transmission having an infinite transmission ratio.

【0002】[0002]

【従来の技術】従来から連続的に変速比を設定可能な車
両の変速機としては、ベルト式やトロイダル型の無段変
速機が知られており、このような無段変速機の変速領域
をさらに拡大するために、無段変速機と一定変速機等を
並列的に配設するとともに、これらの出力軸を遊星歯車
機構へ入力して変速比を無限大まで制御可能とする変速
比無限大無段変速機が知られており、例えば、本願出願
人が提案した特願平8−155440号や特願平7−2
41890号などがある。
2. Description of the Related Art Conventionally, a belt type or toroidal type continuously variable transmission has been known as a transmission for a vehicle in which a gear ratio can be continuously set. For further expansion, a continuously variable transmission and a constant transmission are arranged in parallel, and these output shafts are input to the planetary gear mechanism so that the gear ratio can be controlled to infinity. A continuously variable transmission is known, and for example, Japanese Patent Application No. 8-155440 and Japanese Patent Application No. 7-2 proposed by the applicant of the present application.
41890 and the like.

【0003】これは、図9に示すように、エンジンに結
合される変速比無限大無段変速機のユニット入力軸1に
変速比を連続的に変更可能な無段変速機2と、ユニット
入力軸1に設けたギヤ3a及び遊星歯車機構5と選択的
に締結されるギヤ3bから構成される一定の変速比を備
えた一定変速機3(または、一定減速機)を並列的に連
結するとともに、これらの出力軸4及び3cを遊星歯車
機構5で結合したもので、無段変速機2の出力は無段変
速機出力ギヤ列40(無段変速機出力ギヤ2a、カウン
タギヤ40a、ギヤ4a)を介して出力軸4に連結さ
れ、出力軸4は遊星歯車機構5のサンギヤ5aに連結さ
れ、一定変速機3の出力軸3cは遊星歯車機構5のキャ
リア5bへ選択的に締結される一方、遊星歯車機構5の
リングギヤ5cはユニット出力軸6に結合される。
As shown in FIG. 9, this is because a continuously variable transmission 2 capable of continuously changing the gear ratio is connected to a unit input shaft 1 of an infinitely variable transmission continuously variable transmission coupled to an engine, and a unit input. A constant transmission 3 (or a constant speed reducer) having a constant speed ratio, which is composed of a gear 3a provided on the shaft 1 and a gear 3b selectively engaged with the planetary gear mechanism 5, is connected in parallel. , The output shafts 4 and 3c are connected by a planetary gear mechanism 5, and the output of the continuously variable transmission 2 is the continuously variable transmission output gear train 40 (the continuously variable transmission output gear 2a, the counter gear 40a, the gear 4a). ) Is connected to the output shaft 4, the output shaft 4 is connected to the sun gear 5a of the planetary gear mechanism 5, and the output shaft 3c of the constant transmission 3 is selectively fastened to the carrier 5b of the planetary gear mechanism 5. , The ring gear 5c of the planetary gear mechanism 5 is It is coupled to Tsu preparative output shaft 6.

【0004】無段変速機2は、2組の入力ディスク21
と出力ディスク22の間にそれぞれ扶持された一対のパ
ワーローラ20の傾転角に応じて変速比を連続的に変更
するトロイダル型無段変速機で構成されており、ユニッ
ト入力軸1から遊星歯車機構5のキャリア5bへの伝達
経路の途中には、動力循環モードクラッチ9が介装さ
れ、無段変速機の出力軸4からユニット出力軸6の伝達
経路の途中には、直結モードクラッチ10が介装され
る。なお、直結モードクラッチ10は、遊星歯車機構5
のうち、相互に歯合する回転要素(サンギヤ、キャリ
ア、リングギア)のうちの2つを固定するものであって
も良い。
The continuously variable transmission 2 has two sets of input disks 21.
And a pair of power rollers 20 held between the output disk 22 and the output disk 22 respectively. The toroidal type continuously variable transmission continuously changes the gear ratio according to the tilt angle of the pair of power rollers. A power circulation mode clutch 9 is provided in the transmission path of the mechanism 5 to the carrier 5b, and a direct coupling mode clutch 10 is provided in the transmission path of the continuously variable transmission from the output shaft 4 to the unit output shaft 6. Intervened. The direct coupling mode clutch 10 is used for the planetary gear mechanism 5.
Of these, two of the rotating elements (sun gear, carrier, ring gear) that mesh with each other may be fixed.

【0005】ユニット出力軸6には変速機出力ギヤ7が
設けられ、この変速機出力ギヤ7は差動ギヤ8のファイ
ナルギヤ12aと歯合し、所定の総減速比で差動ギヤ8
と結合した駆動軸11a、11bに駆動力が伝達され
る。
A transmission output gear 7 is provided on the unit output shaft 6, and the transmission output gear 7 meshes with a final gear 12a of a differential gear 8 so that the differential gear 8 has a predetermined total reduction ratio.
The driving force is transmitted to the drive shafts 11a and 11b coupled with the drive shafts.

【0006】このような変速比無限大無段変速機では、
動力循環モードクラッチ9を接続する一方、直結モード
クラッチ10を解放することにより、無段変速機2と一
定変速機3の変速比に応じて、ユニット変速比(総変速
比)Ivを負の値から正の値まで無限大を含んでほぼ連
続的に制御を行う動力循環モードと、動力循環モードク
ラッチ9を解放する一方、直結モードクラッチ10を接
続して無段変速機2の変速比と無段変速機出力ギヤ列4
0の変速比の積に応じた変速比となる無段変速機直結モ
ードを選択的に使用することができる。
In such a continuously variable transmission having an infinite transmission ratio,
By connecting the power circulation mode clutch 9 and releasing the direct connection mode clutch 10, the unit gear ratio (total gear ratio) Iv is set to a negative value in accordance with the gear ratio between the continuously variable transmission 2 and the constant transmission 3. To a positive value, the power circulation mode in which the control is performed substantially continuously including infinity, and the power circulation mode clutch 9 is released, while the direct coupling mode clutch 10 is connected, and the gear ratio of the continuously variable transmission 2 and Gearbox output gear train 4
It is possible to selectively use the continuously variable transmission direct-coupling mode in which the gear ratio corresponds to the product of the gear ratio of 0.

【0007】ここで、一定変速機3の減速比Igは、無
段変速機出力ギヤ列40の変速比Idと無段変速機で設
定可能な最大(最ロー)変速比IcLOWの積に等しい
か、または、これらの積以下で、かつ、可能な限り大き
く設定されており、総変速比に段差のない円滑なモード
切り換えを行うことができる。
Here, is the reduction gear ratio Ig of the constant transmission 3 equal to the product of the gear ratio Id of the continuously variable transmission output gear train 40 and the maximum (lowest) gear ratio IcLOW that can be set in the continuously variable transmission? Alternatively, the product is set to be less than or equal to the product of these and set as large as possible, and smooth mode switching can be performed without a step in the total speed ratio.

【0008】ところで、上記のような変速比無限大無段
変速機では、無段変速機直結モードにおける総変速比I
vは、無段変速機2の変速比Icと無段変速機出力ギヤ
列40の変速比Idと、ファイナルギヤ列12の減速比
Ifの積に等しい、すなわち、 Iv=(−Ic・Id)(−If)=Ic・Id・If ………(1) で表される。
By the way, in the continuously variable transmission having an infinite transmission ratio as described above, the total transmission ratio I in the direct connection mode of the continuously variable transmission is set.
v is equal to the product of the gear ratio Ic of the continuously variable transmission 2, the gear ratio Id of the continuously variable transmission output gear train 40, and the speed reduction ratio If of the final gear train 12, that is, Iv = (-Ic · Id) (-If) = Ic · Id · If ... (1)

【0009】また、動力循環モードにおける総変速比I
vは、無段変速機2の変速比Icと、無段変速機出力ギ
ヤ列の変速比Idと、一定変速機3の変速比Igと、遊
星歯車機構5のギヤ比α(=サンギヤ5aの歯数/リン
グギヤ5cの歯数)と、ファイナルギヤ列12の減速比
Ifから設定される。すなわち、
Further, the total gear ratio I in the power circulation mode
v is the gear ratio Ic of the continuously variable transmission 2, the gear ratio Id of the continuously variable transmission output gear train, the gear ratio Ig of the constant transmission 3, and the gear ratio α (= sun gear 5a of the planetary gear mechanism 5). The number of teeth / the number of teeth of the ring gear 5c) and the reduction ratio If of the final gear train 12 are set. That is,

【0010】[0010]

【数5】 [Equation 5]

【0011】で表される。It is represented by

【0012】したがって、総変速比Ivの範囲は、無段
変速機2の変速比幅λ(最大変速比/最小変速比)と、
無段変速機出力ギヤ列40の変速比Idと、一定変速機
3の変速比Igと、遊星歯車機構5のギヤ比αと、ファ
イナルギヤ列12の減速比Ifによって決まる。
Therefore, the range of the total gear ratio Iv is the gear ratio width λ (maximum gear ratio / minimum gear ratio) of the continuously variable transmission 2,
It is determined by the gear ratio Id of the continuously variable transmission output gear train 40, the gear ratio Ig of the constant transmission 3, the gear ratio α of the planetary gear mechanism 5, and the reduction gear ratio If of the final gear train 12.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来の変速比無限大無段変速機では、遊星歯車機構5のギ
ヤ比αと無段変速機2の変速比幅λの間に関連性が規定
されていないため、変速比無限大無段変速機に必要とさ
れる前進側最ハイ変速比IvHiと、必要とされる後退側
最ハイ変速比IvRevが与えられた場合、遊星歯車機構
5のギヤ比αによっては、無段変速機2の変速比範囲
(すなわち変速比幅λ)を有効に利用することができな
い場合があり、必要とされる変速比の条件を満たそうと
すると無段変速機2が大型化するという問題があった。
However, in the above-mentioned conventional infinitely variable transmission continuously variable transmission, a relationship is defined between the gear ratio α of the planetary gear mechanism 5 and the transmission ratio width λ of the continuously variable transmission 2. Therefore, when the maximum forward gear ratio IvHi required for the infinitely variable transmission and the required maximum backward gear ratio IvRev are provided, the gears of the planetary gear mechanism 5 are not provided. Depending on the ratio α, there is a case where the gear ratio range of the continuously variable transmission 2 (that is, the gear ratio width λ) cannot be effectively utilized, and if the condition of the required gear ratio is attempted to be satisfied, the continuously variable transmission will There was a problem that 2 became large.

【0014】すなわち、前記従来例と同様に、変速比無
限大無段変速機の諸元設定を、 無段変速機出力ギヤ列40の変速比Id=1.0 一定変速機3の変速比Ig=2.0 ファイナルギヤ列12の減速比If=3.5 遊星歯車機構5のギヤ比α=36/67 とし、必要とされる前進側最ハイ変速比IvHiと、必要
とされる後退側最ハイ変速比IvRevを、 IvHi=2 IvRev=−7.5 とした場合には、無段変速機2の変速比Icと総変速比
Ivの逆数1/Ivの関係は、図10に示すようにな
る。
That is, similarly to the conventional example, the specifications of the continuously variable transmission having an infinite transmission ratio are set such that the gear ratio Id of the continuously variable transmission output gear train 40 is 1.0 and the gear ratio Ig of the constant transmission 3 is constant. = 2.0 Reduction ratio If of final gear train 12 = 3.5 Gear ratio α of planetary gear mechanism 5 = 36/67, required forward maximum gear ratio IvHi and required reverse maximum gear ratio When the high gear ratio IvRev is set to IvHi = 2 IvRev = -7.5, the relationship between the gear ratio Ic of the continuously variable transmission 2 and the reciprocal 1 / Iv of the total gear ratio Iv is as shown in FIG. Become.

【0015】すなわち、変速比無限大無段変速機の総変
速比Ivが必要とする前進側最ハイ変速比IvHiとなる
無段変速機2の変速比IcHi、及び必要とする後退側最
ハイ変速比IcRevとなる無段変速機2の変速比IcRev
は、
That is, the gear ratio IcHi of the continuously variable transmission 2 at which the total gear ratio Iv of the continuously variable transmission with infinite gear ratio becomes the required highest forward gear ratio IvHi, and the required highest gear ratio of the backward gear IvHi. The gear ratio IcRev of the continuously variable transmission 2 with the ratio IcRev
Is

【0016】[0016]

【数6】 [Equation 6]

【0017】となる。[0017]

【0018】無段変速機2の変速比範囲、すなわち、変
速比幅λは、図10のように、前進側では余裕を生ずる
が、後退側では不足する。このため、変速比範囲を有効
に利用することができないばかりか、後退側での不足を
補うためには、無段変速機2の変速比範囲を拡大するこ
とにより無段変速機2が大型化するという問題があっ
た。
As shown in FIG. 10, the gear ratio range of the continuously variable transmission 2, that is, the gear ratio width λ, has a margin on the forward side but is insufficient on the reverse side. For this reason, not only can the gear ratio range not be effectively utilized, but in order to compensate for the shortage on the reverse side, the gear ratio range of the continuously variable transmission 2 is expanded to increase the size of the continuously variable transmission 2. There was a problem of doing.

【0019】そこで本発明は、上記間題点に鑑みてなさ
れたもので、遊星歯車機構のギヤ比αと無段変速機の変
速比幅λの間に所定の関係を設定し、無段変速機の変速
比範囲を有効に利用し、変速比無限大無段変速機の小型
軽量化を可能にすることを目的とする。
Therefore, the present invention has been made in view of the above-mentioned problem, and a predetermined relationship is set between the gear ratio α of the planetary gear mechanism and the speed ratio width λ of the continuously variable transmission to continuously change the speed. It is an object of the present invention to effectively utilize the gear ratio range of a machine and to reduce the size and weight of a continuously variable transmission with an infinite gear ratio.

【0020】[0020]

【課題を解決するための手段】第1の発明は、ユニット
入力軸にそれぞれ接続された無段変速機及び一定変速機
と、無段変速機の出力軸に連結したサンギヤ、シングル
ピニオンで構成されて一定変速機の出力軸に連結したキ
ャリア及びユニット出力軸に連結したリングギヤとから
なる遊星歯車機構と、前記ユニット入力軸から遊星歯車
機構のキャリアへの動力伝達経路の途中に介装された動
力循環モードクラッチと、前記無段変速機の出力軸から
ユニット出力軸の動力伝達経路の途中に介装されて無段
変速機の出力軸とユニット出力軸を選択的に締結または
遊星歯車機構の相互に歯合する前記回転要素を選択的に
固定する直結モードクラッチとを備えて、前記動力循環
モードクラッチと直結モードクラッチとを選択的に締
結、解除可能な変速比無限大無段変速機において、変速
比無限大無段変速機の前進側最ハイ変速比をIvHiと
し、同じく後退側最ハイ変速比をIvRevとするととも
に、前記無段変速機の変速比幅をλとすると、前記遊星
歯車機構のサンギヤの歯数/リングギヤの歯数で表され
るギヤ比αは、
A first aspect of the present invention comprises a continuously variable transmission and a constant transmission, each connected to a unit input shaft, a sun gear and a single pinion connected to an output shaft of the continuously variable transmission. A planetary gear mechanism consisting of a carrier connected to the output shaft of a constant transmission and a ring gear connected to the unit output shaft, and a power interposed in the power transmission path from the unit input shaft to the carrier of the planetary gear mechanism. The circulation mode clutch and the output shaft of the continuously variable transmission are interposed between the output shaft of the continuously variable transmission and the unit output shaft so that the output shaft of the continuously variable transmission and the unit output shaft are selectively engaged or interlocked with each other by the planetary gear mechanism. A direct coupling mode clutch that selectively fixes the rotary element that meshes with the power circulation mode clutch and the direct coupling mode clutch. In the infinite continuously variable transmission, the forward maximum speed ratio of the infinite continuously variable transmission is set to IvHi, the reverse maximum speed ratio is set to IvRev, and the speed ratio range of the continuously variable transmission is set. If λ, the gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is

【0021】[0021]

【数7】 [Equation 7]

【0022】に設定される。Is set to

【0023】また、第2の発明は、ユニット入力軸にそ
れぞれ接続された無段変速機及び一定変速機と、無段変
速機の出力軸に連結したリングギヤ、シングルピニオン
で構成されて一定変速機の出力軸に連結したキャリア及
びユニット出力軸に連結したサンギヤとからなる遊星歯
車機構と、前記ユニット入力軸から遊星歯車機構のキャ
リアへの動力伝達経路の途中に介装された動力循環モー
ドクラッチと、前記無段変速機の出力軸からユニット出
力軸の動力伝達経路の途中に介装されて無段変速機の出
力軸とユニット出力軸を選択的に締結または遊星歯車機
構の相互に歯合する前記回転要素を選択的に固定する直
結モードクラッチとを備えて、前記動力循環モードクラ
ッチと直結モードクラッチとを選択的に締結、解除可能
な変速比無限大無段変速機において、変速比無限大無段
変速機の前進側最ハイ変速比をIvHiとし、同じく後退
側最ハイ変速比をIvRevとするとともに、前記無段変
速機の変速比幅をλとすると、前記遊星歯車機構のサン
ギヤの歯数/リングギヤの歯数で表されるギヤ比αは、
A second aspect of the present invention is a constant transmission that is composed of a continuously variable transmission and a constant transmission that are respectively connected to a unit input shaft, a ring gear that is connected to an output shaft of the continuously variable transmission, and a single pinion. A planetary gear mechanism consisting of a carrier connected to the output shaft of the above and a sun gear connected to the unit output shaft, and a power circulation mode clutch interposed in the middle of the power transmission path from the unit input shaft to the carrier of the planetary gear mechanism. An output shaft of the continuously variable transmission, which is interposed in the power transmission path of the unit output shaft, selectively engages the output shaft of the continuously variable transmission with the unit output shaft or meshes with the planetary gear mechanism. A direct coupling mode clutch for selectively fixing the rotating element, and a gear ratio infinity capable of selectively engaging and releasing the power circulation mode clutch and the direct coupling mode clutch. In the transmission, if the forward-side highest gear ratio of the continuously variable transmission with infinite gear ratio is IvHi, the backward-side highest gear ratio is IvRev, and the gear ratio width of the continuously variable transmission is λ, The gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is

【0024】[0024]

【数8】 [Equation 8]

【0025】に設定される。Is set to

【0026】また、第3の発明は、ユニット入力軸にそ
れぞれ連結された無段変速機及び一定変速機と、無段変
速機の出力軸に連結したサンギヤ、一定変速機の出力軸
に連結したリングギヤ及びダブルピニオンで構成されて
ユニット出力軸に連結したキャリアとからなる遊星歯車
機構と、前記ユニット入力軸から遊星歯車機構のリング
ギヤへの動力伝達経路の途中に介装された動力循環モー
ドクラッチと、前記無段変速機の出力軸からユニット出
力軸の動力伝達経路の途中に介装されて無段変速機の出
力軸とユニット出力軸を選択的に締結または遊星歯車機
構の相互に歯合する前記回転要素を選択的に固定する直
結モードクラッチとを備えて、前記動力循環モードクラ
ッチと直結モードクラッチとを選択的に締結、解除可能
な変速比無限大無段変速機において、変速比無限大無段
変速機の前進側最ハイ変速比をIvHiとし、同じく後退
側最ハイ変速比をIvRevとするとともに、前記無段変
速機の変速比幅をλとすると、前記遊星歯車機構のサン
ギヤの歯数/リングギヤの歯数で表されるギヤ比αは、
In the third aspect of the invention, a continuously variable transmission and a constant transmission, each connected to the unit input shaft, a sun gear connected to the output shaft of the continuously variable transmission, and an output shaft of the constant transmission are connected. A planetary gear mechanism including a ring gear and a carrier that is composed of a double pinion and connected to a unit output shaft, and a power circulation mode clutch that is interposed in the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism. An output shaft of the continuously variable transmission, which is interposed in the power transmission path of the unit output shaft, selectively engages the output shaft of the continuously variable transmission with the unit output shaft or meshes with the planetary gear mechanism. A direct coupling mode clutch for selectively fixing the rotating element, and a gear ratio infinity capable of selectively engaging and releasing the power circulation mode clutch and the direct coupling mode clutch. In the transmission, if the forward-side highest gear ratio of the continuously variable transmission with infinite gear ratio is IvHi, the backward-side highest gear ratio is IvRev, and the gear ratio width of the continuously variable transmission is λ, The gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is

【0027】[0027]

【数9】 [Equation 9]

【0028】に設定される。Is set to

【0029】また、第4の発明は、ユニット入力軸にそ
れぞれ連結された無段変速機及び一定変速機と、ダブル
ピニオンで構成されて無段変速機の出力軸に連結したキ
ャリア、一定変速機の出力軸に連結したリングギヤ及び
ユニット出力軸に連結したサンギヤとからなる遊星歯車
機構と、前記ユニット入力軸から遊星歯車機構のリング
ギヤへの動力伝達経路の途中に介装された動力循環モー
ドクラッチと、前記無段変速機の出力軸からユニット出
力軸の動力伝達経路の途中に介装されて無段変速機の出
力軸とユニット出力軸を選択的に締結または遊星歯車機
構の相互に歯合する前記回転要素を選択的に固定する直
結モードクラッチとを備えて、前記動力循環モードクラ
ッチと直結モードクラッチとを選択的に締結、解除可能
な変速比無限大無段変速機において、変速比無限大無段
変速機の前進側最ハイ変速比をIvHiとし、同じく後退
側最ハイ変速比をIvRevとするとともに、前記無段変
速機の変速比幅をλとすると、前記遊星歯車機構のサン
ギヤの歯数/リングギヤの歯数で表されるギヤ比αは、
A fourth aspect of the invention is a continuously variable transmission and a constant transmission, each of which is connected to a unit input shaft, and a carrier and a constant transmission, which are composed of a double pinion and are connected to an output shaft of the continuously variable transmission. A planetary gear mechanism consisting of a ring gear connected to the output shaft of the above and a sun gear connected to the unit output shaft, and a power circulation mode clutch interposed in the middle of the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism. An output shaft of the continuously variable transmission, which is interposed in the power transmission path of the unit output shaft, selectively engages the output shaft of the continuously variable transmission with the unit output shaft or meshes with the planetary gear mechanism. A direct coupling mode clutch for selectively fixing the rotating element, and a gear ratio infinity capable of selectively engaging and releasing the power circulation mode clutch and the direct coupling mode clutch. In the transmission, if the forward-side highest gear ratio of the continuously variable transmission with infinite gear ratio is IvHi, the backward-side highest gear ratio is IvRev, and the gear ratio width of the continuously variable transmission is λ, The gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is

【0030】[0030]

【数10】 [Equation 10]

【0031】に設定される。Is set to

【0032】[0032]

【発明の効果】第1の発明は、無段変速機の出力軸に連
結したサンギヤ、シングルピニオンで構成されて一定変
速機の出力軸に連結したキャリア及びユニット出力軸に
連結したリングギヤとからなる遊星歯車機構のギヤ比α
と無段変速機の変速比幅λの関係を、上記(A)式に等
しいか、またはほぼ等しい値に設定する構成としたた
め、無段変速機の最小(最ハイ)変速比IcHiにおい
て、変速比無限大無段変速機の総変速比Ivを、動力循
環モードのときには必要とされる後退側の最ハイ変速比
IvRevに、無段変速機直結モードのときには必要とさ
れる前進側の最ハイ変速比IvHiにすることが可能とな
って、無段変速機の変速比範囲を有効に活用できるた
め、前記従来例のように無段変速機を大型化する必要が
なくなって、変速比無限大無段変速機の小型軽量化を推
進できる。
The first invention comprises a sun gear connected to the output shaft of a continuously variable transmission, a carrier composed of a single pinion and connected to the output shaft of a constant transmission, and a ring gear connected to the unit output shaft. Gear ratio α of planetary gear mechanism
And the gear ratio width λ of the continuously variable transmission are set to a value equal to or substantially equal to the expression (A), the gear ratio is changed at the minimum (highest) gear ratio IcHi of the continuously variable transmission. The total gear ratio Iv of the infinite ratio continuously variable transmission is set to the highest reverse gear ratio IvRev required in the power circulation mode, and the highest forward gear ratio required in the continuously variable transmission direct connection mode. Since the gear ratio can be set to IvHi and the gear ratio range of the continuously variable transmission can be effectively utilized, it is not necessary to increase the size of the continuously variable transmission as in the conventional example described above. The size and weight of the continuously variable transmission can be promoted.

【0033】また、第2の発明は、無段変速機の出力軸
に連結したリングギヤ、シングルピニオンで構成されて
一定変速機の出力軸に連結したキャリア及びユニット出
力軸に連結したサンギヤとからなる遊星歯車機構のギヤ
比αと無段変速機の変速比幅λの関係を、上記(B)式
に等しいか、またはほぼ等しい値に設定する構成とした
ため、無段変速機の最小(最ハイ)変速比IcHiにおい
て、変速比無限大無段変速機の総変速比Ivを、動力循
環モードのときには必要とされる後退側の最ハイ変速比
IvRevに、無段変速機直結モードのときには必要とさ
れる前進側の最ハイ変速比IvHiにすることが可能とな
って、無段変速機の変速比範囲を有効に活用できるた
め、前記従来例のように無段変速機を大型化する必要が
なくなって、変速比無限大無段変速機の小型軽量化を推
進できる。
The second invention comprises a ring gear connected to the output shaft of the continuously variable transmission, a carrier composed of a single pinion and connected to the output shaft of the constant transmission, and a sun gear connected to the unit output shaft. Since the relationship between the gear ratio α of the planetary gear mechanism and the gear ratio width λ of the continuously variable transmission is set to a value equal to or substantially equal to the above equation (B), the minimum (maximum high speed of the continuously variable transmission is ) In the gear ratio IcHi, the total gear ratio Iv of the continuously variable transmission with infinite gear ratio is set to the highest gear ratio IvRev on the reverse side which is required in the power circulation mode, and is required in the continuously variable transmission direct connection mode. The maximum gear ratio IvHi on the forward side can be set, and the gear ratio range of the continuously variable transmission can be effectively utilized. Therefore, it is necessary to increase the size of the continuously variable transmission as in the conventional example. Gone, infinite gear ratio It can promote the size and weight of the continuously variable transmission.

【0034】また、第3の発明は、無段変速機の出力軸
に連結したサンギヤ、一定変速機の出力軸に連結したリ
ングギヤ及びダブルピニオンで構成されてユニット出力
軸に連結したキャリアとからなる遊星歯車機構のギヤ比
αと無段変速機の変速比幅λの関係を、上記(C)式に
等しいか、またはほぼ等しい値に設定する構成としたた
め、無段変速機の最小(最ハイ)変速比IcHiにおい
て、変速比無限大無段変速機の総変速比Ivを、動力循
環モードのときには必要とされる後退側の最ハイ変速比
IvRevに、無段変速機直結モードのときには必要とさ
れる前進側の最ハイ変速比IvHiにすることが可能とな
って、無段変速機の変速比範囲を有効に活用できるた
め、前記従来例のように無段変速機を大型化する必要が
なくなって、変速比無限大無段変速機の小型軽量化を推
進できる。
The third invention comprises a sun gear connected to the output shaft of the continuously variable transmission, a ring gear connected to the output shaft of the constant transmission, and a carrier composed of a double pinion and connected to the unit output shaft. Since the relationship between the gear ratio α of the planetary gear mechanism and the gear ratio width λ of the continuously variable transmission is set to a value equal to or substantially equal to the above formula (C), the minimum (highest maximum ) In the gear ratio IcHi, the total gear ratio Iv of the continuously variable transmission with infinite gear ratio is set to the highest gear ratio IvRev on the reverse side which is required in the power circulation mode, and is required in the continuously variable transmission direct connection mode. The maximum gear ratio IvHi on the forward side can be set, and the gear ratio range of the continuously variable transmission can be effectively utilized. Therefore, it is necessary to increase the size of the continuously variable transmission as in the conventional example. Gone, infinite gear ratio It can promote the size and weight of the variable transmission.

【0035】また、第4の発明は、ダブルピニオンで構
成されて無段変速機の出力軸に連結したキャリア、一定
変速機の出力軸に連結したリングギヤ及びユニット出力
軸に連結したサンギヤとからなる遊星歯車機構のギヤ比
αと無段変速機の変速比幅λの関係を、上記(D)式に
等しいか、またはほぼ等しい値に設定する構成としたた
め、無段変速機の最小(最ハイ)変速比IcHiにおい
て、変速比無限大無段変速機の総変速比Ivを、動力循
環モードのときには必要とされる後退側の最ハイ変速比
IvRevに、無段変速機直結モードのときには必要とさ
れる前進側の最ハイ変速比IvHiにすることが可能とな
って、無段変速機の変速比範囲を有効に活用できるた
め、前記従来例のように無段変速機を大型化する必要が
なくなって、変速比無限大無段変速機の小型軽量化を推
進できる。
The fourth aspect of the invention comprises a carrier which is composed of a double pinion and is connected to the output shaft of the continuously variable transmission, a ring gear which is connected to the output shaft of the constant transmission, and a sun gear which is connected to the unit output shaft. Since the relationship between the gear ratio α of the planetary gear mechanism and the speed ratio width λ of the continuously variable transmission is set to a value equal to or substantially equal to the above equation (D), the minimum (highest maximum ) In the gear ratio IcHi, the total gear ratio Iv of the continuously variable transmission with infinite gear ratio is set to the highest gear ratio IvRev on the reverse side which is required in the power circulation mode, and is required in the continuously variable transmission direct connection mode. The maximum gear ratio IvHi on the forward side can be set, and the gear ratio range of the continuously variable transmission can be effectively utilized. Therefore, it is necessary to increase the size of the continuously variable transmission as in the conventional example. Gone, infinite gear ratio It can promote the size and weight of the variable transmission.

【0036】[0036]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0037】図1は、前記従来例の図9に示したトロイ
ダル型無段変速機を用いて、変速比無限大無段変速機を
構成した一例を示しており、前記従来例の遊星歯車機構
5を、無段変速機2の変速比幅λに対応したギヤ比αを
備える遊星歯車機構105に代えたもので、その他は前
記従来例と同様に構成されており、同一のものに同一の
符号を付して重複説明を省略する。
FIG. 1 shows an example in which a continuously variable transmission having an infinite transmission ratio is constructed by using the toroidal type continuously variable transmission shown in FIG. 9 of the conventional example, and the planetary gear mechanism of the conventional example is shown. 5 is replaced with a planetary gear mechanism 105 having a gear ratio α corresponding to the gear ratio width λ of the continuously variable transmission 2, and the other components are configured in the same manner as the above-mentioned conventional example, and are the same as the same components. The same reference numerals are given and duplicate explanations are omitted.

【0038】遊星歯車機構105は、無段変速機2の出
力を受ける無段変速機出力ギヤ列40(2a、40a、
4a)の出力軸4に連結されたサンギヤ105aと、動
力循環モードクラッチ9を介して一定変速機3のギヤ3
bへ選択的に締結される出力軸3cに連結されたキャリ
ア105bと、ユニット出力軸6に結合されたリングギ
ヤ105cから構成され、前記従来例と異なる点は、遊
星歯車機構105のギヤ比α(=サンギヤ105aの歯
数/リングギヤ105cの歯数)が、無段変速機2の変
速比幅λに応じて次式のように設定される。
The planetary gear mechanism 105 receives the output of the continuously variable transmission 2 and continuously variable transmission output gear train 40 (2a, 40a,
4a) the sun gear 105a connected to the output shaft 4 and the gear 3 of the constant transmission 3 via the power circulation mode clutch 9.
It is composed of a carrier 105b connected to the output shaft 3c that is selectively fastened to b, and a ring gear 105c connected to the unit output shaft 6. The difference from the conventional example is that the gear ratio α of the planetary gear mechanism 105 ( = The number of teeth of the sun gear 105a / the number of teeth of the ring gear 105c) is set according to the gear ratio width λ of the continuously variable transmission 2 according to the following equation.

【0039】[0039]

【数11】 [Equation 11]

【0040】ここで、λは無段変速機2の変速比幅であ
り、無段変速機2の変速比Icの範囲は、
Here, λ is the speed ratio width of the continuously variable transmission 2, and the range of the speed ratio Ic of the continuously variable transmission 2 is

【0041】[0041]

【数12】 [Equation 12]

【0042】のように表される。It is expressed as follows.

【0043】すなわち、無段変速機2の最大(最ロー)
変速比IcLOWと、無段変速機2の最小(最ハイ)変速
比IcHiは、
That is, the maximum (lowest) of the continuously variable transmission 2
The gear ratio IcLOW and the minimum (highest) gear ratio IcHi of the continuously variable transmission 2 are

【0044】[0044]

【数13】 [Equation 13]

【0045】で、それぞれ表される。Are respectively represented by

【0046】また、IvHiは変速比無限大無段変速機に
必要とされる前進側最ハイ変速比、IvRevは、変速比
無限大無段変速機に必要とされる後退側最ハイ変速比で
ある。
Further, IvHi is the forward maximum gear ratio required for the infinitely variable transmission continuously variable transmission, and IvRev is the backward maximum gear ratio required for the infinitely variable transmission continuously variable transmission. is there.

【0047】なお、前記従来例と同様に、動力循環モー
ドと無段変速機直結モードとの切り換えを段差なく滑ら
かに行うことができるよう、一定変速機3の変速比Ig
は、無段変速機出力ギヤ列40の変速比Idを用いて次
式を満たすよう設定されている。
As in the case of the conventional example, the gear ratio Ig of the constant transmission 3 is set so that the power circulation mode and the continuously variable transmission direct connection mode can be smoothly switched without a step.
Is set to satisfy the following equation using the gear ratio Id of the continuously variable transmission output gear train 40.

【0048】[0048]

【数14】 [Equation 14]

【0049】以上のように構成され、次に作用について
説明する。
With the above construction, the operation will be described.

【0050】無段変速機2の最小変速比IcHiのときに
無段変速機直結モードにおいて、変速比無限大無段変速
機の総変速比Ivが必要とされる前進側最ハイ変速比I
vHiとなるとすれば、上記(1)式から無段変速機出力
ギヤ列40の変速比Idは、
When the minimum speed ratio IcHi of the continuously variable transmission 2 is set, in the continuously variable transmission direct connection mode, the total speed ratio Iv of the continuously variable transmission having an infinite speed ratio is required.
Assuming vHi, the gear ratio Id of the continuously variable transmission output gear train 40 can be calculated from the equation (1) above.

【0051】[0051]

【数15】 [Equation 15]

【0052】で表される。It is represented by

【0053】また、動力循環モードにおいて、変速比無
限大無段変速機の総変速比Ivが必要とされる後退側最
ハイ変速比IvRevとなる無段変速機2の変速比IcRev
は、
Further, in the power circulation mode, the gear ratio IcRev of the continuously variable transmission 2 at which the total gear ratio Iv of the infinite gear ratio continuously variable transmission becomes the required backward maximum gear ratio IvRev
Is

【0054】[0054]

【数16】 [Equation 16]

【0055】となるから、IcRevは、次の関係式を満
たす。
Therefore, IcRev satisfies the following relational expression.

【0056】[0056]

【数17】 [Equation 17]

【0057】ここで、遊星歯車機構105のギヤ比α
は、上記(5)式のように設定されているので、上記
(12)式は、
Here, the gear ratio α of the planetary gear mechanism 105
Is set as in the above equation (5), the above equation (12) is

【0058】[0058]

【数18】 [Equation 18]

【0059】となり、無段変速機2の最小(最ハイ)変
速比IcHi=1/λ1/2において、変速比無限大無段変
速機の総減速比Ivは、無段変速機直結モードのとき
は、必要とされる前進側最ハイ変速比となり、動力循環
モードのときは、必要とされる後退側最ハイ変速比とな
ることがわかる。
Therefore, at the minimum (highest) gear ratio IcHi = 1 / λ 1/2 of the continuously variable transmission 2 , the total speed reduction ratio Iv of the continuously variable transmission having an infinite gear ratio is equal to that of the continuously variable transmission direct connection mode. It can be seen that the maximum forward gear ratio is required at this time, and the required maximum reverse gear ratio at the time of power circulation mode.

【0060】実際に数値をあてはめて、計算してみる。
無段変速機の変速比幅λと、ファイナルギヤ列減速比I
fを、 λ=4 If=3 に設定し、変速比無限大無段変速機に必要とされる前進
側最ハイ変速比IvHiと必要とされる後退側最ハイ変速
比IvRevを、 IvHi=1.2 IvRev=−7.5 にそれぞれ設定すると、変速比無限大無段変速機の諸元
設定は、上記式より、
Apply numerical values and calculate.
The gear ratio width λ of the continuously variable transmission and the final gear train reduction ratio I
f is set to λ = 4 If = 3, and the forward-side maximum gear ratio IvHi required for the infinite gear ratio continuously variable transmission and the required reverse-side maximum gear ratio IvRev are set to IvHi = 1.2. When IvRev = -7.5 is set, the specifications of the continuously variable transmission with infinite transmission ratio are

【0061】[0061]

【数19】 [Formula 19]

【0062】のようになる。It becomes as follows.

【0063】したがって、遊星歯車機構105のギヤ比
αは、上記(5)式より、
Therefore, the gear ratio α of the planetary gear mechanism 105 is calculated from the above equation (5) as follows:

【0064】[0064]

【数20】 [Equation 20]

【0065】となる。It becomes

【0066】この場合の無段変速機の変速比Icと変速
比無限大無段変速機の総変速比Ivの逆数の関係は図2
に示すようになる。
In this case, the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the total gear ratio Iv of the infinitely variable transmission is shown in FIG.
As shown in.

【0067】したがって、無段変速機2の最小変速比
(最ハイ)IcHiにおいて、変速比無限大無段変速機の
総変速比Ivは、動力循環モードのときに必要とされる
後退側最ハイ変速比IvRevとなる一方、無段変速機直
結モードのときには、必要とされる前進側最ハイ変速比
IvHiとなるため、無段変速機2の変速比範囲を有効に
活用できる。
Therefore, at the minimum speed ratio (highest) IcHi of the continuously variable transmission 2, the total speed ratio Iv of the continuously variable transmission having an infinite speed ratio is the highest speed on the reverse side required in the power circulation mode. While the gear ratio becomes IvRev, in the continuously variable transmission direct-coupling mode, the required forward-side highest gear ratio IvHi is obtained, so that the gear ratio range of the continuously variable transmission 2 can be effectively utilized.

【0068】こうして、遊星歯車機構105のギヤ比α
と無段変速機2の変速比幅λの関係を、上記(5)式も
しくは、それにほぼ等しい値に設定する構成としたた
め、無段変速機2の最小(最ハイ)変速比IcHiにおい
て、変速比無限大無段変速機の総変速比Ivを、動力循
環モードのときには必要とされる後退側最ハイ変速比I
vRev、無段変速機直結モードのときには必要とされる
前進側最ハイ変速比IvHiにすることができ、無段変速
機の変速比範囲を有効に活用できるため、前記従来例の
ように無段変速機を大型化する必要がなくなって、変速
比無限大無段変速機の小型軽量化を可能にすることがで
きる。
Thus, the gear ratio α of the planetary gear mechanism 105 is
Since the relationship between the gear ratio width λ of the continuously variable transmission 2 and the gear ratio width λ of the continuously variable transmission 2 is set to the above expression (5) or a value substantially equal thereto, the gear change is performed at the minimum (highest) gear ratio IcHi of the continuously variable transmission 2. The total gear ratio Iv of the infinite ratio continuously variable transmission is set to the reverse side highest gear ratio I required in the power circulation mode.
In the vRev and continuously variable transmission direct connection modes, the required forward maximum gear ratio IvHi can be achieved, and the gear ratio range of the continuously variable transmission can be effectively utilized. Since it is not necessary to increase the size of the transmission, it is possible to reduce the size and weight of the continuously variable transmission with an infinite transmission ratio.

【0069】図3は、第2の実施形態を示し、前記第1
実施形態の変速比無限大無段変速機における遊星歯車機
構105を遊星歯車機構205に変更したもので、その
他の構成は、前記第1実施形態と同様である。
FIG. 3 shows a second embodiment, in which the first
The planetary gear mechanism 105 in the infinitely variable transmission continuously variable transmission according to the embodiment is replaced with the planetary gear mechanism 205, and the other configurations are the same as those in the first embodiment.

【0070】遊星歯車機構205は、シングルピニオン
のキャリア205bを備え、このキャリア205bを一
定変速機3の出力軸3cに結合し、サンギヤ205aを
ユニット出力軸6に、リングギヤ205cを無段変速機
2と連結された出力軸4にそれぞれ結合したものであ
る。
The planetary gear mechanism 205 comprises a single pinion carrier 205b, which is connected to the output shaft 3c of the constant transmission 3, the sun gear 205a being the unit output shaft 6, and the ring gear 205c being the continuously variable transmission 2. Are connected to the output shafts 4 which are respectively connected to.

【0071】遊星歯車機構205のギヤ比α(=サンギ
ヤ205aの歯数/リングギヤ205cの歯数)は、次
式のように設定されている。
The gear ratio α of the planetary gear mechanism 205 (= the number of teeth of the sun gear 205a / the number of teeth of the ring gear 205c) is set by the following equation.

【0072】[0072]

【数21】 [Equation 21]

【0073】ここで、λは無段変速機2の変速比幅であ
り、変速比Icの範囲は、上記(6)式と同様である。
Here, λ is the speed ratio width of the continuously variable transmission 2, and the range of the speed ratio Ic is the same as that of the above equation (6).

【0074】すなわち、無段変速機2の最大(最ロー)
変速比IcLOWは、上記(7)式と同様に、無段変速機
2の最小(最ハイ)変速比IcHiは、上記(8)式と同
様に、それぞれ表される。
That is, the maximum (lowest) of the continuously variable transmission 2
The gear ratio IcLOW is expressed in the same manner as in the expression (7), and the minimum (highest) gear ratio IcHi in the continuously variable transmission 2 is expressed in the same manner as in the expression (8).

【0075】また、IvHiは変速比無限大無段変速機に
必要とされる前進側最ハイ変速比、IvRevは、変速比
無限大無段変速機に必要とされる後退側最ハイ変速比で
ある。
IvHi is the maximum forward gear ratio required for an infinitely variable transmission continuously variable transmission, and IvRev is the maximum backward gear ratio required for an infinitely variable transmission continuously variable transmission. is there.

【0076】なお、前記従来例と同様に、動力循環モー
ドと無段変速機直結モードとの切り換えを段差なく滑ら
かに行うことができるよう、一定変速機3の変速比Ig
は、無段変速機出力ギヤ列40の変速比Idを用いて上
記(9)式の関係を満たすよう設定されている。
As in the conventional example, the gear ratio Ig of the constant transmission 3 is set so that the power circulation mode and the continuously variable transmission direct coupling mode can be smoothly switched without any step.
Is set so as to satisfy the relationship of the above expression (9) by using the gear ratio Id of the continuously variable transmission output gear train 40.

【0077】無段変速機直結モードにおいて、無段変速
機2が最小(最ハイ)変速比IcHiのときに、変速比無
限大無段変速機の総変速比Ivが必要とされる前進側最
ハイ変速比IvHiとなるとすれば、無段変速機出力ギヤ
列40の変速比Idは、上記と同様に(1)式から(1
0)式で表される。
In the continuously variable transmission direct connection mode, when the continuously variable transmission 2 has the minimum (highest) gear ratio IcHi, the total gear ratio Iv of the continuously variable continuously variable transmission is required. Assuming that the high gear ratio IvHi is obtained, the gear ratio Id of the continuously variable transmission output gear train 40 can be calculated from the equation (1) by
It is represented by the formula 0).

【0078】また、動力循環モードにおいて、変速比無
限大無段変速機の総変速比Ivが必要とされる後退側最
ハイ変速比IvRevとなる無段変速機2の変速比IcRev
は、
Further, in the power circulation mode, the gear ratio IcRev of the continuously variable transmission 2 at which the total gear ratio Iv of the infinite gear ratio continuously variable transmission becomes the required backward maximum gear ratio IvRev
Is

【0079】[0079]

【数22】 [Equation 22]

【0080】となるから、IcRevは、次の関係式を満
たす。
Therefore, IcRev satisfies the following relational expression.

【0081】[0081]

【数23】 [Equation 23]

【0082】ここで、遊星歯車機構205のギヤ比α
は、上記(16)式のように設定されているので、この
(18)式は、
Here, the gear ratio α of the planetary gear mechanism 205
Is set as in the above equation (16), the equation (18) is

【0083】[0083]

【数24】 [Equation 24]

【0084】となり、無段変速機2の最小(最ハイ)変
速比IcHi=1/λ1/2において、変速比無限大無段変
速機の総減速比Ivは、無段変速機直結モードのとき
は、必要とされる前進側最ハイ変速比となり、動力循環
モードのときは、必要とされる後退側最ハイ変速比とな
ることがわかる。
Therefore, at the minimum (highest) gear ratio IcHi = 1 / λ 1/2 of the continuously variable transmission 2 , the total reduction ratio Iv of the continuously variable transmission having an infinite gear ratio is equal to that of the continuously variable transmission direct coupling mode. It can be seen that the maximum forward gear ratio is required at this time, and the required maximum reverse gear ratio at the time of power circulation mode.

【0085】実際に数値をあてはめて、計算してみる。
無段変速機の変速比幅λと、ファイナルギヤ列減速比I
fを、 λ=2 If=3 に設定し、変速比無限大無段変速機に必要とされる前進
側最ハイ変速比IvHiと必要とされる後退側最ハイ変速
比IvRevを、 IvHi=1.2 IvRev=−7.5 にそれぞれ設定すると、変速比無限大無段変速機の諸元
設定は、上記式より、
Actually apply numerical values and calculate.
The gear ratio width λ of the continuously variable transmission and the final gear train reduction ratio I
f is set to λ = 2 If = 3, and the forward-side maximum gear ratio IvHi required for the infinite gear ratio continuously variable transmission and the required reverse-side maximum gear ratio IvRev are set to IvHi = 1.2. When IvRev = −7.5 is set, the specifications of the continuously variable transmission with infinite gear ratio are

【0086】[0086]

【数25】 [Equation 25]

【0087】この場合、遊星歯車機構205のギヤ比α
は、上記(16)式より
In this case, the gear ratio α of the planetary gear mechanism 205
Is from the above equation (16)

【0088】[0088]

【数26】 [Equation 26]

【0089】となる。この場合の無段変速機の変速比I
cと変速比無限大無段変速機の総変速比Ivの逆数の関
係は図4に示すようになる。
It becomes The gear ratio I of the continuously variable transmission in this case
The relationship between c and the reciprocal of the total gear ratio Iv of the continuously variable transmission with infinite gear ratio is shown in FIG.

【0090】したがって、無段変速機2の最小(最ハ
イ)変速比IcHiにおいて、変速比無限大無段変速機の
総変速比Ivは、動力循環モードのときに必要とされる
後退側最ハイ変速比IvRevに設定される一方、無段変
速機直結モードのときには、必要とされる前進側最ハイ
変速比IvHiとなるため、無段変速機2の変速比範囲を
有効に活用できる。
Therefore, at the minimum (highest) gear ratio IcHi of the continuously variable transmission 2, the total gear ratio Iv of the continuously variable transmission having an infinite gear ratio is the highest gear on the reverse side required in the power circulation mode. While the gear ratio is set to IvRev, in the continuously variable transmission direct-coupling mode, the required forward-side highest gear ratio IvHi is obtained, so that the gear ratio range of the continuously variable transmission 2 can be effectively utilized.

【0091】こうして、遊星歯車機構205のギヤ比α
と無段変速機2の変速比幅λの関係を、上記(16)式
もしくは、それにほぼ等しい値に設定する構成としたた
め、無段変速機2の最小(最ハイ)変速比IcHiにおい
て、変速比無限大無段変速機の総変速比Ivを、動力循
環モードのときには必要とされる後退側最ハイ変速比I
vRev、無段変速機直結モードのときには必要とされる
前進側最ハイ変速比IvHiに設定することができ、無段
変速機2の変速比範囲を有効に活用できるため、前記従
来例のように無段変速機を大型化する必要がなく、変速
比無限大無段変速機の小型軽量化を可能にすることがで
きる。
Thus, the gear ratio α of the planetary gear mechanism 205 is
And the gear ratio width λ of the continuously variable transmission 2 are set to the above formula (16) or a value substantially equal to the formula (16), the gear ratio is changed at the minimum (highest) gear ratio IcHi of the continuously variable transmission 2. The total gear ratio Iv of the infinite ratio continuously variable transmission is set to the reverse side highest gear ratio I required in the power circulation mode.
In the vRev and continuously variable transmission direct-coupling modes, it is possible to set the forward side highest gear ratio IvHi required, and the gear ratio range of the continuously variable transmission 2 can be effectively utilized. It is not necessary to upsize the continuously variable transmission, and it is possible to reduce the size and weight of the infinitely variable transmission.

【0092】図5は第3の実施形態を示し、前記第1実
施形態に示した遊星歯車機構105を、入出力の関係を
変更した遊星歯車機構305に置き換えたもので、その
他の構成は、前記第1実施形態と同様である。
FIG. 5 shows a third embodiment, in which the planetary gear mechanism 105 shown in the first embodiment is replaced with a planetary gear mechanism 305 having a changed input / output relationship, and other configurations are as follows. This is the same as the first embodiment.

【0093】遊星歯車機構305は、ダブルピニオンで
構成されたキャリア305bを備え、このキャリア30
5bをユニット出力軸6に結合し、一定変速機3の出力
軸3cをリングギヤ305cに、無段変速機2と連結し
た出力軸4をサンギヤ305aにそれぞれ結合したもの
である。
The planetary gear mechanism 305 has a carrier 305b composed of a double pinion.
5b is connected to the unit output shaft 6, the output shaft 3c of the constant transmission 3 is connected to the ring gear 305c, and the output shaft 4 connected to the continuously variable transmission 2 is connected to the sun gear 305a.

【0094】ダブルピニオン型のキャリア305bを備
えた遊星歯車機構305は、そのギヤ比α(=サンギヤ
305aの歯数/リングギヤ305cの歯数)が、次の
ように設定されている。
The planetary gear mechanism 305 provided with the double pinion type carrier 305b has its gear ratio α (= the number of teeth of the sun gear 305a / the number of teeth of the ring gear 305c) set as follows.

【0095】[0095]

【数27】 [Equation 27]

【0096】ここで、λは無段変速機2の変速比幅であ
り、変速比Icの範囲は、上記と同様であり、上記
(6)式で表される。
Here, λ is the speed ratio width of the continuously variable transmission 2, the range of the speed ratio Ic is the same as above, and is represented by the above equation (6).

【0097】すなわち、無段変速機2の最大(最ロー)
変速比IcLOW及び最小(最ハイ)変速比IcHiは、上
記(7)、(8)式で、それぞれ表される。
That is, the maximum (lowest) of the continuously variable transmission 2
The gear ratio IcLOW and the minimum (highest) gear ratio IcHi are expressed by the above equations (7) and (8), respectively.

【0098】また、IvHiは変速比無限大無段変速機に
必要とされる前進側最ハイ変速比、IvRevは、変速比
無限大無段変速機に必要とされる後退側最ハイ変速比で
ある。
In addition, IvHi is the forward maximum gear ratio required for the infinitely variable transmission continuously variable transmission, and IvRev is the backward maximum gear ratio required for the infinitely variable transmission continuously variable transmission. is there.

【0099】なお、上記と同様に、動力循環モードと無
段変速機直結モードとの切り換えを段差なく滑らかに行
うことができるよう、一定変速機3の変速比Igは、無
段変速機出力ギヤ列40の変速比Idを用いて、上記
(9)式の関係を満たすよう設定されている。
In the same manner as above, the gear ratio Ig of the constant transmission 3 is set so that the power circulation mode and the continuously variable transmission direct coupling mode can be smoothly switched without any step. The gear ratio Id of the row 40 is used to satisfy the relationship of the above equation (9).

【0100】無段変速機2の最小(最ハイ)変速比Ic
Hiのときに無段変速機直結モードにおいて、変速比無限
大無段変速機の総変速比Ivが必要とされる前進側最ハ
イ変速比IvHiとなるとすれば、無段変速機出力ギヤ列
40の変速比Idは、上記(1)式から(10)式で表
される。
Minimum (highest) gear ratio Ic of continuously variable transmission 2
If the total gear ratio Iv of the continuously variable transmission with infinite gear ratio becomes the required forward-side highest gear ratio IvHi in Hi direct mode, the continuously variable output gear train 40 The gear ratio Id is expressed by the above equations (1) to (10).

【0101】また、動力循環モードにおいて、変速比無
限大無段変速機の総変速比Ivが、必要とされる後退側
最ハイ変速比IvRevとなる無段変速機2の変速比IcR
evは、
Further, in the power circulation mode, the gear ratio IcR of the continuously variable transmission 2 becomes such that the total gear ratio Iv of the continuously variable transmission with infinite gear ratio becomes the required reverse side maximum gear ratio IvRev.
ev is

【0102】[0102]

【数28】 [Equation 28]

【0103】となるから、IcRevは次の関係式を満た
す。
Therefore, IcRev satisfies the following relational expression.

【0104】[0104]

【数29】 [Equation 29]

【0105】ここで、遊星歯車機構305のギヤ比α
は、上記(20)式を満たすように設定されているので
上記(22)式は、
Here, the gear ratio α of the planetary gear mechanism 305
Is set to satisfy the above equation (20), the above equation (22) is

【0106】[0106]

【数30】 [Equation 30]

【0107】となり、無段変速機2の最小(最ハイ)変
速比IcHi=1/λ1/2において、変速比無限大無段変
速機の総減速比Ivは、無段変速機直結モードのとき
は、必要とされる前進側最ハイ変速比となり、動力循環
モードのときは、必要とされる後退側最ハイ変速比とな
ることがわかる。
Therefore, at the minimum (highest) gear ratio IcHi = 1 / λ 1/2 of the continuously variable transmission 2 , the total reduction ratio Iv of the continuously variable transmission having an infinite gear ratio is equal to that of the continuously variable transmission direct coupling mode. It can be seen that the maximum forward gear ratio is required at this time, and the required maximum reverse gear ratio at the time of power circulation mode.

【0108】実際に数値をあてはめて、計算してみる。
無段変速機の変速比幅λと、ファイナルギヤ列減速比I
fを、 λ=2 If=3 に設定し、変速比無限大無段変速機に必要とされる前進
側最ハイ変速比IvHiと必要とされる後退側最ハイ変速
比IvRevを、 IvHi=1.2 IvRev=−7.5 にそれぞれ設定すると、変速比無限大無段変速機の諸元
設定は、上記式より、
Apply numerical values and calculate.
The gear ratio width λ of the continuously variable transmission and the final gear train reduction ratio I
f is set to λ = 2 If = 3, and the forward-side maximum gear ratio IvHi required for the infinite gear ratio continuously variable transmission and the required reverse-side maximum gear ratio IvRev are set to IvHi = 1.2. When IvRev = −7.5 is set, the specifications of the continuously variable transmission with infinite gear ratio are

【0109】[0109]

【数31】 [Equation 31]

【0110】この場合、遊星歯車機構305のギヤ比α
は、上記(20)式より
In this case, the gear ratio α of the planetary gear mechanism 305
Is from the above equation (20)

【0111】[0111]

【数32】 [Equation 32]

【0112】となる。この場合の無段変速機の変速比I
cと変速比無限大無段変速機の総変速比Ivの逆数の関
係は図6に示すようになる。
[0112] The gear ratio I of the continuously variable transmission in this case
The relationship between c and the reciprocal of the total gear ratio Iv of the continuously variable transmission with infinite gear ratio is shown in FIG.

【0113】したがって、無段変速機2の最小(最ハ
イ)変速比IcHiにおいて、変速比無限大無段変速機の
総変速比Ivは、動力循環モードのとき、必要とされる
後退側最ハイ変速比IvRev、無段変速機直結モードの
とき、必要とされる前進側最ハイ変速比IvHiにそれぞ
れ設定できるため、無段変速機の変速比範囲を有効に活
用できる。
Therefore, at the minimum (highest) gear ratio IcHi of the continuously variable transmission 2, the total gear ratio Iv of the continuously variable transmission having an infinite gear ratio is the highest gear on the reverse side required in the power circulation mode. The gear ratio IvRev and the required maximum forward gear ratio IvHi in the continuously variable transmission direct connection mode can be set respectively, so that the gear ratio range of the continuously variable transmission can be effectively utilized.

【0114】こうして、遊星歯車機構305のギヤ比α
と無段変速機2の変速比幅λの関係を、上記(20)式
もしくは、それにほぼ等しい値に設定する構成としたた
め、無段変速機の最小(最ハイ)変速比IcHiにおい
て、変速比無限大無段変速機の総変速比Ivを、動力循
環モードのときに必要とされる後退側最ハイ変速比Iv
Rev、無段変速機直結モードのときに必要とされる前進
側最ハイ変速比IvHiにそれぞれ設定することができ、
無段変速機2の変速比範囲を有効に活用することが可能
となって、前記従来例のように無段変速機を大型化する
必要がなくなって、変速比無限大無段変速機の小型軽量
化を可能にすることができる。
Thus, the gear ratio α of the planetary gear mechanism 305 is
Since the relationship between the gear ratio width λ of the continuously variable transmission 2 and the gear ratio width λ of the continuously variable transmission 2 is set to the above expression (20) or a value substantially equal thereto, the gear ratio at the minimum (highest) gear ratio IcHi of the continuously variable transmission is set. The total gear ratio Iv of the infinitely variable transmission is set to the highest reverse gear ratio Iv required in the power circulation mode.
Rev, it is possible to set the forward side maximum gear ratio IvHi required in the continuously variable transmission direct connection mode,
Since the gear ratio range of the continuously variable transmission 2 can be effectively utilized, there is no need to increase the size of the continuously variable transmission as in the conventional example, and the infinitely variable gear ratio of the continuously variable transmission can be achieved. The weight can be reduced.

【0115】図7は、第4の実施形態を示し、前記第3
実施形態の遊星歯車機構305の入出力の関係を変更す
るとともに、キャリアをダブルピニオンで構成した遊星
歯車機構405に置き換えたもので、その他の構成は、
前記第3実施形態と同様である。
FIG. 7 shows the fourth embodiment, and the third embodiment
The input / output relationship of the planetary gear mechanism 305 of the embodiment is changed, and the carrier is replaced with a planetary gear mechanism 405 configured by a double pinion. Other configurations are as follows.
This is similar to the third embodiment.

【0116】遊星歯車機構405は、ダブルピニオンで
構成されたキャリア405bを無段変速機2と連結した
出力軸4に結合し、リングギヤ405cを一定変速機3
の出力軸3cに、ユニット出力軸6をサンギヤ405a
にそれぞれ結合したものである。
The planetary gear mechanism 405 connects the carrier 405b composed of a double pinion to the output shaft 4 connected to the continuously variable transmission 2 and the ring gear 405c to the constant transmission 3.
The unit output shaft 6 to the output shaft 3c of the sun gear 405a.
Are combined with each other.

【0117】ダブルピニオンのキャリア405bを備え
た遊星歯車機構405のギヤ比α(=サンギヤ405a
の歯数/リングギヤ405cの歯数)は、次のように設
定される。
The gear ratio α (= sun gear 405a) of the planetary gear mechanism 405 provided with the double pinion carrier 405b.
The number of teeth / the number of teeth of the ring gear 405c) is set as follows.

【0118】[0118]

【数33】 [Expression 33]

【0119】ここで、λは無段変速機2の変速比幅であ
り、変速比Icの範囲は、上記と同様であり、上記
(6)式で表される。
Here, λ is the gear ratio width of the continuously variable transmission 2, and the range of the gear ratio Ic is the same as above, and is represented by the above equation (6).

【0120】すなわち、無段変速機2の最大(最ロー)
変速比IcLOW及び最小(最ハイ)変速比IcHiは、上
記(7)、(8)式で、それぞれ表される。
That is, the maximum (lowest) of the continuously variable transmission 2
The gear ratio IcLOW and the minimum (highest) gear ratio IcHi are expressed by the above equations (7) and (8), respectively.

【0121】また、IvHiは変速比無限大無段変速機に
必要とされる前進側最ハイ変速比、IvRevは、変速比
無限大無段変速機に必要とされる後退側最ハイ変速比で
ある。
IvHi is the maximum forward gear ratio required for an infinitely variable transmission continuously variable transmission, and IvRev is the maximum backward gear ratio required for an infinitely variable transmission continuously variable transmission. is there.

【0122】なお、上記と同様に、動力循環モードと無
段変速機直結モードとの切り換えを段差なく滑らかに行
うことができるよう、一定変速機3の変速比Igは、無
段変速機出力ギヤ列40の変速比Idを用いて、上記
(9)式の関係を満たすよう設定されている。
In the same manner as described above, the gear ratio Ig of the constant transmission 3 is set so that the power circulation mode and the continuously variable transmission direct coupling mode can be smoothly switched without any step. The gear ratio Id of the row 40 is used to satisfy the relationship of the above equation (9).

【0123】無段変速機2の最小(最ハイ)変速比Ic
Hiのときに無段変速機直結モードにおいて、変速比無限
大無段変速機の総変速比Ivが必要とされる前進側最ハ
イ変速比IvHiとなるとすれば、無段変速機出力ギヤ列
40の変速比Idは、上記(1)式から(10)式で表
される。
Minimum (highest) gear ratio Ic of continuously variable transmission 2
If the total gear ratio Iv of the continuously variable transmission with infinite gear ratio becomes the required forward-side highest gear ratio IvHi in Hi direct mode, the continuously variable output gear train 40 The gear ratio Id is expressed by the above equations (1) to (10).

【0124】また、動力循環モードにおいて、変速比無
限大無段変速機の総変速比Ivが必要とされる後退側最
ハイ変速比IvRevとなる無段変速機2の変速比IcRev
は、
Further, in the power circulation mode, the gear ratio IcRev of the continuously variable transmission 2 at which the total gear ratio Iv of the infinite gear ratio continuously variable transmission becomes the reverse-side highest gear ratio IvRev required.
Is

【0125】[0125]

【数34】 [Equation 34]

【0126】となるから、IcRevは次の関係式を満た
す。
Therefore, IcRev satisfies the following relational expression.

【0127】[0127]

【数35】 [Equation 35]

【0128】ここで、遊星歯車機構405のギヤ比α
は、上記(24)式のように設定されているので上記
(26)式は、
Here, the gear ratio α of the planetary gear mechanism 405 is
Is set as in the above equation (24), the above equation (26) is

【0129】[0129]

【数36】 [Equation 36]

【0130】となり、無段変速機2の最小(最ハイ)変
速比IcHi=1/λ1/2において、変速比無限大無段変
速機の総減速比Ivは、無段変速機直結モードのとき
は、必要とされる前進側最ハイ変速比となり、動力循環
モードのときは、必要とされる後退側最ハイ変速比とな
ることがわかる。
Therefore, at the minimum (highest) gear ratio IcHi = 1 / λ 1/2 of the continuously variable transmission 2 , the total speed reduction ratio Iv of the continuously variable transmission having an infinite gear ratio is equal to that of the continuously variable transmission direct connection mode. It can be seen that the maximum forward gear ratio is required at this time, and the required maximum reverse gear ratio at the time of power circulation mode.

【0131】実際に数値をあてはめて、計算してみる。
無段変速機の変速比幅λと、ファイナルギヤ列減速比I
fを、 λ=3 If=3 に設定し、変速比無限大無段変速機に必要とされる前進
側最ハイ変速比IvHiと必要とされる後退側最ハイ変速
比IvRevを、 IvHi=1.2 IvRev=−7.5 にそれぞれ設定すると、変速比無限大無段変速機の諸元
設定は、上記式より、
Apply numerical values and calculate.
The gear ratio width λ of the continuously variable transmission and the final gear train reduction ratio I
f is set to λ = 3 If = 3, and the forward-side highest gear ratio IvHi required for the infinite gear ratio continuously variable transmission and the backward-side highest gear ratio IvRev required for IvHi = 1.2. When IvRev = −7.5 is set, the specifications of the continuously variable transmission with infinite gear ratio are

【0132】[0132]

【数37】 [Equation 37]

【0133】この場合、遊星歯車機構405のギヤ比α
は、上記(24)式より
In this case, the gear ratio α of the planetary gear mechanism 405 is
Is from the above equation (24)

【0134】[0134]

【数38】 [Equation 38]

【0135】となる。この場合の無段変速機2の変速比
Icと変速比無限大無段変速機の総変速比Ivの逆数の
関係は図8に示すようになる。
It becomes: In this case, the relationship between the gear ratio Ic of the continuously variable transmission 2 and the reciprocal of the total gear ratio Iv of the continuously variable continuously variable transmission is as shown in FIG.

【0136】したがって、無段変速機2の最小(最ハ
イ)変速比IcHiにおいて、変速比無限大無段変速機の
総変速比Ivは、動力循環モードのとき、必要とされる
後退側最ハイ変速比IvRev、無段変速機直結モードの
とき、必要とされる前進側最ハイ変速比IvHiI.Hi
に設定することが可能となって、無段変速機2の変速比
範囲を有効に活用できる。
Therefore, at the minimum (highest) gear ratio IcHi of the continuously variable transmission 2, the total gear ratio Iv of the continuously variable transmission having an infinite gear ratio is the highest gear on the reverse side required in the power circulation mode. When the gear ratio IvRev and the continuously variable transmission direct connection mode are set, the maximum forward gear ratio IvHiI. Hi
Can be set to, and the gear ratio range of the continuously variable transmission 2 can be effectively utilized.

【0137】こうして、遊星歯車機構405のギヤ比α
と無段変速機2の変速比幅λの関係を、上記(24)式
もしくは、もしくは、それにほぼ等しい値に設定する構
成としたため、無段変速機の最小(最ハイ)変速比Ic
Hiにおいて、変速比無限大無段変速機の総変速比Iv
を、動力循環モードのときには必要とされる後退側最ハ
イ変速比IvRevに、無段変速機直結モードのときには
必要とされる前進側最ハイ変速比IvHiにそれぞれ設定
することができ、無段変速機2の変速比範囲を有効に活
用できるため、前記従来例のように無段変速機を大型化
することなく、変速比無限大無段変速機の小型軽量化を
可能にすることができる。
Thus, the gear ratio α of the planetary gear mechanism 405 is
Since the relationship between the transmission ratio width λ of the continuously variable transmission 2 and the gear ratio width λ of the continuously variable transmission 2 is set to the above formula (24) or a value substantially equal thereto, the minimum (highest) gear ratio Ic of the continuously variable transmission is set.
At Hi, the total gear ratio Iv of the continuously variable transmission with infinite gear ratio
Can be set to the maximum backward gear ratio IvRev required in the power circulation mode and to the maximum forward gear ratio IvHi required in the continuously variable transmission direct connection mode. Since the gear ratio range of the machine 2 can be effectively utilized, it is possible to reduce the size and weight of the infinite gear ratio continuously variable transmission without increasing the size of the continuously variable transmission as in the conventional example.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す変速比無限大無段変
速機の概念図。
FIG. 1 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to an embodiment of the present invention.

【図2】同じく無段変速機の変速比Icとファイナルギ
ヤ減速比Ifを含んだユニット総変速比Ivの逆数の関
係を示すグラフ。
FIG. 2 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio If.

【図3】第2の実施形態を示す変速比無限大無段変速機
の概念図。
FIG. 3 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to a second embodiment.

【図4】同じく無段変速機の変速比Icとファイナルギ
ヤ減速比を含んだユニット総変速比Ivの逆数との関係
を示すグラフ。
FIG. 4 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図5】第3の実施形態を示す変速比無限大無段変速機
の概念図。
FIG. 5 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to a third embodiment.

【図6】同じく無段変速機の変速比Icとファイナルギ
ヤ減速比を含んだユニット総変速比Ivの逆数との関係
を示すグラフ。
FIG. 6 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図7】第4の実施形態を示す変速比無限大無段変速機
の概念図。
FIG. 7 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to a fourth embodiment.

【図8】同じく無段変速機の変速比Icとファイナルギ
ヤ減速比を含んだユニット総変速比Ivの逆数との関係
を示すグラフ。
FIG. 8 is a graph showing a relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図9】従来の変速比無限大無段変速機を示す概念図。FIG. 9 is a conceptual diagram showing a conventional infinitely variable transmission continuously variable transmission.

【図10】同じく従来例で、無段変速機の変速比Icと
ファイナルギヤ減速比を含んだユニット総変速比Ivの
逆数との関係を示すグラフ。
FIG. 10 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio in the same conventional example.

【符号の説明】[Explanation of symbols]

1 ユニット入力軸 2 無段変速機 2a 無段変速機出力ギヤ 3 一定変速機 3a 入力ギヤ 3b ギヤ 3c 一定変速機出力軸 4 無段変速機出力軸 4a ギヤ 6 ユニット出力軸 7 変速機出力ギヤ 8 差動ギヤ 9 動力循環モードクラッチ 10 直結モードクラッチ 11a、11b 駆動軸 12 ファイナルギヤ列 12a ファイナルギヤ 20 パワーローラ 21 入力ディスク 22 出力ディスク 40 無段変速機出力ギヤ列 105 遊星歯車機構 105a サンギヤ 105b キャリア 105c リングギヤ 205 遊星歯車機構 205a サンギヤ 205b キャリア 205c リングギヤ 305 遊星歯車機構 305a サンギヤ 305b キャリア 305c リングギヤ 405 遊星歯車機構 405a サンギヤ 405b キャリア 405c リングギヤ 1 unit input shaft 2 continuously variable transmission 2a continuously variable transmission output gear 3 constant transmission 3a input gear 3b gear 3c constant transmission output shaft 4 Continuously variable transmission output shaft 4a gear 6 unit output shaft 7 Transmission output gear 8 differential gear 9 Power circulation mode clutch 10 Direct connection mode clutch 11a, 11b drive shaft 12 Final gear train 12a Final gear 20 power rollers 21 Input Disc 22 Output disc 40 continuously variable transmission output gear train 105 Planetary gear mechanism 105a sun gear 105b carrier 105c ring gear 205 Planetary gear mechanism 205a sun gear 205b carrier 205c ring gear 305 Planetary gear mechanism 305a Sun gear 305b carrier 305c ring gear 405 Planetary gear mechanism 405a Sun Gear 405b carrier 405c ring gear

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16H 37/02 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) F16H 37/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ユニット入力軸にそれぞれ接続された無段
変速機及び一定変速機と、 無段変速機の出力軸に連結したサンギヤ、シングルピニ
オンで構成されて一定変速機の出力軸に連結したキャリ
ア及びユニット出力軸に連結したリングギヤとからなる
遊星歯車機構と、 前記ユニット入力軸から遊星歯車機構のキャリアへの動
力伝達経路の途中に介装された動力循環モードクラッチ
と、 前記無段変速機の出力軸からユニット出力軸の動力伝達
経路の途中に介装されて無段変速機の出力軸とユニット
出力軸を選択的に締結または遊星歯車機構の相互に歯合
する前記回転要素を選択的に固定する直結モードクラッ
チとを備えて、前記動力循環モードクラッチと直結モー
ドクラッチとを選択的に締結、解除可能な変速比無限大
無段変速機において、 変速比無限大無段変速機の前進側最ハイ変速比をIvHi
とし、同じく後退側最ハイ変速比をIvRevとするとと
もに、前記無段変速機の変速比幅をλとすると、 前記遊星歯車機構のサンギヤの歯数/リングギヤの歯数
で表されるギヤ比αは、 【数1】 に設定されたことを特徴とする変速比無限大無段変速
機。
1. A continuously variable transmission and a constant transmission, each connected to a unit input shaft, a sun gear connected to an output shaft of the continuously variable transmission, and a single pinion, which are connected to an output shaft of the constant transmission. A planetary gear mechanism including a carrier and a ring gear connected to the unit output shaft; a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the carrier of the planetary gear mechanism; and the continuously variable transmission. The output element of the continuously variable transmission to selectively engage the output shaft of the continuously variable transmission or the output shaft of the unit output shaft with the output element of In a continuously variable transmission having an infinite transmission ratio capable of engaging and disengaging the power circulation mode clutch and the direct coupling mode clutch, the direct coupling mode clutch being fixed to Infinite transmission ratio The maximum forward transmission speed ratio of the continuously variable transmission is IvHi
Similarly, when the reverse side highest gear ratio is IvRev and the gear ratio width of the continuously variable transmission is λ, the gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is α. Is the following An infinitely variable transmission with infinite transmission ratio.
【請求項2】ユニット入力軸にそれぞれ接続された無段
変速機及び一定変速機と、 無段変速機の出力軸に連結したリングギヤ、シングルピ
ニオンで構成されて一定変速機の出力軸に連結したキャ
リア及びユニット出力軸に連結したサンギヤとからなる
遊星歯車機構と、 前記ユニット入力軸から遊星歯車機構のキャリアへの動
力伝達経路の途中に介装された動力循環モードクラッチ
と、 前記無段変速機の出力軸からユニット出力軸の動力伝達
経路の途中に介装されて無段変速機の出力軸とユニット
出力軸を選択的に締結または遊星歯車機構の相互に歯合
する前記回転要素を選択的に固定する直結モードクラッ
チとを備えて、前記動力循環モードクラッチと直結モー
ドクラッチとを選択的に締結、解除可能な変速比無限大
無段変速機において、 変速比無限大無段変速機の前進側最ハイ変速比をIvHi
とし、同じく後退側最ハイ変速比をIvRevとするとと
もに、前記無段変速機の変速比幅をλとすると、 前記遊星歯車機構のサンギヤの歯数/リングギヤの歯数
で表されるギヤ比αは、 【数2】 に設定されたことを特徴とする変速比無限大無段変速
機。
2. A continuously variable transmission and a constant transmission, each connected to a unit input shaft, a ring gear connected to the output shaft of the continuously variable transmission, and a single pinion, which are connected to the output shaft of the constant transmission. A planetary gear mechanism consisting of a carrier and a sun gear connected to a unit output shaft; a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the carrier of the planetary gear mechanism; and the continuously variable transmission. The output element of the continuously variable transmission to selectively engage the output shaft of the continuously variable transmission or the output shaft of the unit output shaft with the output element of In a continuously variable transmission having an infinite transmission ratio capable of engaging and disengaging the power circulation mode clutch and the direct coupling mode clutch, the direct coupling mode clutch being fixed to Infinite transmission ratio The maximum forward transmission speed ratio of the continuously variable transmission is IvHi
Similarly, when the reverse side highest gear ratio is IvRev and the gear ratio width of the continuously variable transmission is λ, the gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is α. Is given by An infinitely variable transmission with infinite transmission ratio.
【請求項3】ユニット入力軸にそれぞれ連結された無段
変速機及び一定変速機と、 無段変速機の出力軸に連結したサンギヤ、一定変速機の
出力軸に連結したリングギヤ及びダブルピニオンで構成
されてユニット出力軸に連結したキャリアとからなる遊
星歯車機構と、 前記ユニット入力軸から遊星歯車機構のリングギヤへの
動力伝達経路の途中に介装された動力循環モードクラッ
チと、 前記無段変速機の出力軸からユニット出力軸の動力伝達
経路の途中に介装されて無段変速機の出力軸とユニット
出力軸を選択的に締結または遊星歯車機構の相互に歯合
する前記回転要素を選択的に固定する直結モードクラッ
チとを備えて、前記動力循環モードクラッチと直結モー
ドクラッチとを選択的に締結、解除可能な変速比無限大
無段変速機において、 変速比無限大無段変速機の前進側最ハイ変速比をIvHi
とし、同じく後退側最ハイ変速比をIvRevとするとと
もに、前記無段変速機の変速比幅をλとすると、 前記遊星歯車機構のサンギヤの歯数/リングギヤの歯数
で表されるギヤ比αは、 【数3】 に設定されたことを特徴とする変速比無限大無段変速
機。
3. A continuously variable transmission and a constant transmission respectively connected to a unit input shaft, a sun gear connected to the output shaft of the continuously variable transmission, a ring gear connected to the output shaft of the constant transmission, and a double pinion. A planetary gear mechanism composed of a carrier connected to the unit output shaft, a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism, and the continuously variable transmission. The output element of the continuously variable transmission to selectively engage the output shaft of the continuously variable transmission or the output shaft of the unit output shaft with the output element of In a continuously variable transmission having an infinite transmission ratio capable of engaging and disengaging the power circulation mode clutch and the direct coupling mode clutch, the direct coupling mode clutch being fixed to Infinite transmission ratio The maximum forward transmission speed ratio of the continuously variable transmission is IvHi
Similarly, when the reverse side highest gear ratio is IvRev and the gear ratio width of the continuously variable transmission is λ, the gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is α. Is given by An infinitely variable transmission with infinite transmission ratio.
【請求項4】ユニット入力軸にそれぞれ連結された無段
変速機及び一定変速機と、 ダブルピニオンで構成されて無段変速機の出力軸に連結
したキャリア、一定変速機の出力軸に連結したリングギ
ヤ及びユニット出力軸に連結したサンギヤとからなる遊
星歯車機構と、 前記ユニット入力軸から遊星歯車機構のリングギヤへの
動力伝達経路の途中に介装された動力循環モードクラッ
チと、 前記無段変速機の出力軸からユニット出力軸の動力伝達
経路の途中に介装されて無段変速機の出力軸とユニット
出力軸を選択的に締結または遊星歯車機構の相互に歯合
する前記回転要素を選択的に固定する直結モードクラッ
チとを備えて、前記動力循環モードクラッチと直結モー
ドクラッチとを選択的に締結、解除可能な変速比無限大
無段変速機において、 変速比無限大無段変速機の前進側最ハイ変速比をIvHi
とし、同じく後退側最ハイ変速比をIvRevとするとと
もに、前記無段変速機の変速比幅をλとすると、 前記遊星歯車機構のサンギヤの歯数/リングギヤの歯数
で表されるギヤ比αは、 【数4】 に設定されたことを特徴とする変速比無限大無段変速
機。
4. A continuously variable transmission and a constant transmission which are respectively connected to a unit input shaft, a carrier which is composed of a double pinion and is connected to an output shaft of the continuously variable transmission, and a carrier which is connected to an output shaft of the constant transmission. A planetary gear mechanism composed of a ring gear and a sun gear connected to the unit output shaft; a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism; and the continuously variable transmission. The output element of the continuously variable transmission to selectively engage the output shaft of the continuously variable transmission or the output shaft of the unit output shaft with the output element of In a continuously variable transmission having an infinite transmission ratio capable of engaging and disengaging the power circulation mode clutch and the direct coupling mode clutch, the direct coupling mode clutch being fixed to Infinite transmission ratio The maximum forward transmission speed ratio of the continuously variable transmission is IvHi
Similarly, when the reverse side highest gear ratio is IvRev and the gear ratio width of the continuously variable transmission is λ, the gear ratio α represented by the number of teeth of the sun gear of the planetary gear mechanism / the number of teeth of the ring gear is α. Is given by An infinitely variable transmission with infinite transmission ratio.
JP30317897A 1997-11-05 1997-11-05 Transmission ratio infinitely variable transmission Expired - Fee Related JP3468060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30317897A JP3468060B2 (en) 1997-11-05 1997-11-05 Transmission ratio infinitely variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30317897A JP3468060B2 (en) 1997-11-05 1997-11-05 Transmission ratio infinitely variable transmission

Publications (2)

Publication Number Publication Date
JPH11141646A JPH11141646A (en) 1999-05-25
JP3468060B2 true JP3468060B2 (en) 2003-11-17

Family

ID=17917830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30317897A Expired - Fee Related JP3468060B2 (en) 1997-11-05 1997-11-05 Transmission ratio infinitely variable transmission

Country Status (1)

Country Link
JP (1) JP3468060B2 (en)

Also Published As

Publication number Publication date
JPH11141646A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP3254605B2 (en) Improvements in or related to toroidal race rolling traction continuously variable ratio transmissions
JP3261535B2 (en) Improvements or related improvements in continuously variable transmissions
US6723016B2 (en) Torque split infinitely variable transmission
US6726590B2 (en) Speed change transmission arrangement including a continuously variable toroidal transmission
US4976670A (en) Power transmission
AU8412391A (en) Improvements in or relating to transmissions of the toroidal-race, rolling-traction type
EP1800026A1 (en) Continuously variable ratio transmission system
US5591097A (en) Transmission with a countershaft and a planetary reduction gear unit
EP1188956A2 (en) Infinitely variable transmission
JP3401292B2 (en) Continuously variable transmission for vehicles
JP2825579B2 (en) Load switching transmission with stepless transmission ratio adjustment
JP3579981B2 (en) Infinitely variable transmission
JPH1026211A (en) Automatic transmission
JPH09210175A (en) Continuously variable transmission with gear ratio of infinity
JP3468060B2 (en) Transmission ratio infinitely variable transmission
JPS60249758A (en) Continuously variable transmission gear
US5853344A (en) Automatic transmission
US3763718A (en) Hydromechanical transmission
JPH0522096B2 (en)
US6945897B2 (en) Branched power transmission having a continuously variable transmission ratio
JPS60227045A (en) Speed change steering device
KR100203482B1 (en) Belt type cvt
JP2003014074A (en) Gear ratio infinitely continuously variable transmission
JPH09196129A (en) Continuously variable transmission
JPS61270542A (en) Deceleration/advance/back switching device for v-belt stepless transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees