JP3467827B2 - Manufacturing method of anode foil for aluminum electrolytic capacitor - Google Patents

Manufacturing method of anode foil for aluminum electrolytic capacitor

Info

Publication number
JP3467827B2
JP3467827B2 JP06495794A JP6495794A JP3467827B2 JP 3467827 B2 JP3467827 B2 JP 3467827B2 JP 06495794 A JP06495794 A JP 06495794A JP 6495794 A JP6495794 A JP 6495794A JP 3467827 B2 JP3467827 B2 JP 3467827B2
Authority
JP
Japan
Prior art keywords
foil
aluminum foil
electrolytic capacitor
current density
anode foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06495794A
Other languages
Japanese (ja)
Other versions
JPH07272985A (en
Inventor
健二 ▲吉▼田
直美 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06495794A priority Critical patent/JP3467827B2/en
Publication of JPH07272985A publication Critical patent/JPH07272985A/en
Application granted granted Critical
Publication of JP3467827B2 publication Critical patent/JP3467827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はアルミ電解コンデンサ用
陽極箔の製造方法に関するものである。 【0002】 【従来の技術】従来のアルミ電解コンデンサは、厚さ7
0〜100μmの高純度(99.9〜99.99%)ア
ルミ箔を電解エッチング処理によって実効表面積を拡大
させ、その表面に陽極酸化処理により誘電体となる陽極
酸化皮膜を形成し、そして、この陽極酸化皮膜を形成し
た陽極箔と陰極箔を、その間にセパレータを介在させて
巻回することによりコンデンサ素子を構成し、さらにこ
のコンデンサ素子に駆動用電解液を含浸させた後、コン
デンサ素子をケース内に封止することにより構成してい
た。 【0003】そして、前記アルミ箔の表面に陽極酸化皮
膜を形成する化成工程は、次のような手順により行って
いた。すなわち、エッチング工程により表面を粗面化し
てその実効表面積を拡大させたアルミエッチング箔に沸
騰水和処理を施した後、ホウ酸、リン酸、クエン酸、ア
ジピン酸あるいはそれらの塩の水溶液中で所望化成電圧
に達するまでは定電流で化成し、そして所望化成電圧に
達してからは定電圧で一定時間保持して一回目の化成を
終了する。 【0004】この状態では陽極酸化皮膜の内部に欠陥等
が存在するため、陽極酸化皮膜は不安定な状態であり、
そのため、一度化成したアルミ箔に熱処理等の減極処理
を行い、その後化成を行うことによって内部の欠陥等を
除去し、安定な陽極酸化皮膜を得ることができる。この
ような工程を2〜3回繰り返すことにより、化成を行っ
ていた。 【0005】 【発明が解決しようとする課題】しかしながら、上記し
た従来の化成工程においては、静電容量を高め、漏れ電
流を低減するには限界があり、近年要望の強いアルミ電
解コンデンサの一層の小形化や耐リップル性向上等に応
えることができないものであった。 【0006】本発明はこのような所望に応えるためにな
されたもので、静電容量を高めることができるととも
に、漏れ電流も低減させることができるアルミ電解コン
デンサ用陽極箔の製造方法を提供することを目的とする
ものである。 【0007】 【課題を解決するための手段】上記目的を達成するため
に本発明のアルミ電解コンデンサ用陽極箔の製造方法
は、表面を粗面化してその実効表面積を拡大させたアル
ミ箔を化成して陽極酸化皮膜を形成するアルミ電解コン
デンサ用陽極箔の製造方法において、前記アルミ箔に沸
騰水和処理を施した後、飽和脂肪族ジカルボン酸あるい
はその塩の水溶液中で所望化成電圧に上昇するまで電流
密度を300mA/cm 2 以上で化成を行うようにした
ものである。 【0008】 【作用】上記した本発明のアルミ電解コンデンサ用陽極
箔の製造方法によれば、表面を粗面化してその実効表面
積を拡大させたアルミ箔に沸騰水和処理を施した後、飽
和脂肪族ジカルボン酸あるいはその塩の水溶液中で所望
化成電圧に上昇するまで高電流密度で化成を行うように
しているため、この化成により形成される陽極酸化皮膜
の結晶化度は上がることになり、これにより、耐圧1V
あたりの膜厚が薄くなるため、従来のアルミ電解コンデ
ンサ用陽極箔より静電容量が高く、しかも漏れ電流の小
さい陽極箔が得られるものである。 【0009】 【実施例】以下、アルミ箔の化成処理における本発明の
実施例と比較例について説明する。 【0010】(実施例1)表面を粗面化してその実効表
面積を拡大させたエッチングアルミ箔に沸騰水和処理を
施した後、液温が90℃で濃度が0.5%のアジピン酸
アンモニウム水溶液中で、所望化成電圧、すなわち30
0Vに上昇するまで500mA/cm2の高電流密度で
前記アルミ箔の化成を行った。この後、ホウ酸系の化成
液で10分間保持し、そして熱処理等の減極処理を行っ
た後、ホウ酸系の化成液で再度化成を行って陽極箔を得
た。 【0011】(実施例2)表面を粗面化してその実効表
面積を拡大させたエッチングアルミ箔に沸騰水和処理を
施した後、液温が90℃で濃度が0.5%のスベリン酸
アンモニウム水溶液中で、所望化成電圧、すなわち30
0Vに上昇するまで500mA/cm2の高電流密度で
前記アルミ箔の化成を行った。この後、ホウ酸系の化成
液で10分間保持し、そして熱処理等の減極処理を行っ
た後、ホウ酸系の化成液で再度化成を行って陽極箔を得
た。 【0012】(実施例3)表面を粗面化してその実効表
面積を拡大させたエッチングアルミ箔に沸騰水和処理を
施した後、液温が90℃で濃度が0.5%のセバシン酸
アンモニウム水溶液中で、所望化成電圧、すなわち30
0Vに上昇するまで500mA/cm2の高電流密度で
前記アルミ箔の化成を行った。この後、ホウ酸系の化成
液で10分間保持し、そして熱処理等の減極処理を行っ
た後、ホウ酸系の化成液で再度化成を行って陽極箔を得
た。 【0013】(比較例1)表面を粗面化してその実効表
面積を拡大させたエッチングアルミ箔に沸騰水和処理を
施した後、液温が90℃で濃度が0.5%のアジピン酸
アンモニウム水溶液中で、所望化成電圧、すなわち30
0Vに上昇するまで50mA/cm2の低電流密度で前
記アルミ箔の化成を行った。この後、ホウ酸系の化成液
で10分間保持し、そして熱処理等の減極処理を行った
後、ホウ酸系の化成液で再度化成を行って陽極箔を得
た。 【0014】(比較例2)表面を粗面化してその実効表
面積を拡大させたエッチングアルミ箔に沸騰水和処理を
施した後、液温が90℃で濃度が0.5%のセバシン酸
アンモニウム水溶液中で、所望化成電圧、すなわち30
0Vに上昇するまで50mA/cm2の低電流密度で前
記アルミ箔の化成を行った。この後、ホウ酸系の化成液
で10分間保持し、そして熱処理等の減極処理を行った
後、ホウ酸系の化成液で再度化成を行って陽極箔を得
た。 【0015】(比較例3)表面を粗面化してその実効表
面積を拡大させたエッチングアルミ箔に沸騰水和処理を
施した後、液温が90℃で濃度が8%のホウ酸および
0.15%のホウ酸ナトリウム水溶液中で、所望化成電
圧、すなわち300Vに上昇するまで500mA/cm
2の高電流密度で前記アルミ箔の化成を行った。この
後、ホウ酸系の化成液で10分間保持し、そして熱処理
等の減極処理を行った後、ホウ酸系の化成液で再度化成
を行って陽極箔を得た。 【0016】図1は本発明の実施例1の化成条件で電流
密度を変えて300V化成を行ったときの電流密度と静
電容量の関係を示したもので、この図1から明らかなよ
うに、300mA/cm2以上の電流密度で化成を行う
と静電容量を大幅に高めることができるものである。 【0017】(表1)は本発明の実施例1〜3および比
較例1〜3により得られたそれぞれの陽極箔について、
静電容量および漏れ電流の箔特性を測定した結果を示し
たものである。 【0018】 【表1】 【0019】(表1)から明らかなように、本発明の実
施例1〜3より得られた陽極箔は、比較例1〜3により
得られた陽極箔に比べて静電容量を大幅に高めることが
できるとともに、漏れ電流を低減させることができるも
のである。すなわち、本発明の実施例1〜3は、飽和脂
肪族ジカルボン酸塩の水溶液中で、所望化成電圧に上昇
するまで500mA/cm 2 という高電流密度でアルミ
箔の化成を行うようにしているため、この化成により形
成される陽極酸化皮膜の結晶化度は上がることになり、
これにより、耐圧1Vあたりの膜厚が薄くなるため、静
電容量を高めることができるとともに、漏れ電流を低減
させることができる。 【0020】しかるに、比較例1〜2のように飽和脂肪
族ジカルボン酸塩の水溶液中で、所望化成電圧に上昇す
るまで低電流密度でアルミ箔の化成を行ったり、比較例
3のようにホウ酸およびその塩の水溶液中で所望化成電
圧に上昇するまで高電流密度でアルミ箔の化成を行うと
いう具合に、飽和脂肪族ジカルボン酸塩の水溶液中での
化成あるいは高電流密度化成をそれぞれ単独で行った場
合は、静電容量の向上および漏れ電流の低減は図れない
ものである。 【0021】なお、本発明の実施例1〜3においては、
飽和脂肪族ジカルボン酸塩の水溶液中で所望化成電圧に
上昇するまで高電流密度でアルミ箔の化成を行い、その
後、ホウ酸系の化成液で再化成を行うようにしている
が、再化成を行う化成液は所望化成電圧に上昇するまで
高電流密度でアルミ箔の化成を行うために用いられる飽
和脂肪族ジカルボン酸塩の水溶液をそのまま用いても、
本発明の実施例1〜3と同様の結果が得られるものであ
る。また、本発明の実施例1〜3においては化成液とし
て飽和脂肪族ジカルボン酸塩の水溶液を用いているが、
化成液として飽和脂肪族ジカルボン酸の水溶液を用いて
も本発明の実施例1〜3と同様の効果が得られるもので
ある。 【0022】 【発明の効果】以上のように本発明のアルミ電解コンデ
ンサ用陽極箔の製造方法によれば、表面を粗面化してそ
の実効表面積を拡大させたアルミ箔に沸騰水和処理を施
した後、飽和脂肪族ジカルボン酸あるいはその塩の水溶
液中で所望化成電圧に上昇するまで高電流密度で化成を
行うようにしているため、この化成により形成される陽
極酸化皮膜の結晶化度が上がり、これにより耐圧1Vあ
たりの膜厚が薄くなるため、静電容量を高めることがで
きるとともに、漏れ電流を低減させることができるもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an anode foil for an aluminum electrolytic capacitor. 2. Description of the Related Art A conventional aluminum electrolytic capacitor has a thickness of 7 mm.
The effective surface area of a high-purity (99.9 to 99.99%) aluminum foil of 0 to 100 μm is increased by electrolytic etching, and an anodic oxide film serving as a dielectric is formed on the surface by anodic oxidation. A capacitor element is formed by winding an anode foil and a cathode foil on which an anodized film has been formed with a separator interposed therebetween, and further impregnating the capacitor element with a driving electrolyte, and then placing the capacitor element in a case. It was constituted by sealing inside. [0003] The chemical conversion step of forming an anodic oxide film on the surface of the aluminum foil has been performed according to the following procedure. That is, after an aluminum etching foil whose surface is roughened by an etching process to increase its effective surface area is subjected to boiling hydration treatment, it is then subjected to an aqueous solution of boric acid, phosphoric acid, citric acid, adipic acid or a salt thereof. The formation is performed with a constant current until the desired formation voltage is reached, and after reaching the desired formation voltage, the formation is maintained at a constant voltage for a certain period of time to complete the first formation. In this state, the anodic oxide film is in an unstable state due to the presence of defects and the like inside the anodic oxide film.
Therefore, a depolarization treatment such as a heat treatment is performed on the aluminum foil once formed, and then the inside is removed by performing the formation, whereby a stable anodic oxide film can be obtained. Chemical formation was performed by repeating such a process two to three times. [0005] However, in the above-mentioned conventional formation process, there is a limit in increasing the capacitance and reducing the leakage current. It was not possible to respond to downsizing, improvement in ripple resistance, and the like. The present invention has been made in order to meet such a demand, and provides a method of manufacturing an anode foil for an aluminum electrolytic capacitor capable of increasing the capacitance and reducing the leakage current. It is intended for. [0007] In order to achieve the above object, a method of manufacturing an anode foil for an aluminum electrolytic capacitor according to the present invention comprises forming an aluminum foil having a roughened surface to increase its effective surface area. In the method for producing an anode foil for an aluminum electrolytic capacitor for forming an anodic oxide film by subjecting the aluminum foil to a boiling hydration treatment, the aluminum foil is raised to a desired formation voltage in an aqueous solution of a saturated aliphatic dicarboxylic acid or a salt thereof. Current up to
The formation is performed at a density of 300 mA / cm 2 or more . According to the method for producing an anode foil for an aluminum electrolytic capacitor of the present invention described above, the aluminum foil whose surface is roughened to increase its effective surface area is subjected to boiling hydration treatment and then saturated. Since the formation is performed at a high current density until the desired formation voltage is increased in an aqueous solution of an aliphatic dicarboxylic acid or a salt thereof, the crystallinity of the anodic oxide film formed by the formation increases, Thereby, the withstand voltage of 1 V
As a result, an anode foil having a higher capacitance and a smaller leakage current than that of a conventional anode foil for an aluminum electrolytic capacitor can be obtained. EXAMPLES Examples of the present invention and comparative examples in the chemical conversion treatment of aluminum foil will be described below. (Embodiment 1) An etched aluminum foil whose surface is roughened to increase its effective surface area is subjected to a boiling hydration treatment, and then a liquid temperature of 90 ° C. and a concentration of 0.5% ammonium adipate are used. In an aqueous solution, the desired formation voltage, ie, 30
The aluminum foil was chemically formed at a high current density of 500 mA / cm 2 until the voltage rose to 0V. Thereafter, the resultant was kept in a boric acid-based chemical solution for 10 minutes, subjected to depolarization treatment such as heat treatment, and then again formed into a boric acid-based chemical solution to obtain an anode foil. (Embodiment 2) An etched aluminum foil whose surface is roughened to increase its effective surface area is subjected to boiling hydration treatment, and then ammonium suberate having a liquid temperature of 90 ° C. and a concentration of 0.5%. In an aqueous solution, the desired formation voltage, ie, 30
The aluminum foil was chemically formed at a high current density of 500 mA / cm 2 until the voltage rose to 0V. Thereafter, the resultant was kept in a boric acid-based chemical solution for 10 minutes, subjected to depolarization treatment such as heat treatment, and then again formed into a boric acid-based chemical solution to obtain an anode foil. (Example 3) An etched aluminum foil whose surface is roughened to increase its effective surface area is subjected to boiling hydration treatment, and then ammonium sebacate having a liquid temperature of 90 ° C and a concentration of 0.5% is used. In an aqueous solution, the desired formation voltage, ie, 30
The aluminum foil was chemically formed at a high current density of 500 mA / cm 2 until the voltage rose to 0V. Thereafter, the resultant was kept in a boric acid-based chemical solution for 10 minutes, subjected to depolarization treatment such as heat treatment, and then again formed into a boric acid-based chemical solution to obtain an anode foil. (Comparative Example 1) An etched aluminum foil whose surface is roughened to increase its effective surface area is subjected to boiling hydration treatment, and then a liquid temperature of 90 ° C. and a concentration of 0.5% ammonium adipate are used. In an aqueous solution, the desired formation voltage, ie, 30
The aluminum foil was chemically formed at a low current density of 50 mA / cm 2 until the voltage rose to 0V. Thereafter, the resultant was kept in a boric acid-based chemical solution for 10 minutes, subjected to depolarization treatment such as heat treatment, and then again formed into a boric acid-based chemical solution to obtain an anode foil. Comparative Example 2 Ammonium sebacate having a liquid temperature of 90 ° C. and a concentration of 0.5% was subjected to boiling hydration treatment on an etched aluminum foil whose surface was roughened to increase its effective surface area. In an aqueous solution, the desired formation voltage, ie, 30
The aluminum foil was chemically formed at a low current density of 50 mA / cm 2 until the voltage rose to 0V. Thereafter, the resultant was kept in a boric acid-based chemical solution for 10 minutes, subjected to depolarization treatment such as heat treatment, and then again formed into a boric acid-based chemical solution to obtain an anode foil. Comparative Example 3 Boiling hydration treatment was performed on an etched aluminum foil whose surface was roughened to increase its effective surface area. In a 15% aqueous sodium borate solution, 500 mA / cm until the desired formation voltage,
The aluminum foil was formed at a high current density of 2 . Thereafter, the resultant was kept in a boric acid-based chemical solution for 10 minutes, subjected to depolarization treatment such as heat treatment, and then again formed into a boric acid-based chemical solution to obtain an anode foil. FIG. 1 shows the relationship between the current density and the capacitance when forming at 300 V while changing the current density under the formation conditions of the first embodiment of the present invention. As is apparent from FIG. When the formation is performed at a current density of 300 mA / cm 2 or more, the capacitance can be greatly increased. Table 1 shows the respective anode foils obtained in Examples 1 to 3 and Comparative Examples 1 to 3 of the present invention.
It shows the result of measuring the foil characteristics of capacitance and leakage current. [Table 1] As is clear from Table 1, the anode foils obtained from Examples 1 to 3 of the present invention have a significantly higher capacitance than the anode foils obtained from Comparative Examples 1 to 3. And leakage current can be reduced. That is, in Examples 1 to 3 of the present invention, the aluminum foil is chemically formed at a high current density of 500 mA / cm 2 until the desired formation voltage is increased in an aqueous solution of a saturated aliphatic dicarboxylate. The crystallinity of the anodic oxide film formed by this chemical conversion will increase,
Accordingly, the film thickness per 1 V withstand voltage is reduced, so that the capacitance can be increased and the leakage current can be reduced. However, as in Comparative Examples 1 and 2, aluminum foil was chemically formed at a low current density in an aqueous solution of a saturated aliphatic dicarboxylate until the desired formation voltage was increased. The aluminum foil is chemically formed at a high current density until the desired formation voltage is increased in an aqueous solution of an acid and a salt thereof. If performed, it is impossible to improve the capacitance and reduce the leakage current. In Examples 1 to 3 of the present invention,
The aluminum foil is chemically formed at a high current density until the desired formation voltage is increased in an aqueous solution of a saturated aliphatic dicarboxylate, and then re-formation is performed using a boric acid-based formation solution. The chemical conversion solution to be used may be an aqueous solution of a saturated aliphatic dicarboxylate used for forming an aluminum foil at a high current density until the desired chemical formation voltage is increased,
The same results as in Examples 1 to 3 of the present invention are obtained. Further, in Examples 1 to 3 of the present invention, an aqueous solution of a saturated aliphatic dicarboxylate is used as a chemical conversion solution,
Even when an aqueous solution of a saturated aliphatic dicarboxylic acid is used as the chemical conversion solution, the same effects as in Examples 1 to 3 of the present invention can be obtained. As described above, according to the method for producing an anode foil for an aluminum electrolytic capacitor of the present invention, the aluminum foil whose surface is roughened to increase its effective surface area is subjected to a boiling hydration treatment. After that, chemical conversion is performed at a high current density until the desired chemical formation voltage is increased in an aqueous solution of a saturated aliphatic dicarboxylic acid or a salt thereof, so that the crystallinity of the anodic oxide film formed by this chemical formation increases. As a result, the film thickness per 1 V withstand voltage is reduced, so that the capacitance can be increased and the leakage current can be reduced.

【図面の簡単な説明】 【図1】電流密度を変えて300V化成を行ったときの
電流密度と静電容量の関係を示す特性図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram showing a relationship between a current density and a capacitance when a 300 V chemical conversion is performed while changing the current density.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 9/055 H01G 9/04 301 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 9/055 H01G 9/04 301

Claims (1)

(57)【特許請求の範囲】 【請求項1】 表面を粗面化してその実効表面積を拡大
させたアルミ箔を化成して陽極酸化皮膜を形成するアル
ミ電解コンデンサ用陽極箔の製造方法において、前記ア
ルミ箔に沸騰水和処理を施した後、飽和脂肪族ジカルボ
ン酸あるいはその塩の水溶液中で所望化成電圧に上昇す
るまで電流密度を300mA/cm 2 以上で化成を行う
ようにしたアルミ電解コンデンサ用陽極箔の製造方法。
(57) [Claim 1] A method for producing an anode foil for an aluminum electrolytic capacitor, comprising forming an anodic oxide film by forming an aluminum foil having a roughened surface to increase the effective surface area thereof, An aluminum electrolytic capacitor having a current density of 300 mA / cm 2 or more in an aqueous solution of a saturated aliphatic dicarboxylic acid or a salt thereof at a current density of 300 mA / cm 2 or more after the aluminum foil is subjected to boiling hydration treatment. Production method of anode foil for use.
JP06495794A 1994-04-01 1994-04-01 Manufacturing method of anode foil for aluminum electrolytic capacitor Expired - Lifetime JP3467827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06495794A JP3467827B2 (en) 1994-04-01 1994-04-01 Manufacturing method of anode foil for aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06495794A JP3467827B2 (en) 1994-04-01 1994-04-01 Manufacturing method of anode foil for aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH07272985A JPH07272985A (en) 1995-10-20
JP3467827B2 true JP3467827B2 (en) 2003-11-17

Family

ID=13273044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06495794A Expired - Lifetime JP3467827B2 (en) 1994-04-01 1994-04-01 Manufacturing method of anode foil for aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3467827B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745830B (en) * 2014-01-22 2016-06-29 广西贺州市桂东电子科技有限责任公司 A kind of raising conforming two sections of current waveform caustic solutions of mesohigh anode aluminium foil tunnel hole length
JP6546018B2 (en) * 2015-06-29 2019-07-17 日本軽金属株式会社 Method of manufacturing electrode for aluminum electrolytic capacitor
CN113948315B (en) * 2021-09-28 2023-05-02 西安交通大学 Multistage high-specific-volume high-pressure aluminum foil formation method

Also Published As

Publication number Publication date
JPH07272985A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
JP4660222B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20060124465A1 (en) Capacitor containing aluminum anode foil anodized in low water content glycerine-phosphate electrolyte
JP2000348984A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2727823B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3467827B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2663541B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2859940B2 (en) Method for manufacturing solid electrolytic capacitor
JP3478039B2 (en) Method of forming electrode foil for aluminum electrolytic capacitor
JP2007036048A (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3480311B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3155969B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JPH0513279A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JPS6211487B2 (en)
JP2745520B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2007067172A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP2743600B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPH08241832A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH0317210B2 (en)
JP2738160B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPH04279017A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP4776510B2 (en) Method for producing anode foil for electrolytic capacitor
JPH07109814B2 (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

EXPY Cancellation because of completion of term