JP3466601B2 - Method for producing versatile salt and versatile bitter having desired ionic composition - Google Patents

Method for producing versatile salt and versatile bitter having desired ionic composition

Info

Publication number
JP3466601B2
JP3466601B2 JP2002208093A JP2002208093A JP3466601B2 JP 3466601 B2 JP3466601 B2 JP 3466601B2 JP 2002208093 A JP2002208093 A JP 2002208093A JP 2002208093 A JP2002208093 A JP 2002208093A JP 3466601 B2 JP3466601 B2 JP 3466601B2
Authority
JP
Japan
Prior art keywords
bitter
salt
seawater
versatile
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002208093A
Other languages
Japanese (ja)
Other versions
JP2003089518A (en
Inventor
俊哉 前原
和行 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noevir Co Ltd
Original Assignee
Noevir Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noevir Co Ltd filed Critical Noevir Co Ltd
Priority to JP2002208093A priority Critical patent/JP3466601B2/en
Publication of JP2003089518A publication Critical patent/JP2003089518A/en
Application granted granted Critical
Publication of JP3466601B2 publication Critical patent/JP3466601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Seasonings (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、海水の天然微量イ
オン及び微量有機成分を損なわない製造方法を用いて得
られるかん水を原料とするイオン組成が適宜調整された
多用途塩と多用途苦汁の製造方法に関する。 【0002】 【従来の技術】海水から天然海塩を採取する工程には、
採かん工程(濃縮工程)とせんごう工程(結晶化工程)
がある。また、苦汁は食塩製造の副生産物として回収さ
れる。 【0003】採かん工程(濃縮工程)については、現在
日本の製塩業界では、ほとんどがイオン交換膜方式を採
用している。イオン交換膜方式では、その膜の選択的透
過性のため、かん水(濃縮され塩分を多量に含んだ水)
中の2価イオン(マグネシウム等)が少なくなり、全塩
分中の塩化ナトリウムの量(純塩率)が、古来より行わ
れてきた塩田式採塩法の約78%に比較して88〜93
%と多くなり、また、食塩1tあたりに析出する苦汁の
量は塩田式よりも少ない。さらに、苦汁中の硫酸イオン
がほとんどなく、天然海水中の微量イオン及び微量有機
成分も殆ど含まれていない。 【0004】また、せんごう工程(結晶化工程)につい
ては、以前は平缶式、蒸気利用式、加圧式があったが、
現在では、多重効用真空蒸発装置式が主流である。 【0005】 【発明が解決しようとする課題】従来のイオン交換膜を
用いた製塩や苦汁の製造方法によると、その食味や風
味、美容用途、化粧品用途としての保湿や収斂効果に影
響を与える多様なイオンの含有量が少なくなってしま
う。また、苦汁の主成分であるマグネシウムの含有量が
少なく、硫酸イオン及び天然微量イオン及び微量有機成
分はほとんど含まれていない。 【0006】一方、昔ながらの楊浜式、入浜式、流下
式、高温を保ったビニルハウスやガラスハウス内での自
然乾燥式、電気炉等を用いた比較的低温での乾燥方式の
ように、海水中の天然栄養成分を損なわない海塩や苦汁
を採取する方法もあるが、いずれも効率が良いとは言え
ない。 【0007】また、食味、風味を改善する目的で、イオ
ン交換膜法で得たかん水を濃縮して得た塩結晶に、後操
作で苦汁を添加する方法(特許第2628606号)や
脱臭素化した苦汁液を添加する方法(特許第29263
73号)、また通常のイオン交換膜と2価陽イオン難透
過性処理を施したイオン交換膜を組み合わせて処理した
かん水を使用する方法(特開平7―170936号)、
天日塩の結晶を苦汁飽和液又は海水飽和液で洗浄する方
法(特開平11―139823号)等の技術が知られて
いるが、いずれも通常の製塩工程より複雑な工程を要
し、簡易的、効率的とは言えないものである。 【0008】苦汁工業において、化学方法により製造さ
れる苦汁である合成の硫酸マグネシウムは、先に述べた
理由から食品及び化粧品には適していない。また、食
用、美容及び化粧品用途等の多目的に応じて用いる塩や
苦汁として、多様な成分に富んだものが求められてい
る。 【0009】そこで、本発明においては、多様なイオ
ン、特に苦汁の主成分であるマグネシウムや硫酸イオ
ン、天然の微量イオン及び微量有機成分を損なわない製
造方法により得られたかん水を用い、所望のイオン組成
を有する多用途塩及び多用途苦汁を、簡易な工程で効率
よく得る製造方法を提供することを目的とした。 【0010】 【課題を解決するための手段】本発明においては、逆浸
透膜とバッチ式蒸発装置を組み合わせた海水濃縮プラン
トを用い、加熱濃縮時の温度制御を精密に行うことによ
り、上記課題を解決した。海水の濃縮は逆浸透膜を用い
て行う。元々、逆浸透膜は海水淡水化のために開発され
た最新の素材であり、これを利用して海水から淡水と濃
縮海水を得る技術についてはすでに開示されている(特
開平9−276864号、特開2000−128525
号)が、その装置は複雑であり、簡易性、効率性、経済
性といった面で有用であるとは言い難いものである。本
発明において用いるプラントの採かん工程においては、
その工程を工夫することによって、より高濃度のかん水
と、生活水としても用いることが可能な淡水を得ること
ができる。 【0011】さらに上記の操作で得られたかん水を材料
とし、バッチ式蒸発装置によりせんごう工程を行う。こ
のせんごう工程において、我々は、塩化ナトリウムや塩
化マグネシウム,硫酸マグネシウム,塩化カリウム等の
溶解度の差を利用して、濃縮工程の温度を制御すること
により、簡易な工程で任意のイオン組成を有する多用途
塩を得ることができた。すなわち、塩化ナトリウムは温
度上昇に伴う溶解度の上昇が非常に緩やかであるのに対
し、塩化マグネシウム,硫酸マグネシウム,塩化カリウ
ム等は、温度上昇に伴う溶解度の上昇が大きいという性
質を利用したものである。 【0012】また、上記工程で同時に苦汁液を得ること
ができるが、同様に蒸発装置の温度を制御することによ
り、簡易な工程で所望のイオン組成を有する多用途苦汁
を得ることができる。 【0013】 【発明の実施の形態】本発明において用いる海水濃縮プ
ラントの採かん工程では、逆浸透膜を用いて海水を濃縮
する。この逆浸透膜はポリアミド系複合膜からなり、海
水塩分を99.75%除去することができる。また、海
水中の微量イオン及び微量有機成分も除去される。 【0014】本発明のかん水の製造方法を以下に述べ
る。まず、海水の濃度は、電気伝導度にて測定を行う。
使用する海水の電気伝導度は、海水濃度の時期的変動に
より変化するが、まず電気伝導度が38,000〜4
9,000 μs/cm程度の天然海水を、循環水圧力
200〜250 psi(1.38〜1.72 MP
a)、ポンプ圧力1,100〜1,300 psi
(7.58〜8.96 MPa)、かん水流量0.6
gal/min(2.27 l/min)、真水流量
0.5 gal/min(1.89 l/min)の条
件にて、上記の逆浸透膜を循環させる。この操作にて得
られたかん水を、海水と混合し、海水よりも濃度の高い
混合かん水を得る。この混合かん水を再度逆浸透膜に循
環させることにより、電気伝導度が64,000〜7
5,000 μs/cmという非常に塩濃度の高いかん
水を効率よく得ることができる。そして、これらの濃縮
されたかん水には、豊富なミネラルの他に微量イオン及
び微量有機成分なども損なわれることなく含まれてい
る。さらに、副生産物である淡水は生活水として使用で
き、高効率で、無駄のない海水の濃縮が可能である。な
お、これらの採かん工程の条件は、その規模に応じ、慣
用されている範囲内で適宜選ぶことができる。 【0015】次に、多用途塩及び多用途苦汁の製造方法
を以下に述べる。得られた濃縮かん水はバッチ式蒸発装
置へ送られ、結晶が析出しない程度まで加熱濃縮され
る。そしてさらに、常圧下で目的に応じて109〜11
4℃の範囲で加熱濃縮を行い、その後加圧濾過によっ
て、液体苦汁と塩を分離する。ちなみに、109℃を下
回る加熱(特に100℃以下)では、苦汁と塩を分離さ
せることが困難であり、また114℃を越えて加熱を行
うと突沸が起こり危険である。 【0016】この多用途塩及び多用途苦汁を製造する工
程においては、常圧下で目的に応じて109〜114℃
の範囲で加熱濃縮を行うが、濃縮工程の温度が109℃
に近い場合は、得られる塩におけるナトリウムイオンの
割合が減少し、マグネシウムイオンの割合は増加する。
逆に濃縮温度が114℃に近い場合では、塩中のナトリ
ウムイオンの割合が増加し、マグネシウムイオンの割合
は減少する。一方、得られる苦汁液のイオン組成は塩の
組成とは逆に、濃縮温度が109℃に近い場合にナトリ
ウムイオンの割合が増加し、マグネシウムイオンの割合
が減少する。濃縮温度が114℃に近い場合には、ナト
リウムイオンの割合が減少し、マグネシウムイオンの割
合が増加する。 【0017】さらに、図1に示した海水濃縮プラントの
概略図を用いて、本発明の構成と流れを説明する。 【0018】図1において、海水タンク2に蓄えられた
海水は逆浸透膜を備えた採かん工程3を一度循環した
後、再度タンクの海水と混合され、もう一度逆浸透膜を
循環する。この時高濃度となったかん水は、一次濃縮水
としてかん水タンク4に貯留される。同時に、副生産物
として生成する淡水は、生活用水等の様々な目的で利用
される。採かん工程にて得たかん水は、蒸発濃縮装置8
を備えたせんごう工程(二次濃縮工程)7へと送られ
る。せんごう工程にて、任意の濃縮温度で過飽和状態ま
で濃縮されたかん水中の塩と苦汁の混合液は、蒸発装置
下部の弁を通って濾過器9に送られ、多用途塩と苦汁液
に分けられる。また、この時蒸発した水分は、冷却水で
満たされたコンデンサー6を経て液化され、凝縮水タン
ク5に蓄えられる。この後、液体苦汁はスプレードライ
ヤー(LB−8型:大川原製作所(株)社製)12によ
って供給液量 20〜70 ml/min.、羽根回転
数 20,000〜30,000 rpm、乾燥温度2
30〜260℃の条件で噴霧乾燥され、苦汁液量の約3
0%量が粉末状の苦汁となる。 【0019】更に本発明において用いる海水濃縮プラン
トの構成を説明すると、採かん工程は、海水貯槽、海水
圧送ポンプ、前処理槽、フィルター、電磁弁、プランジ
ャーポンプ、逆浸透膜及びモーターコントローラーから
構成されている。一方、せんごう工程は、一次濃縮水
(かん水)貯槽、濃縮液圧送ポンプ、蒸発濃縮装置、撹
拌機、コンデンサー、真空ポンプ、濾過器及びスプレー
ドライヤーから構成されている。 【0020】上記の海水濃縮プラントに用いられる逆浸
透膜は市販品として容易に入手することが可能で、デュ
ポン社等から販売されているものを用いることができ
る。 【0021】このように、濃縮温度を変えることで、我
々はほぼ任意のイオン組成を持った多用途塩と苦汁液
を、イオン交換膜の選択的透過性を利用した従来の方法
よりも効率的に得ることができた。また、苦汁の収率も
非常に高い方法である。 【0022】また、この方法で得た苦汁液はそのまま、
もしくはスプレードライヤーを用いて噴霧乾燥し、任意
のイオン組成を持った微粉末状の苦汁として様々な用途
に使用することが可能である。 【0023】 【実施例】以下、本発明を実施例により更に詳細に説明
する。 【0024】実施例1:電気伝導度が47,500 μ
s/cmの天然海水588 lを、循環水圧力250
psi(1.72 MPa)、ポンプ圧力1,300
psi(8.96 MPa)、かん水流量0.6 ga
l/min(2.27 l/min)、真水流量0.5
gal/min(1.89 l/min)の条件に
て、デュポン社製の逆浸透膜 THIN FILM を
循環させる。この操作にて得られたかん水を、海水と混
合し、海水よりも濃度の高い混合かん水を得る。この混
合かん水を再度逆浸透膜に循環させることにより、電気
伝導度が64,300 μs/cmのかん水465 l
を得た。この時同時に得た膜透過水の電気伝導度は30
μs/cm以下であった。ここで得られたかん水を、
濃縮温度114.0℃で加熱濃縮し、16.3Kgの
塩、16.4Kgの苦汁液を得た。さらにこの苦汁液を
スプレードライヤーにて噴霧乾燥し、4.92Kgの粉
末苦汁を得た。 【0025】実施例2:電気伝導度が47,500 μ
s/cmの天然海水588 lを、循環水圧力250
psi(1.72 MPa)、ポンプ圧力1,300
psi(8.96 MPa)、かん水流量0.6 ga
l/min(2.27 l/min)、真水流量0.5
gal/min(1.89 l/min)の条件に
て、デュポン社製の逆浸透膜 THIN FILM を
循環させる。この操作にて得られたかん水を、海水と混
合し、海水よりも濃度の高い混合かん水を得る。この混
合かん水を再度逆浸透膜に循環させることにより、電気
伝導度が67,700 μs/cmのかん水465 l
を得た。この時同時に得た膜透過水の電気伝導度は30
μs/cm以下であった。ここで得られたかん水を、
濃縮温度110.4℃で加熱濃縮し、18.8Kgの
塩、15.8Kgの苦汁液を得た。さらにこの苦汁液を
スプレードライヤーにて噴霧乾燥し、4.96Kgの粉
末苦汁を得た。 【0026】実施例3:電気伝導度が47,000 μ
s/cmの天然海水577 lを、循環水圧力250
psi(1.72 MPa)、ポンプ圧力1,300
psi(8.96 MPa)、かん水流量0.6 ga
l/min(2.27 l/min)、真水流量0.5
gal/min(1.89 l/min)の条件に
て、デュポン社製の逆浸透膜 THIN FILM を
循環させる。この操作にて得られたかん水を、海水と混
合し、海水よりも濃度の高い混合かん水を得る。この混
合かん水を再度逆浸透膜に循環させることにより、電気
伝導度が67,000 μs/cmのかん水465 l
を得た。この時同時に得た膜透過水の電気伝導度は30
μs/cm以下であった。ここで得られたかん水を、
濃縮温度109.7℃で加熱濃縮し、18.0Kgの
塩、14.7Kgの苦汁液を得た。さらにこの苦汁液を
スプレードライヤーにて噴霧乾燥し、4.68Kgの粉
末苦汁を得た。 【0027】実施例4:電気伝導度が47,000 μ
s/cmの天然海水574 lを、循環水圧力250
psi(1.72 MPa)、ポンプ圧力1,300
psi(8.96 MPa)、かん水流量0.6 ga
l/min(2.27 l/min)、真水流量0.5
gal/min(1.89 l/min)の条件に
て、デュポン社製の逆浸透膜 THIN FILM を
循環させる。この操作にて得られたかん水を、海水と混
合し、海水よりも濃度の高い混合かん水を得る。この混
合かん水を再度逆浸透膜に循環させることにより、電気
伝導度が67,600 μs/cmのかん水465 l
を得た。この時同時に得た膜透過水の電気伝導度は30
μs/cm以下であった。ここで得られたかん水を、
濃縮温度109.4℃で加熱濃縮し、17.1Kgの
塩、14.2Kgの苦汁液を得た。さらにこの苦汁液を
スプレードライヤーにて噴霧乾燥し、4.58Kgの粉
末苦汁を得た。 【0028】実施例5:電気伝導度が47,000 μ
s/cmの天然海水579 lを、循環水圧力250
psi(1.72 MPa)、ポンプ圧力1,300
psi(8.96 MPa)、かん水流量0.6 ga
l/min(2.27 l/min)、真水流量0.5
gal/min(1.89 l/min)の条件に
て、デュポン社製の逆浸透膜 THIN FILM を
循環させる。この操作にて得られたかん水を、海水と混
合し、海水よりも濃度の高い混合かん水を得る。この混
合かん水を再度逆浸透膜に循環させることにより、電気
伝導度が67,200 μs/cmのかん水465 l
を得た。この時同時に得た膜透過水の電気伝導度は30
μs/cm以下であった。ここで得られたかん水を、
濃縮温度109.2℃で加熱濃縮し、17.1Kgの
塩、13.7Kgの苦汁液を得た。さらにこの苦汁液を
スプレードライヤーにて噴霧乾燥し、4.41Kgの粉
末苦汁を得た。 【0029】実施例1〜実施例5で得られた多用途塩及
び粉末苦汁100g中に含まれる各イオン重量(g)を
表1に示す。 【0030】 【表1】 【0031】表1に示した通り、加熱濃縮温度が低くな
るに従い、多用途塩中のマグネシウム量は増加し、逆に
粉末苦汁中のマグネシウム量は減少した。 【0032】 【発明の効果】美容及び化粧品業界においては、製品の
多様化、少量化という特徴があり、天然海塩や苦汁の成
分に対しても多様性を要求されている。従来の製造プラ
ントにおいては、なかなか解決できない問題であった。 【0033】しかし我々は実施例に示したように、逆浸
透膜とバッチ式真空蒸発装置等からなる海水濃縮プラン
トを用いて、多様なイオンや微量有機成分を損なわない
かん水を効率よく製造する方法を得ることができた。ま
たこのかん水を用いて、所望のイオン組成を持つ多用途
塩及び多用途苦汁を、簡易な工程で効率よく製造する方
法を得ることができた。 【0034】表1に示したように、加熱濃縮工程の温度
上昇に伴い溶解度が大きくなるマグネシウムイオンは、
114℃により近い高温で加熱濃縮を行うことで、塩中
での割合は小さくなり、また苦汁中での割合が大きくな
る。逆に、109℃付近での加熱濃縮では、マグネシウ
ムイオンの塩中での割合は大きくなり、苦汁中での割合
は小さくなった。 【0035】本発明において用いる海水濃縮プラントの
採かん工程及びせんごう工程は全て自動化が可能であ
り、海水の濃縮、天然の海塩と苦汁を経済的に効率よ
く、簡易な工程で生産することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for appropriately adjusting the ionic composition of brackish water obtained by using a production method which does not impair natural trace ions and trace organic components of seawater. And a method for producing a versatile bittern. [0002] In the process of collecting natural sea salt from sea water,
Picking process (concentration process) and fermentation process (crystallization process)
There is. Bitter is also collected as a by-product of salt production. As for the sampling process (concentration process), most of the salt production industry in Japan currently employs an ion exchange membrane system. In the ion-exchange membrane system, brine is used because of the selective permeability of the membrane (water that is concentrated and contains a large amount of salt).
The amount of divalent ions (magnesium, etc.) in the water decreases, and the amount of sodium chloride in the total salt (pure salt ratio) is 88-93 as compared with about 78% of the salt field type salt extraction method that has been practiced since ancient times.
%, And the amount of bittern precipitated per ton of salt is smaller than in the salt field type. Furthermore, there is almost no sulfate ion in bitter juice, and there are almost no trace ions and trace organic components in natural seawater. [0004] In the meantime, there have been flat can type, steam utilization type, and pressurized type in the past, with regard to the digging step (crystallization step).
At present, the multi-effect vacuum evaporator type is the mainstream. [0005] According to the conventional method for producing salt and bitter using an ion-exchange membrane, there are various factors affecting the taste and flavor, the moisturizing effect and the astringent effect for cosmetic and cosmetic applications. The content of a suitable ion is reduced. In addition, the content of magnesium, which is a main component of bitter, is low, and sulfate ions, natural trace ions, and trace organic components are scarcely contained. [0006] On the other hand, as in the conventional Yanghama type, entering beach type, flowing down type, natural drying type in a vinyl house or glass house keeping high temperature, drying method at relatively low temperature using an electric furnace or the like. Although there is a method of collecting sea salt and bitter which does not impair the natural nutrient components in seawater, none of them is efficient. Further, for the purpose of improving the taste and flavor, a method (Japanese Patent No. 2628606) of adding bittern to salt crystals obtained by concentrating brackish water obtained by an ion-exchange membrane method in a subsequent operation, or debromination Method for adding a bitter solution (Japanese Patent No. 29263)
No. 73), a method using brine treated by combining a normal ion-exchange membrane with an ion-exchange membrane subjected to a divalent cation hardly permeable treatment (JP-A-7-170936),
Techniques such as a method of washing solar salt crystals with a bitter-saturated solution or a seawater-saturated solution (Japanese Patent Laid-Open No. 11-139823) are known. It is not efficient. [0008] In the bitter industry, synthetic magnesium sulfate, a bitter produced by chemical methods, is not suitable for food and cosmetics for the reasons mentioned above. In addition, salts and bitters used for various purposes such as edible use, beauty and cosmetic use are required to be rich in various components. Therefore, in the present invention, desired ions are used by using various ions, particularly magnesium and sulfate ions, which are the main components of bitterness, natural trace ions and trace water obtained by a production method which does not impair trace organic components. It is an object of the present invention to provide a method for efficiently producing a multi-use salt and a multi-use bitter having a composition in a simple process. [0010] In the present invention, the above problems are solved by using a seawater concentration plant in which a reverse osmosis membrane and a batch type evaporator are combined and precisely controlling the temperature during heating and concentration. Settled. The seawater is concentrated using a reverse osmosis membrane. Originally, reverse osmosis membranes are the latest materials developed for seawater desalination, and techniques for obtaining freshwater and concentrated seawater from seawater using these materials have already been disclosed (JP-A-9-276864, JP-A-2000-128525
However, the device is complicated and is not useful in terms of simplicity, efficiency and economy. In the sampling process of the plant used in the present invention,
By devising the process, it is possible to obtain higher-concentration brine and fresh water that can be used as living water. Further, using the brackish water obtained by the above operation as a material, a scouring step is performed by a batch type evaporator. In this process, we use a difference in the solubility of sodium chloride, magnesium chloride, magnesium sulfate, potassium chloride, etc. to control the temperature of the enrichment process, and thus have an arbitrary ion composition in a simple process. A versatile salt was obtained. In other words, sodium chloride has a very slow increase in solubility with increasing temperature, whereas magnesium chloride, magnesium sulfate, potassium chloride and the like make use of the property that the increase in solubility with temperature is large. . Further, bitter liquid can be obtained at the same time in the above steps. Similarly, by controlling the temperature of the evaporator, versatile bitter having a desired ion composition can be obtained in a simple step. DESCRIPTION OF THE PREFERRED EMBODIMENTS In a sampling step of a seawater concentration plant used in the present invention, seawater is concentrated using a reverse osmosis membrane. This reverse osmosis membrane is made of a polyamide-based composite membrane and can remove 99.75% of seawater salt. Also, trace ions and trace organic components in seawater are removed. The method for producing brine according to the present invention will be described below. First, the concentration of seawater is measured by electric conductivity.
The electric conductivity of the seawater used changes depending on the seasonal variation of the seawater concentration.
Natural seawater of about 9,000 μs / cm is supplied at a circulating water pressure of 200 to 250 psi (1.38 to 1.72 MP).
a), pump pressure 1,100-1,300 psi
(7.58 to 8.96 MPa), brine flow rate 0.6
The reverse osmosis membrane is circulated under the conditions of gal / min (2.27 l / min) and a fresh water flow rate of 0.5 gal / min (1.89 l / min). The brackish water obtained by this operation is mixed with seawater to obtain a mixed brackish water having a higher concentration than seawater. By circulating this mixed brine again through the reverse osmosis membrane, the electric conductivity becomes 64,000 to 7
Brine with a very high salt concentration of 5,000 μs / cm can be obtained efficiently. And, these concentrated brines contain trace minerals and trace organic components without loss in addition to abundant minerals. Furthermore, fresh water as a by-product can be used as living water, and high-efficiency and efficient wastewater concentration can be achieved. The conditions of these sampling steps can be appropriately selected within a commonly used range according to the scale. Next, a method for producing a multi-use salt and a multi-use bitter is described below. The obtained concentrated brine is sent to a batch-type evaporator, and is heated and concentrated to the extent that crystals do not precipitate. And further, under normal pressure, depending on the purpose.
The solution is concentrated by heating in the range of 4 ° C., and then liquid bitter and salt are separated by pressure filtration. By the way, if the temperature is lower than 109 ° C. (especially 100 ° C. or lower), it is difficult to separate bitter and salt, and if the temperature exceeds 114 ° C., bumping is likely to occur. In the step of producing the versatile salt and the versatile bitter, at 109-114 ° C. under normal pressure, depending on the purpose.
Heat concentration in the range of, the temperature of the concentration step is 109 ℃
, The proportion of sodium ions in the resulting salt decreases and the proportion of magnesium ions increases.
Conversely, when the concentration temperature is close to 114 ° C., the proportion of sodium ions in the salt increases and the proportion of magnesium ions decreases. On the other hand, when the concentration temperature is close to 109 ° C., the proportion of sodium ions increases and the proportion of magnesium ions decreases, as opposed to the salt composition, in the ion composition of the resulting bitter solution. When the concentration temperature is close to 114 ° C., the ratio of sodium ions decreases and the ratio of magnesium ions increases. Further, the configuration and flow of the present invention will be described with reference to the schematic diagram of the seawater concentration plant shown in FIG. In FIG. 1, the seawater stored in the seawater tank 2 circulates once through a sampling step 3 provided with a reverse osmosis membrane, is mixed again with the seawater in the tank, and circulates again through the reverse osmosis membrane. At this time, the highly concentrated brine is stored in the brine tank 4 as primary concentrated water. At the same time, fresh water produced as a by-product is used for various purposes such as domestic water. The irrigation water obtained in the extraction process is supplied to the evaporator 8
Is sent to the washing process (secondary concentration process) 7 provided with The mixed solution of salt and bittern in the brine that has been concentrated to a supersaturated state at an arbitrary concentration temperature in the sludge process is sent to a filter 9 through a valve at the bottom of the evaporator, and is converted into a multipurpose salt and bitter solution. Divided. The water evaporated at this time is liquefied through a condenser 6 filled with cooling water and stored in a condensed water tank 5. Thereafter, the liquid bittern was supplied by a spray dryer (LB-8 type: Okawara Seisakusho Co., Ltd.) 12 at a supply liquid volume of 20 to 70 ml / min. , Blade rotation speed 20,000-30,000 rpm, drying temperature 2
Spray-dried at 30-260 ° C, about 3
0% amount becomes powdered bittern. The structure of the seawater concentrating plant used in the present invention will be described. The sampling step comprises a seawater storage tank, a seawater pump, a pretreatment tank, a filter, a solenoid valve, a plunger pump, a reverse osmosis membrane, and a motor controller. Have been. On the other hand, the steaming process is composed of a primary concentrated water (brine) storage tank, a concentrated liquid pump, an evaporative concentration device, a stirrer, a condenser, a vacuum pump, a filter, and a spray dryer. The reverse osmosis membrane used in the above seawater concentration plant can be easily obtained as a commercial product, and those sold by DuPont or the like can be used. As described above, by changing the concentration temperature, we can convert multi-use salts and bitter liquids having almost arbitrary ionic compositions more efficiently than the conventional method using the selective permeability of the ion exchange membrane. I was able to get to. In addition, the bitter yield is also very high. The bitter solution obtained by this method is used as it is.
Alternatively, it can be spray-dried using a spray drier and used as a fine powdery bitter having an arbitrary ion composition for various uses. The present invention will be described in more detail with reference to the following examples. Example 1: Electric conductivity of 47,500 μ
s / cm of natural seawater at circulating water pressure of 250
psi (1.72 MPa), pump pressure 1,300
psi (8.96 MPa), brine flow 0.6 ga
1 / min (2.27 l / min), fresh water flow rate 0.5
Under the condition of gal / min (1.89 l / min), a reverse osmosis membrane THIN FILM manufactured by DuPont is circulated. The brackish water obtained by this operation is mixed with seawater to obtain a mixed brackish water having a higher concentration than seawater. By circulating this mixed brine again through the reverse osmosis membrane, 465 l of brine with an electric conductivity of 64,300 μs / cm was used.
I got At this time, the electric conductivity of the permeated water obtained at the same time is 30.
μs / cm or less. The brackish water obtained here,
The mixture was heated and concentrated at a concentration temperature of 114.0 ° C. to obtain 16.3 kg of a salt and 16.4 kg of bitter solution. Further, the bitter liquid was spray-dried with a spray dryer to obtain 4.92 Kg of powder bitter. Example 2: Electric conductivity of 47,500 μ
s / cm of natural seawater at circulating water pressure of 250
psi (1.72 MPa), pump pressure 1,300
psi (8.96 MPa), brine flow 0.6 ga
1 / min (2.27 l / min), fresh water flow rate 0.5
Under the condition of gal / min (1.89 l / min), a reverse osmosis membrane THIN FILM manufactured by DuPont is circulated. The brackish water obtained by this operation is mixed with seawater to obtain a mixed brackish water having a higher concentration than seawater. By circulating this mixed brine again through the reverse osmosis membrane, 465 l of brine with an electric conductivity of 67,700 μs / cm were used.
I got At this time, the electric conductivity of the permeated water obtained at the same time is 30.
μs / cm or less. The brackish water obtained here,
The mixture was concentrated by heating at a concentration temperature of 110.4 ° C. to obtain 18.8 kg of salt and 15.8 kg of bitter solution. Further, the bitter liquid was spray-dried with a spray dryer to obtain 4.96 Kg of powder bitter. Example 3 Electric conductivity is 47,000 μm
577 liters of natural seawater at a circulating water pressure of
psi (1.72 MPa), pump pressure 1,300
psi (8.96 MPa), brine flow 0.6 ga
1 / min (2.27 l / min), fresh water flow rate 0.5
Under the condition of gal / min (1.89 l / min), a reverse osmosis membrane THIN FILM manufactured by DuPont is circulated. The brackish water obtained by this operation is mixed with seawater to obtain a mixed brackish water having a higher concentration than seawater. By circulating the mixed brine again through the reverse osmosis membrane, 465 l of brine with an electric conductivity of 67,000 μs / cm was used.
I got At this time, the electric conductivity of the permeated water obtained at the same time is 30.
μs / cm or less. The brackish water obtained here,
The mixture was concentrated by heating at a concentration temperature of 109.7 ° C. to obtain 18.0 kg of a salt and 14.7 kg of bitter solution. The bitter liquid was spray-dried with a spray drier to obtain 4.68 kg of powder bitter. Example 4: Electric conductivity of 47,000 μm
574 l of natural seawater at a circulating water pressure of 250
psi (1.72 MPa), pump pressure 1,300
psi (8.96 MPa), brine flow 0.6 ga
1 / min (2.27 l / min), fresh water flow rate 0.5
Under the condition of gal / min (1.89 l / min), a reverse osmosis membrane THIN FILM manufactured by DuPont is circulated. The brackish water obtained by this operation is mixed with seawater to obtain a mixed brackish water having a higher concentration than seawater. By circulating the mixed brine again through the reverse osmosis membrane, 465 l of brine with an electric conductivity of 67,600 μs / cm was used.
I got At this time, the electric conductivity of the permeated water obtained at the same time is 30.
μs / cm or less. The brackish water obtained here,
The mixture was concentrated by heating at a concentration temperature of 109.4 ° C. to obtain 17.1 kg of salt and 14.2 kg of bitter solution. Further, the bitter liquid was spray-dried with a spray dryer to obtain 4.58 kg of powder bitter. Example 5: Electric conductivity of 47,000 μm
579 liters of natural seawater at a circulating water pressure of 250
psi (1.72 MPa), pump pressure 1,300
psi (8.96 MPa), brine flow 0.6 ga
1 / min (2.27 l / min), fresh water flow rate 0.5
Under the condition of gal / min (1.89 l / min), a reverse osmosis membrane THIN FILM manufactured by DuPont is circulated. The brackish water obtained by this operation is mixed with seawater to obtain a mixed brackish water having a higher concentration than seawater. By circulating this mixed brine again through the reverse osmosis membrane, 465 l of brine with an electric conductivity of 67,200 μs / cm was used.
I got At this time, the electric conductivity of the permeated water obtained at the same time is 30.
μs / cm or less. The brackish water obtained here,
The mixture was concentrated by heating at a concentration temperature of 109.2 ° C. to obtain 17.1 kg of a salt and 13.7 kg of bitter solution. Further, the bitter liquid was spray-dried with a spray dryer to obtain 4.41 kg of powder bitter. The versatile salt obtained in Examples 1 to 5 and the weight (g) of each ion contained in 100 g of powdered bittern are shown in Table 1. [Table 1] As shown in Table 1, as the heat-concentration temperature decreased, the amount of magnesium in the versatile salt increased, and conversely, the amount of magnesium in the powdered bittern decreased. The beauty and cosmetics industries are characterized by diversification and miniaturization of products, and there is a demand for diversity of natural sea salt and bitter ingredients. In a conventional manufacturing plant, this is a problem that cannot be easily solved. However, as shown in the examples, a method for efficiently producing brine without damaging various ions and trace organic components using a seawater concentration plant comprising a reverse osmosis membrane and a batch type vacuum evaporator. Could be obtained. In addition, a method for efficiently producing a versatile salt and a versatile bitter having a desired ionic composition by a simple process using the brackish water could be obtained. As shown in Table 1, magnesium ions whose solubility increases with increasing temperature in the heat concentration step are:
By performing the heat concentration at a high temperature closer to 114 ° C., the ratio in the salt is reduced, and the ratio in the bitter is increased. Conversely, in the case of heat concentration at around 109 ° C., the ratio of magnesium ions in the salt increased, and the ratio in bitterness decreased. [0035] All of the sampling and sewage processes of the seawater concentration plant used in the present invention can be automated, and the seawater concentration, natural sea salt and bitter can be produced economically efficiently and in a simple process. Can be.

【図面の簡単な説明】 【図1】本発明において用いる海水濃縮プラントの構成
を示す概略図である。 【符号の説明】 1 海水濃縮プラント 2 海水タンク 3 採かん行程(一次濃縮工程) 4 かん水タンク(一次濃縮水タンク) 5 凝縮水タンク 6 コンデンサー 7 せんごう(結晶化)工程(二次濃縮工程) 8 蒸発濃縮装置 9 濾過器 10 塩受皿 11 液体苦汁 12 スプレードライヤー 13 粉末苦汁皿
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a configuration of a seawater concentration plant used in the present invention. [Description of Signs] 1 Seawater concentrating plant 2 Seawater tank 3 Sampling process (primary concentrating process) 4 Brackish water tank (primary condensed water tank) 5 Condensed water tank 6 Condenser 7 Sengo (crystallization) process (secondary condensing process) 8 Evaporation concentrator 9 Filter 10 Salt pan 11 Liquid bitter 12 Spray dryer 13 Powder bitter dish

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/04 C02F 1/04 Z 1/44 1/44 G (58)調査した分野(Int.Cl.7,DB名) C01D 3/06 A23L 1/22 B01D 61/02 B01D 69/12 B01D 71/56 C02F 1/04 C02F 1/44 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI C02F 1/04 C02F 1/04 Z 1/44 1/44 G (58) Field surveyed (Int.Cl. 7 , DB name) C01D 3/06 A23L 1/22 B01D 61/02 B01D 69/12 B01D 71/56 C02F 1/04 C02F 1/44

Claims (1)

(57)【特許請求の範囲】 【請求項1】 海水からの製塩において、ポリアミド系
複合膜を用いた逆浸透膜を使用し、天然海水の微量イオ
ン及び微量有機成分を損なわない製造方法により得られ
たかん水を、109〜114℃の範囲内で加熱すること
により、所望のイオン組成を有する多用途塩及び多用途
苦汁を製造する方法。
(57) [Claims 1] In a salt production from seawater, a reverse osmosis membrane using a polyamide-based composite membrane is used, and a production method which does not impair trace ions and trace organic components of natural seawater is obtained. A method for producing a versatile salt and a versatile bitter having a desired ionic composition by heating the obtained brine in the range of 109 to 114 ° C.
JP2002208093A 2002-07-17 2002-07-17 Method for producing versatile salt and versatile bitter having desired ionic composition Expired - Fee Related JP3466601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208093A JP3466601B2 (en) 2002-07-17 2002-07-17 Method for producing versatile salt and versatile bitter having desired ionic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208093A JP3466601B2 (en) 2002-07-17 2002-07-17 Method for producing versatile salt and versatile bitter having desired ionic composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000303202A Division JP2002114512A (en) 2000-10-03 2000-10-03 Method for producing brine, multipurpose salt and multipurpose bittern using brine obtained by the same and method for producing these

Publications (2)

Publication Number Publication Date
JP2003089518A JP2003089518A (en) 2003-03-28
JP3466601B2 true JP3466601B2 (en) 2003-11-17

Family

ID=19195827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208093A Expired - Fee Related JP3466601B2 (en) 2002-07-17 2002-07-17 Method for producing versatile salt and versatile bitter having desired ionic composition

Country Status (1)

Country Link
JP (1) JP3466601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143309B2 (en) 2006-07-14 2012-03-27 Urthtech, Llc Methods and composition for treating a material

Also Published As

Publication number Publication date
JP2003089518A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
KR100732066B1 (en) Method for extracting minerals of high purity from deep ocean water by using low temperature vacuum crystallization
KR100885175B1 (en) Method for producing mineral water and mineral salts comprising mineral isolated from deep ocean water
KR100944538B1 (en) Method for producing high hardness mineral water containing mineral using sea water
JP5919432B2 (en) Separation of mineral salt containing magnesium salt and calcium salt from electrolyzed alkaline water of seawater and method for producing mineral beverage using the same
Mondal et al. Four-fold concentration of sucrose in sugarcane juice through energy efficient forward osmosis using sea bittern as draw solution
CN103253818A (en) Seawater desalination, resource comprehensive utilization and zero discharge processing system
CN104041791A (en) Method for producing edible salt from sea water through industrial process and processing device of edible salt
AU2012222624B2 (en) Treatment of raw brines from desalination plants
KR101367477B1 (en) Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
AU2004212401B2 (en) Method of desalting
CN203229436U (en) Seawater desalination, resources comprehensive utilization and zero discharge treatment system
KR20150143062A (en) Removal of anions and conversion technology of carbonate ions from seawater
CN110217934A (en) A kind of preparation method of pickled vegetable brine MVR evaporative crystallization
JP3466601B2 (en) Method for producing versatile salt and versatile bitter having desired ionic composition
JP2002114512A (en) Method for producing brine, multipurpose salt and multipurpose bittern using brine obtained by the same and method for producing these
JP2002338242A (en) Method for manufacturing high-mineral oxide
JP2004359523A (en) Method and apparatus for manufacturing salt
KR102325865B1 (en) Method for prepairing high density mineral nutrient salt from sea water
JP2006007084A (en) Mineral composition, manufacturing method therefor and usage thereof
JP2002316151A (en) Method and apparatus for manufacturing mineral- containing water and natural salt
JP5090657B2 (en) Mineral water powder
TW201639794A (en) Method for electrolyzing sea water to produce mineral beverage and disinfecting water, and mineral beverage, and disinfecting water manufactured by the same
KR101844827B1 (en) Method of extracting calcium salt, natrium salt, magnesium salt and potassium salt from seawater, and its products
KR100858030B1 (en) The liquid sea tangle salt manufacture method
CN101565250A (en) Seawater desalination and chemical resource comprehensive extraction device and extraction method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3466601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees