JP3459916B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP3459916B2
JP3459916B2 JP2002277751A JP2002277751A JP3459916B2 JP 3459916 B2 JP3459916 B2 JP 3459916B2 JP 2002277751 A JP2002277751 A JP 2002277751A JP 2002277751 A JP2002277751 A JP 2002277751A JP 3459916 B2 JP3459916 B2 JP 3459916B2
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
active matrix
substrate
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002277751A
Other languages
Japanese (ja)
Other versions
JP2003107484A (en
Inventor
周憲 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianma Japan Ltd
Original Assignee
NEC LCD Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC LCD Technologies Ltd filed Critical NEC LCD Technologies Ltd
Priority to JP2002277751A priority Critical patent/JP3459916B2/en
Publication of JP2003107484A publication Critical patent/JP2003107484A/en
Application granted granted Critical
Publication of JP3459916B2 publication Critical patent/JP3459916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly practical liquid crystal display device adopting the OCB (Optically Compensated Bend) system and capable of suppressing disturbance in the alignment of liquid crystal molecules due to an environmental electric field and the shape of an orientation face. SOLUTION: In the liquid crystal display device adopting the OCB (Optically Compensated Bend) system, an active matrix substrate Ab wherein a pixel electrode 41 and a thin film transistor are formed in a pixel are Px surrounded by a plurality of scanning lines placed in parallel and a plurality of signal lines 31 crossing with the scanning lines via an insulation layer 2, and a transparent substrate Tb formed with a common electrode 14 are laid out opposite to each other with a liquid crystal Lc interposed therebetween. Orientation processing is applied to the opposed face of the active matrix substrate Ab and the opposed face of the transparent substrate Tb in the same direction, and the opposed face of the active matrix substrate Ab and the opposed face of the transparent substrate Tb are configured to have a tilt in opposite directions to each other along the aligning direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はOCB(Optically
Compensated Bend )方式の液晶表示装置に関し、特に
環境電界や配向面の形状による液晶分子の配向乱れを抑
えた実用性の高いOCB方式の液晶表示装置に関する。
TECHNICAL FIELD The present invention relates to an OCB (Optically
The present invention relates to a Compensated Bend) type liquid crystal display device, and more particularly to a highly practical OCB type liquid crystal display device that suppresses alignment disorder of liquid crystal molecules due to an environmental electric field or the shape of an alignment surface.

【0002】[0002]

【従来の技術】液晶表示装置は薄型であり表示情報の大
容量化が比較的容易であるためCRTなどの表示装置に
置き換わり急速に普及しつつある。液晶の動作モードと
しては、基板に挟持された液晶分子の分子軸の方向(以
下、ダイレクタと呼ぶ)を上下基板面で平面視約90度
回転させて液晶分子をツイスト配向させ、基板に対して
垂直方向の電界により、ダイレクタを垂直方向に回転さ
せて表示を行うツイステッドネマティックモード(以
下、TNモードと呼ぶ)が従来主に用いられてきた。
2. Description of the Related Art Since a liquid crystal display device is thin and it is relatively easy to increase the capacity of display information, it is being replaced with a display device such as a CRT and is rapidly becoming popular. As the operation mode of the liquid crystal, the direction of the molecular axis of the liquid crystal molecule sandwiched between the substrates (hereinafter, referred to as director) is rotated about 90 degrees in plan view on the upper and lower substrate surfaces to twist the liquid crystal molecules, and the liquid crystal molecules are twisted to the substrate. A twisted nematic mode (hereinafter referred to as TN mode) in which a director is rotated in the vertical direction by an electric field in the vertical direction to perform display has been mainly used conventionally.

【0003】しかしながら、このTNモードは、視野角
が狭いという問題点がある。その為、斜め方向から表示
を視認出来ない他、大容量表示が進み画面面積が大きく
なると、斜め方向のある視点から画面を見た場合画面中
央と画面端で見え方が異なり均一な表示ができなくな
る。TNモードに位相補償板を加え視野角を拡大する技
術が特開平6−75116号公報などに開示されている
がTNモード特有のねじれ構造を完全に補償することは
難しく、根本的な解決には至っていない。そこで、視野
角を改善するための手段として液晶層にねじれ構造を有
しないベンド配列セルに位相補償板を組み合わせた方式
が注目されている。ベンド配列セルに位相補償板を組み
合わせた方式はOCB(optically compensated bendも
しくはoptically compensated birefrengence)とよば
れ、その応答速度の速さから特に注目されている。以下
にOCBについて説明する。
However, this TN mode has a problem that the viewing angle is narrow. Therefore, in addition to not being able to see the display from the diagonal direction, when the screen area becomes large due to the large-capacity display, when the screen is viewed from a certain perspective, the appearance is different at the center and the edge of the screen, and a uniform display is possible. Disappear. A technique for expanding the viewing angle by adding a phase compensator to the TN mode is disclosed in Japanese Patent Application Laid-Open No. 6-75116, but it is difficult to completely compensate for the twist structure peculiar to the TN mode, and a fundamental solution is to solve the problem. I haven't arrived. Therefore, as a means for improving the viewing angle, a method in which a phase compensation plate is combined with a bend array cell having no twist structure in a liquid crystal layer is drawing attention. A system in which a bend array cell is combined with a phase compensating plate is called OCB (optically compensated bend or optically compensated birefrengence), and has attracted particular attention because of its fast response speed. The OCB will be described below.

【0004】OCBは2枚の基板間にベンド配列に配向
したセルが設置され、液晶層の位相を補償する位相補償
板が設置された構造となっている。位相補償板には、特
開平6−294962号公報で開示されている負の複屈
折性を有する位相補償板を用いるもの、SID'94Digestで
Kuoらが開示している2軸性の位相補償板を用いるも
の、特開平10−197862号公報で開示されている
ハイブリッド配列をした負の複屈折性を有する位相補償
板を上下2枚用いるもの等がある。
The OCB has a structure in which cells oriented in a bend arrangement are installed between two substrates and a phase compensating plate for compensating the phase of the liquid crystal layer is installed. As the phase compensator, one using a phase compensator having negative birefringence disclosed in JP-A-6-294962, a biaxial phase compensator disclosed by Kuo et al. In SID'94 Digest. And a phase compensation plate having negative birefringence and having a hybrid arrangement disclosed in Japanese Patent Laid-Open No. 10-197862.

【0005】OCBで用いられる液晶セルは図16に示
すように、2枚の基板の対向面が同一方向Orに配向処
理されていて2枚の基板間に液晶分子が挟持され、液晶
分子Lcは、基板界面ではそれぞれチルト角(θ、−
θ)をもって配向している。このような状態のセルの場
合、電圧を印加していない状態では両基板間の中央に近
づくに従いチルト角を減じ、セルギャップ中央部ではチ
ルト角がゼロとなって、液晶分子と両基板間とがほぼ平
行に配向する(この状態をスプレイ配列と呼ぶ)。この
状態のままでは所望の広視野角および高速応答性が得ら
れない。OCBモードではこのセル間に高電圧を印加す
るなどしてセルギャップ中央部で液晶が立ち上がり基板
界面へ近づくにつれチルト角が減じるような弓形の状態
(この状態をベンド配列と呼ぶ)にする必要がある。
In a liquid crystal cell used in OCB, as shown in FIG. 16, the opposing surfaces of two substrates are oriented in the same direction Or, liquid crystal molecules are sandwiched between the two substrates, and liquid crystal molecules Lc are , And tilt angles (θ, −
θ). In the case of a cell in such a state, the tilt angle is reduced as it approaches the center between both substrates in the state where no voltage is applied, and the tilt angle becomes zero in the central portion of the cell gap, and the tilt angle between the liquid crystal molecule and both substrates is reduced. Are almost parallel to each other (this state is called splay arrangement). In this state, the desired wide viewing angle and high-speed response cannot be obtained. In the OCB mode, it is necessary to apply a high voltage between the cells so that the liquid crystal rises at the center of the cell gap and the tilt angle decreases as the liquid crystal approaches the substrate interface (this state is called bend alignment). is there.

【0006】OCBモードにおいては、セルギャップ中
央部の液晶が立ち上がったまま、中央部以外の液晶分子
のチルト角を両基板の電圧等により制御して表示を行
う。例えば図17(a)のように中央部の液晶が立ち上
がりそれ以外の液晶のチルト角が小さい(横に寝た)配
向に対し暗状態となるように位相補償板を適合させてお
くと、図17(b)のように中央部の液晶が立ち上がっ
たままそれ以外の液晶のチルト角が大きい(立ち上がっ
た)配向では明表示となる。
In the OCB mode, while the liquid crystal in the central portion of the cell gap is still standing, the tilt angle of the liquid crystal molecules other than the central portion is controlled by the voltage of both substrates and the like for display. For example, as shown in FIG. 17A, when the phase compensator is adapted so that the liquid crystal in the central portion rises and the other liquid crystal has a small tilt angle (sideways), the phase compensator is adjusted to a dark state. As shown in 17 (b), when the liquid crystal in the central portion is still standing and the other tilt angles of the liquid crystal are large (raised), bright display is obtained.

【0007】[0007]

【発明が解決しようとする課題】しかし、実際にベンド
型の配向方式をアクティブマトリックス液晶表示装置に
適用するには問題があった。問題の一つは、ベンド型に
配向した液晶が一般に画素電極と配線などとの間に寄生
的に発生する環境電界の影響を受け易いということであ
る。例えばアクティブマトリックス基板上で当該画素領
域の画素電極とこれに隣接した信号線との間に電位差が
生じると、この電位差によって液晶層中に基板に対して
水平方向の電界が発生し、この影響を受けて電界発生地
域の液晶分子は電界に沿う方向に回頭し、ねじれ配向の
型に転移してしまう。ねじれ配向の領域はセルギャップ
中央部の液晶分子が立ち上がることを阻害し、ベンド配
向になり難くする。ベンド配向とならない領域は所望の
複屈折性が得られないため画質が低下する。また当該画
素領域に局部的にもせよねじれ配向の核(配向核)が生
成すると、液晶の特性によってこの配向傾向が伝播し、
全体として液晶配列が乱れて画質を低下させる原因にな
る。
However, there is a problem in actually applying the bend type alignment method to the active matrix liquid crystal display device. One of the problems is that the bend-oriented liquid crystal is generally susceptible to an environmental electric field that is parasitically generated between the pixel electrode and the wiring. For example, on the active matrix substrate, when a potential difference occurs between the pixel electrode of the pixel region and a signal line adjacent to the pixel electrode, an electric field in the horizontal direction with respect to the substrate is generated in the liquid crystal layer due to this potential difference, and this influence In response, the liquid crystal molecules in the electric field generation region turn around in the direction along the electric field, and transfer to the twisted alignment type. The twisted alignment region hinders the rise of liquid crystal molecules in the center of the cell gap, and makes it difficult to achieve bend alignment. A desired birefringence cannot be obtained in a region that does not have the bend orientation, so that the image quality deteriorates. Further, when a twisted alignment nucleus (alignment nucleus) is locally generated in the pixel region, this alignment tendency is propagated due to the characteristics of the liquid crystal,
As a whole, the liquid crystal alignment is disturbed, which causes deterioration of image quality.

【0008】他の問題は、基板近辺の液晶分子が基板の
凹凸の影響を受け易いということである。一般に、アク
ティブマトリックス基板上には、薄膜トランジスタ部や
保護絶縁層などに、基板製造時の積層とエッチングとの
繰り返しに由来して多くの凹凸が存在する。液晶分子は
この凹凸の斜面に沿って配向する傾向があるので、斜面
の傾斜方向によっては液晶分子のチルト方向が逆になる
逆チルト現象などが起こり、ベンド型配向が乱れてしま
う場合がある。
Another problem is that the liquid crystal molecules near the substrate are easily affected by the irregularities of the substrate. Generally, on the active matrix substrate, many irregularities are present in the thin film transistor portion, the protective insulating layer, etc. due to the repetition of stacking and etching at the time of manufacturing the substrate. Since the liquid crystal molecules tend to be aligned along the slopes of the irregularities, a reverse tilt phenomenon in which the tilt directions of the liquid crystal molecules are reversed depending on the inclination direction of the slopes may disturb the bend type alignment.

【0009】前記のように、ベンド型の配向モードをア
クティブマトリックス液晶表示装置に適用するために
は、環境電界や基板表面の凹凸に起因するベンド型液晶
配向の乱れを確実に排除する必要があった。本発明は前
記の課題を解決するためになされたものであって、従っ
て本発明の目的は、水平電界や基板凹凸などの影響によ
ってベンド型の液晶配向モードが阻害されることのない
液晶表示装置を提供することにある。
As described above, in order to apply the bend type alignment mode to the active matrix liquid crystal display device, it is necessary to surely eliminate the disorder of the bend type liquid crystal alignment due to the environmental electric field or the unevenness of the substrate surface. It was The present invention has been made to solve the above problems, and therefore an object of the present invention is to provide a liquid crystal display device in which a bend-type liquid crystal alignment mode is not hindered by the influence of a horizontal electric field, substrate unevenness, or the like. To provide.

【0010】[0010]

【課題を解決するための手段】前記の課題を解決するた
めに本発明は、並列する複数の走査線と、その上層に絶
縁層を介して交差する複数の信号線とによって囲まれた
画素領域に画素電極と薄膜トランジスタとが形成された
アクティブマトリックス基板と、共通電極が形成された
透明基板とが液晶を挟んで対向配置され、このアクティ
ブマトリックス基板の対向面と透明基板の対向面とが同
一方向に配向処理されたベンド型の液晶表示装置であっ
て、画素領域内でアクティブマトリックス基板の対向面
と透明基板の対向面とが配向方向に沿って互いに逆向き
に傾斜した液晶表示装置を提供する。
In order to solve the above-mentioned problems, the present invention provides a pixel region surrounded by a plurality of scanning lines arranged in parallel and a plurality of signal lines intersecting the scanning lines thereabove with an insulating layer interposed therebetween. An active matrix substrate on which a pixel electrode and a thin film transistor are formed, and a transparent substrate on which a common electrode is formed are arranged to face each other with a liquid crystal in between, and the facing surface of the active matrix substrate and the facing surface of the transparent substrate are in the same direction. Provided is a bend-type liquid crystal display device which is subjected to an alignment treatment in which a facing surface of an active matrix substrate and a facing surface of a transparent substrate are tilted in opposite directions along an alignment direction in a pixel region. .

【0011】基板近辺の液晶分子は、そのチルト方向が
基板の傾斜方向に従う性質がある。ベンド型配向におい
ては、無印加モードにおいてアクティブマトリックス基
板と透明基板との双方の基板の配向面に対して基板近辺
の液晶分子をそれぞれ逆のチルト角をもって配向させる
必要がある。このとき双方の基板が配向方向に沿って互
いに逆向きに傾斜していれば、傾斜部近辺の液晶分子は
この傾斜に沿って互いに逆向きにチルトするので、この
領域の液晶分子がベンド型配向の核となって画素領域全
体の液晶分子をベンド型配向に誘導することができる。
Liquid crystal molecules near the substrate have a property that the tilt direction thereof follows the tilt direction of the substrate. In the bend type alignment, it is necessary to align liquid crystal molecules near the substrates with opposite tilt angles with respect to the alignment surfaces of both the active matrix substrate and the transparent substrate in the non-application mode. At this time, if both substrates are tilted in the opposite directions along the alignment direction, the liquid crystal molecules near the tilted parts are tilted in the opposite directions along this tilt. The liquid crystal molecules in the entire pixel region can be guided to the bend-type alignment by becoming the nucleus of.

【0012】本発明はまた、並列する複数の走査線と、
その上層に絶縁層を介して交差する複数の信号線とによ
って囲まれた画素領域に画素電極と薄膜トランジスタと
が形成されたアクティブマトリックス基板と、共通電極
が形成された透明基板とが液晶を挟んで対向配置され、
このアクティブマトリックス基板の対向面と透明基板の
対向面とが同一方向に配向処理されたベンド型の液晶表
示装置であって、画素領域内でアクティブマトリックス
基板の対向面と透明基板の対向面との間隙が、画素電極
の配向方向に沿って双方の辺部の間隙長より中央部の間
隙長が大となるようにV字形に傾斜して形成された液晶
表示装置を提供する。
The present invention also includes a plurality of scan lines in parallel,
An active matrix substrate having a pixel electrode and a thin film transistor formed in a pixel region surrounded by a plurality of signal lines intersecting with an insulating layer therebetween, and a transparent substrate having a common electrode sandwiching liquid crystal. Placed facing each other,
A bend type liquid crystal display device in which the facing surface of the active matrix substrate and the facing surface of the transparent substrate are aligned in the same direction, and the facing surface of the active matrix substrate and the facing surface of the transparent substrate are arranged in a pixel region. Provided is a liquid crystal display device in which a gap is formed in a V shape so that the gap length at the central portion is larger than the gap length at both sides along the alignment direction of the pixel electrode.

【0013】この液晶表示装置はアクティブマトリック
ス基板と透明基板とが各画素領域ごとにセルギャップの
中央部において間隙長が大となるようにV字型に傾斜し
て形成されているので、チルト方向が基板の傾斜方向に
従う性質がある液晶分子は、配向方向に沿う双方の辺部
において互いに逆方向にチルトする。これによって遮光
性の視野角依存性がさらに減少し、視野角が広がると共
に画像のコントラストが向上する。
In this liquid crystal display device, the active matrix substrate and the transparent substrate are formed so as to be inclined in a V shape so that the gap length becomes large in the central portion of the cell gap in each pixel region. The liquid crystal molecules having the property of following the tilt direction of the substrate tilt in opposite directions on both sides along the alignment direction. This further reduces the viewing angle dependence of the light shielding property, widens the viewing angle, and improves the image contrast.

【0014】なお、配向方向を、画素領域の短辺方向±
45°の範囲内とすることが好ましい。このように構成
することで、画素電極と共通電極との間に電圧を印加し
ていない状態における液晶分子は画素領域の短辺方向に
平行または平行に近い方向に配向されるため、上述のよ
うに、長辺方向周囲の環境電界の影響によるねじれ型の
配向核の生成を抑制することができる。
The orientation direction is defined as the direction of the short side of the pixel region ±
It is preferably within the range of 45 °. With this configuration, the liquid crystal molecules in the state where no voltage is applied between the pixel electrode and the common electrode are aligned in the direction parallel or close to the short side direction of the pixel region. In addition, it is possible to suppress the generation of twist-type orientation nuclei due to the influence of the environmental electric field around the long side direction.

【0015】[0015]

【発明の実施の形態】以下、本発明を基本構成例と実施
形態とによってさらに詳しく説明するが、本発明はこれ
らの実施形態によって制限されるものではない。 (基本構成例1)図1は基本構成例1のカラー液晶表示
装置におけるアクティブマトリックス基板の一画素領域
Pxを示す透過平面図、図2は前記画素領域Pxを短辺
軸A−A’方向に切った断面図である。基本構成例1の
液晶表示装置は、薄膜トランジスタの存在する基板1上
にマトリクス状に配置された複数の走査線11と、その
上層にゲート絶縁層2を介して交差する複数の信号線3
1を備え、走査線と信号線の交差部には薄膜トランジス
タ及び画素電極41を有しており、画素領域Pxを構成
している。このうち、薄膜トランジスタは、薄膜トラン
ジスタ基板Ab上に設けられた走査線11と電気的に接
続されたゲート電極12と、該ゲート電極を覆うように
して設けられたゲート絶縁層2と、アモルファスシリコ
ン層(以下a−Si層)15と、信号線4に電気的に接
続されたドレイン電極32と、ドレイン電極と同一層で
チャンネルギャップ23を挟んで配置されるソース電極
33と、ドレイン電極及びソース電極とa−Si層15
との間に設けられた高濃度n型不純物のドープされたn
+型アモルファスシリコン層(図示せず)と、それらを
覆うようにして設けられた保護絶縁層3とを備えてい
る。ここで、n+型a−Si層はa−Si層15とドレ
イン電極及びソース電極との間においてオーミックコン
タクトを図るためのものである。保護絶縁層3は薄膜ト
ランジスタに不純物等が進入するのを防ぐためのもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to basic configuration examples and embodiments, but the present invention is not limited to these embodiments. (Basic Configuration Example 1) FIG. 1 is a transparent plan view showing one pixel region Px of an active matrix substrate in the color liquid crystal display device of Basic Configuration Example 1, and FIG. 2 shows the pixel region Px in the direction of the short side axis AA ′. It is the sectional drawing cut. The liquid crystal display device of the basic configuration example 1 includes a plurality of scanning lines 11 arranged in a matrix on the substrate 1 on which thin film transistors are present, and a plurality of signal lines 3 that intersect with the scanning lines 11 above the gate insulating layer 2.
1 and has a thin film transistor and a pixel electrode 41 at the intersection of the scanning line and the signal line, and constitutes a pixel region Px. Among these, the thin film transistor includes a gate electrode 12 electrically connected to the scanning line 11 provided on the thin film transistor substrate Ab, a gate insulating layer 2 provided so as to cover the gate electrode, and an amorphous silicon layer ( A-Si layer) 15, a drain electrode 32 electrically connected to the signal line 4, a source electrode 33 arranged in the same layer as the drain electrode with a channel gap 23 interposed therebetween, a drain electrode and a source electrode. a-Si layer 15
N doped with high-concentration n-type impurities provided between
A + type amorphous silicon layer (not shown) and a protective insulating layer 3 provided so as to cover them are provided. Here, the n + type a-Si layer is for achieving ohmic contact between the a-Si layer 15 and the drain electrode and the source electrode. The protective insulating layer 3 is for preventing impurities and the like from entering the thin film transistor.

【0016】画素電極41は、ゲート絶縁層2上に透明
導電膜により形成され、ソース電極33と電気的に接続
されており、ゲート絶縁層2と保護絶縁層3との間に挟
まれた信号線31と同一層に形成されている。アクティ
ブマトリックス基板Ab上には、界面付近の液晶分子の
配列を制御するための配向膜4が設けられている。この
配向膜4は図1に示すように画素領域Pxの短軸方向に
配向処理されている。さらに、この薄膜トランジスタ基
板Abとセルギャップ5とを介して対向して、カラーフ
ィルタ7、共通電極14、配向膜6とを有する基板Tb
を設置し、一つのアクティブマトリクス液晶表示装置を
形成している。ここで配向膜6は、配向膜4と平行に画
素領域Pxの短軸方向に配向処理されている。セルギャ
ップ5にはネマティック液晶Lcが充填されており、上
記の要素により液晶表示装置が構成されている。
The pixel electrode 41 is formed of a transparent conductive film on the gate insulating layer 2, is electrically connected to the source electrode 33, and is a signal sandwiched between the gate insulating layer 2 and the protective insulating layer 3. It is formed in the same layer as the line 31. An alignment film 4 for controlling the alignment of liquid crystal molecules near the interface is provided on the active matrix substrate Ab. As shown in FIG. 1, the alignment film 4 is aligned in the minor axis direction of the pixel region Px. Further, the substrate Tb having the color filter 7, the common electrode 14, and the alignment film 6 facing the thin film transistor substrate Ab via the cell gap 5.
Are installed to form one active matrix liquid crystal display device. Here, the alignment film 6 is aligned parallel to the alignment film 4 in the minor axis direction of the pixel region Px. The cell gap 5 is filled with the nematic liquid crystal Lc, and the liquid crystal display device is configured by the above elements.

【0017】次に上記液晶表示装置の製造方法を説明す
る。基板1上にスパッタ法によりクロムを0.2μm成
膜しフォトリソグラフィー技術を用いてパターンニング
を行うことにより、走査線11、ゲート電極12を形成
する。配線材料としてクロムを用いたが、クロムに限ら
ず、モリブデン、チタン、アルミニウム、アルミニウム
合金などの抵抗が低く、薄膜形成及びフォトリソグラフ
ィー技術によるパターンニングがしやすい材料ならばよ
い。また、アルミニウム上にチタンなどのバリアメタル
を形成した積層構造の配線としても良い。その後、ケミ
カルヴェーパーデポジッション(以下CVDとする)に
よりゲート絶縁層2となる窒化シリコンを0.5μm成
膜する。ゲート絶縁層2上にドーピングされていないa
−Siとn+型a−SiをCVDにより成膜しパターン
ニングしてa−Si層15を形成する。a−Si層は薄
膜トランジスタの能動層となるものであり、n+型a−
Siはドレイン電極32およびソース電極33とa−S
i層とのオーミックコンタクトを確保するためのもので
ある。
Next, a method of manufacturing the above liquid crystal display device will be described. A scan line 11 and a gate electrode 12 are formed by forming a chromium film of 0.2 μm on the substrate 1 by a sputtering method and performing patterning using a photolithography technique. Although chromium is used as the wiring material, the material is not limited to chromium, and any material such as molybdenum, titanium, aluminum, or an aluminum alloy that has a low resistance and can be easily formed into a thin film and patterned by a photolithography technique may be used. Alternatively, the wiring may have a laminated structure in which a barrier metal such as titanium is formed on aluminum. After that, silicon nitride to be the gate insulating layer 2 is formed to a thickness of 0.5 μm by chemical vapor deposition (hereinafter referred to as CVD). Undoped a on the gate insulating layer 2
-Si and n + type a-Si are formed by CVD and patterned to form an a-Si layer 15. The a-Si layer serves as an active layer of the thin film transistor, and is an n + type a-
Si is a drain electrode 32, a source electrode 33, and aS.
This is for ensuring ohmic contact with the i layer.

【0018】この後、走査線11の形成された導電層と
この後形成する信号線、ソース電極、ドレイン電極、画
素電極の形成される導電層との導通をとるためのコンタ
クトホールをゲート絶縁層2をパターンニングすること
で形成する。このコンタクトホールの形成は、必要なけ
れば行わなくともよい、また、別の方法により導通をと
ってもよい。この後、a−Si層15およびn+型a−
Si6上に、クロムをスパッタにより0.2μm成膜し
パターンニングして信号線31、ドレイン電極32、ソ
ース電極33を形成する。走査線と同様にクロムを用い
たが、クロムに限らず、モリブデン、チタン、アルミニ
ウム、アルミニウム合金などの抵抗が低く、薄膜形成及
びフォトリソグラフィー技術によるパターンニングがし
やすい材料ならばよい。また、アルミニウムをチタンな
どのバリアメタルにはさみこんだような積層構造の配線
としても良い。
After that, a contact hole for electrically connecting the conductive layer on which the scanning line 11 is formed and the conductive layer on which the signal line, the source electrode, the drain electrode, and the pixel electrode are formed, is formed with a gate insulating layer. It is formed by patterning 2. The formation of this contact hole may be omitted if not necessary, and may be conducted by another method. After that, the a-Si layer 15 and the n + type a-
Chromium is sputtered on Si 6 to a thickness of 0.2 μm and patterned to form a signal line 31, a drain electrode 32, and a source electrode 33. Although chromium is used similarly to the scanning line, it is not limited to chromium, and any material such as molybdenum, titanium, aluminum, and aluminum alloy having low resistance and capable of easily forming a thin film and patterning by a photolithography technique may be used. Alternatively, the wiring may have a laminated structure in which aluminum is sandwiched between barrier metals such as titanium.

【0019】その後、Indium−Tin−Oxid
e(以降ITOとする)を0.1μm成膜しパターンニ
ングして画素電極41を形成する。その後、n+型a−
Siがエッチングされるガス系にてドライエッチングを
行い、ドレイン電極32とソース電極33の間のn+型
a−Siを除去する。これは、ソース電極とドレイン電
極間をn+型a−Siを介して直接電流が流れるのを防
止するためである。この後、CVDにより窒化シリコン
を0.2μm成膜しパターンニングして保護絶縁層3を
形成する。保護絶縁層3はイオン等の不純物がa−Si
層15へ入り薄膜トランジスタが動作不良を起こすのを
防ぐ。この後、ポリイミドよりなる配向膜4を印刷法に
より成膜し、220℃で焼成後、ラビング法により画素
領域の短軸方向に配向処理を行う。このようにしてアク
ティブマトリックス基板Abを得た。尚、各膜厚はこの
値に限られるものではなく用いる材料や表示装置の大き
さ、薄膜トランジスタの性能等により適宜変更してもよ
い。
After that, Indium-Tin-Oxid
A film of e (hereinafter referred to as ITO) having a thickness of 0.1 μm is formed and patterned to form the pixel electrode 41. Then, n + type a-
Dry etching is performed in a gas system that etches Si to remove the n + type a-Si between the drain electrode 32 and the source electrode 33. This is to prevent a current from directly flowing between the source electrode and the drain electrode via the n + type a-Si. After that, a silicon nitride film having a thickness of 0.2 μm is formed by CVD and patterned to form a protective insulating layer 3. In the protective insulating layer 3, impurities such as ions are a-Si.
It prevents the thin film transistor that enters the layer 15 from malfunctioning. After that, an alignment film 4 made of polyimide is formed by a printing method, baked at 220 ° C., and then subjected to an alignment treatment in the minor axis direction of the pixel region by a rubbing method. Thus, the active matrix substrate Ab was obtained. Each film thickness is not limited to this value, and may be appropriately changed depending on the material used, the size of the display device, the performance of the thin film transistor, and the like.

【0020】また、もう一方の基板8上にはカラーフィ
ルター7と遮光層(図示せず)を形成する。例えばアク
リル系の感光性ポリマー中に赤・緑・青・黒などの所望
の色の顔料を分散したレジストをフォトリソグラフィー
技術によりパターンニングし形成する。金属からなる遮
光層を形成しても良い。この上にオーバーコート層7a
を施し、その上層にITOを0.1μm成膜しパターン
ニングすることにより共通電極14を形成する。共通電
極上にポリイミドよりなる配向膜を印刷法により成膜
し、220℃で焼成後、ラビング法により配向膜4の配
向方向と平行になるよう画素領域の短軸方向に配向処理
を行う。このようにして透明基板Tbを得た。
A color filter 7 and a light shielding layer (not shown) are formed on the other substrate 8. For example, a resist in which pigments of desired colors such as red, green, blue and black are dispersed in an acrylic photosensitive polymer is patterned and formed by a photolithography technique. A light shielding layer made of metal may be formed. Overcoat layer 7a
Then, a common electrode 14 is formed by forming a film of ITO having a thickness of 0.1 μm on the upper layer and patterning. An alignment film made of polyimide is formed on the common electrode by a printing method, baked at 220 ° C., and then an alignment process is performed by a rubbing method in the minor axis direction of the pixel region so as to be parallel to the alignment direction of the alignment film 4. Thus, the transparent substrate Tb was obtained.

【0021】アクティブマトリックス基板Abと透明基
板Tb間にギャップに応じた径を有する図示しないポリ
マービーズを全面に散布し、配向層どうしが向かい合う
ように重ね、接着し、基板間にネマティック液晶Lcを
注入する。このようにして液晶表示装置を得た。
Polymer beads (not shown) having a diameter corresponding to the gap are scattered on the entire surface between the active matrix substrate Ab and the transparent substrate Tb, and the alignment layers are stacked so that the alignment layers face each other and bonded, and a nematic liquid crystal Lc is injected between the substrates. To do. Thus, a liquid crystal display device was obtained.

【0022】図3(a)に模式的に示すように、このカ
ラー液晶表示装置においては画素電極41と共通電極1
4とが共に短辺軸A−A’の方向に配向されているの
で、無印加モードにおいて液晶分子は全て短辺軸A−
A’方向に整列して配向している。いま、画素電極41
と共通電極14との間に電圧が印加されると、図3
(b)に示すように画素電極41と共通電極14との間
に垂直方向の電界Ef1が発生する。
As schematically shown in FIG. 3A, in this color liquid crystal display device, the pixel electrode 41 and the common electrode 1 are provided.
Since 4 and 4 are aligned in the direction of the short side axis AA ′, all the liquid crystal molecules in the non-application mode have the short side axis A−A ′.
It is aligned and oriented in the A'direction. Now, the pixel electrode 41
When a voltage is applied between the common electrode 14 and the common electrode 14,
As shown in (b), a vertical electric field Ef1 is generated between the pixel electrode 41 and the common electrode 14.

【0023】また、信号線31と画素電極41との間に
は電位差が生じ、本来は意図しない寄生的な電界が発生
する。信号線31と画素電極41とは同一層内に水平に
配置されているので、この電位差によって発生する電界
Ef2は水平電界であり、その力線の方向は短辺軸A−
A’方向、すなわち液晶分子の配向方向Orと一致す
る。従ってこの水平電界Ef2は、ベンド型印加モード
への転移に先立って液晶分子をねじれ型に転移させるこ
とはない。従って対向する双方の基板の配向方向Orを
短辺軸A−A’方向とすることによって、液晶分子に対
する水平電界の影響は回避される。180°反転した
A’−A方向への配向でも同様の効果が得られる。実際
上、この効果は画素領域の短辺方向±45°の範囲内で
実現可能である。もちろん走査線と画素電極間にも同様
に寄生的な水平電界が発生するが走査線は信号線に比べ
画素電極と対する部分が少ないので(長方形の画素領域
の短辺方向であるので)その寄生電界が与える影響は少
ない。また後にも述べるがこの構成の場合走査線が画素
電極よりも下層に設置されているため寄生電界はセルギ
ャップ中に大きく漏れることはない。
Further, a potential difference is generated between the signal line 31 and the pixel electrode 41, and a parasitic electric field which is not originally intended is generated. Since the signal line 31 and the pixel electrode 41 are horizontally arranged in the same layer, the electric field Ef2 generated by this potential difference is a horizontal electric field, and the direction of the force line is the short side axis A−.
It coincides with the A ′ direction, that is, the orientation direction Or of the liquid crystal molecules. Therefore, this horizontal electric field Ef2 does not cause the liquid crystal molecules to shift to a twisted type prior to the transition to the bend type applied mode. Therefore, the influence of the horizontal electric field on the liquid crystal molecules is avoided by setting the orientation direction Or of the two substrates facing each other to the direction of the short side axis AA ′. The same effect can be obtained by the orientation in the A′-A direction reversed by 180 °. In practice, this effect can be realized within the range of ± 45 ° in the short side direction of the pixel area. Of course, a parasitic horizontal electric field is similarly generated between the scanning line and the pixel electrode, but the scanning line has a smaller number of portions facing the pixel electrode than the signal line (since it is in the short side direction of the rectangular pixel region), the parasitic The effect of the electric field is small. Further, as will be described later, in this structure, the scanning line is provided in a layer lower than the pixel electrode, so that the parasitic electric field does not largely leak into the cell gap.

【0024】またこの電界Ef1の力線は、画素電極4
1の端部から共通電極14に向けて漸次広がり、概略U
字形を描くように形成される。このとき画素電極41の
端部近辺の液晶分子Lc1やLc3は、電界Ef1に励
起されて、短辺軸A−A’に向く配向方向Orは変えな
いまま、チルト角を変化させ、ベンド型の印加モードに
転移する。少なくとも一方の端部等においてベンド型印
加モードの配向核が生成すると、この配向は画素領域全
体に伝播し、画素領域全体の液晶分子Lc1、Lc2、
Lc3…がベンド型の印加モードに順次転移する。この
ようにして寄生的な水平電界の影響によるねじれ配向の
領域を少なくすることができ、良好な表示を得ることが
できる。
The lines of force of this electric field Ef1 are
1 gradually expands toward the common electrode 14 from the end,
It is formed so as to draw a glyph. At this time, the liquid crystal molecules Lc1 and Lc3 near the end of the pixel electrode 41 are excited by the electric field Ef1 to change the tilt angle without changing the alignment direction Or toward the short side axis AA ′, and bend type. Transition to the application mode. When a bend-type application mode alignment nucleus is generated at at least one end, this alignment propagates to the entire pixel region, and liquid crystal molecules Lc1, Lc2,
Lc3 ... sequentially shifts to the bend type application mode. In this way, it is possible to reduce the region of twist orientation due to the influence of the parasitic horizontal electric field, and it is possible to obtain a good display.

【0025】(基本構成例2)図14は基本構成例2の
カラー液晶表示装置におけるアクティブマトリックス型
液晶表示装置の一画素領域Pxを示す透過平面図、図4
は前記画素領域Pxを短辺軸A−A’方向に切った断面
図である。基本構成例2の液晶表示装置は、薄膜トラン
ジスタの存在する基板1上にマトリクス状に配置された
複数の走査線11と、その上層にゲート絶縁層2を介し
て交差する複数の信号線31を備え、走査線と信号線の
交差部には薄膜トランジスタ及び画素電極41を有して
おり、画素領域Pxを構成している。このうち、薄膜ト
ランジスタは、基本構成例1と同様である。画素電極4
1は、中間絶縁層9を介して走査線及び信号線の上層に
透明導電膜により形成され、コンタクト部35を介して
ソース電極と電気的に接続されている。その他の構成は
基本構成例1と同様である。
(Basic Configuration Example 2) FIG. 14 is a transparent plan view showing one pixel region Px of the active matrix type liquid crystal display device in the color liquid crystal display device of the basic configuration example 2, FIG.
FIG. 3 is a cross-sectional view of the pixel region Px taken along the short side axis AA ′ direction. The liquid crystal display device of the basic configuration example 2 is provided with a plurality of scanning lines 11 arranged in a matrix on the substrate 1 where thin film transistors are present, and a plurality of signal lines 31 which intersect with each other with the gate insulating layer 2 interposed therebetween. The thin film transistor and the pixel electrode 41 are provided at the intersection of the scanning line and the signal line, and form the pixel region Px. Among them, the thin film transistor is similar to that of the basic configuration example 1. Pixel electrode 4
1 is formed of a transparent conductive film above the scanning line and the signal line via the intermediate insulating layer 9, and is electrically connected to the source electrode via the contact portion 35. Other configurations are similar to those of the basic configuration example 1.

【0026】次に上記液晶表示装置の製造方法を説明す
る。基板1上に基本構成例1と同様にクロムを0.2μ
m成膜しフォトリソグラフィー技術を用いてパターンニ
ングを行うことにより、走査線3、ゲート電極12を形
成する。その後、CVDによりゲート絶縁層2となる窒
化シリコンを0.5μm成膜する。ゲート絶縁層2上に
ドーピングされていないa−Siとn+型a−SiをC
VDにより成膜しパターンニングしてa−Si層15を
形成する。この後、走査線11の形成された導電層とこ
の後形成する信号線、ソース電極、ドレイン電極の形成
される導電層との導通をとるためのコンタクトホールを
ゲート絶縁層をパターンニングすることで形成する。こ
のコンタクトホールの形成は、必要なければ行わなくと
もよい、また、別の方法により導通をとってもよい。こ
の後、a−Si層15およびn+型a−Si上に、クロ
ムをスパッタにより0.2μm成膜しパターンニングし
て信号線31、ドレイン電極32、ソース電極33を形
成する。その後、n+型a−Siがエッチングされるガ
ス系にてドライエッチングを行い、ドレイン電極32と
ソース電極33の間のn+型a−Siを除去する。この
後、CVDにより窒化シリコンを0.2μm成膜しパタ
ーンニングして中間絶縁層9を形成する。中間絶縁層9
は画素電極の層と信号線などが形成されている層の層間
絶縁膜として機能するほかに基本構成例1の保護絶縁層
3のようにイオン等の不純物がa−Si層15へ入り薄
膜トランジスタが動作不良を起こすのを防ぐ。この後、
ポリイミドよりなる配向膜を印刷法により成膜し、22
0℃で焼成後、ラビング法により画素領域の短軸方向に
配向処理を行う。尚、各膜厚はこの値に限られるもので
はなく用いる材料や表示装置の大きさ、薄膜トランジス
タの性能等により適宜変更してもよい。このようにして
アクティブマトリックス基板Abを得た。
Next, a method of manufacturing the above liquid crystal display device will be described. Chromium 0.2μ is formed on the substrate 1 as in the basic configuration example 1.
The m-thick film is formed and the patterning is performed using the photolithography technique to form the scanning line 3 and the gate electrode 12. After that, 0.5 μm of silicon nitride to be the gate insulating layer 2 is formed by CVD. C. undoped a-Si and n + type a-Si on the gate insulating layer 2
A film is formed by VD and patterned to form an a-Si layer 15. After that, by patterning the gate insulating layer, contact holes for establishing conduction between the conductive layer on which the scanning line 11 is formed and the conductive layer on which the signal line, the source electrode, and the drain electrode are formed later are formed. Form. The formation of this contact hole may be omitted if not necessary, and may be conducted by another method. After that, chromium is sputtered on the a-Si layer 15 and the n + type a-Si to a thickness of 0.2 μm and patterned to form a signal line 31, a drain electrode 32, and a source electrode 33. After that, dry etching is performed in a gas system in which the n + type a-Si is etched to remove the n + type a-Si between the drain electrode 32 and the source electrode 33. After that, a silicon nitride film having a thickness of 0.2 μm is formed by CVD and patterned to form an intermediate insulating layer 9. Intermediate insulating layer 9
Serves as an interlayer insulating film between the pixel electrode layer and a layer in which signal lines are formed, and in addition to the protective insulating layer 3 in the basic configuration example 1, impurities such as ions enter the a-Si layer 15 to form a thin film transistor. Prevents malfunction. After this,
22. An alignment film made of polyimide is formed by a printing method.
After firing at 0 ° C., alignment treatment is performed in the minor axis direction of the pixel region by a rubbing method. Each film thickness is not limited to this value, and may be appropriately changed depending on the material used, the size of the display device, the performance of the thin film transistor, and the like. Thus, the active matrix substrate Ab was obtained.

【0027】また、基本構成例1と同様に透明基板Tb
を形成し、アクティブマトリックス基板Abと透明基板
Tb間にギャップに応じた径を有するポリマービーズを
全面に散布し、配向層どうしが向かい合うように重ね、
接着し、基板間にネマティック液晶Lcを注入する。こ
のようにして液晶表示装置を得た。
Further, as in the basic configuration example 1, the transparent substrate Tb
A polymer bead having a diameter corresponding to the gap between the active matrix substrate Ab and the transparent substrate Tb is sprinkled on the entire surface, and the alignment layers are overlapped so as to face each other.
Bonding and injecting nematic liquid crystal Lc between the substrates. Thus, a liquid crystal display device was obtained.

【0028】このカラー液晶表示装置は、図5に模式的
に示すように、共通電極14に対して画素電極41が信
号線31よりも近い層に形成されているので、信号線3
1と画素電極41との間に電位差が生じて電界Ef2が
発生しても、その力線の方向は下方に向き、画素電極4
1と共通電極14との間に形成される電界Ef1の力線
にはほとんど影響を及ぼさない。もちろんこれは、画素
電極と走査線についても同様である。従って液晶分子の
配向方向にかかわらずベンド型配向は乱されない。
In this color liquid crystal display device, as shown schematically in FIG. 5, since the pixel electrode 41 is formed in a layer closer to the common electrode 14 than the signal line 31, the signal line 3 is formed.
1 and the pixel electrode 41 generate a potential difference and generate an electric field Ef2, the direction of the line of force is directed downward, and the pixel electrode 4
1 has little effect on the lines of force of the electric field Ef1 formed between the common electrode 14 and the common electrode 14. Of course, this also applies to the pixel electrodes and the scanning lines. Therefore, the bend type alignment is not disturbed regardless of the alignment direction of the liquid crystal molecules.

【0029】(基本構成例3)この基本構成例は、基本
構成例2とほぼ同様であるが、ただし図6に断面図を示
すように、画素電極41の辺部と信号線31の辺部と
が、中間絶縁層9を介して部分的に重畳されている。こ
の基本構成例は製造方法も基本構成例2とほぼ同様であ
るが、ただしこの構成の場合、信号線と画素電極との寄
生容量が大きくなるため中間絶縁層9は厚く形成するこ
とが望ましい。厚く形成するには、例えばアクリル等の
有機膜等を塗布し焼成する等の方法がある。CVDの窒
化シリコン膜と上記の有機膜等を重ねてもよい。
(Basic Configuration Example 3) This basic configuration example is almost the same as the basic configuration example 2, except that the side portion of the pixel electrode 41 and the side portion of the signal line 31 are as shown in the sectional view of FIG. And are partially overlapped via the intermediate insulating layer 9. The manufacturing method of this basic configuration example is almost the same as that of the basic configuration example 2. However, in this configuration, since the parasitic capacitance between the signal line and the pixel electrode becomes large, it is desirable to form the intermediate insulating layer 9 thick. In order to form a thick film, there is a method of applying an organic film such as acrylic film and baking it. The CVD silicon nitride film and the above organic film may be stacked.

【0030】このカラー液晶表示装置においては、図7
に模式的に示すように、共通電極14に対して画素電極
41が信号線31より近い層に形成され、しかも画素電
極41の辺部と信号線31の辺部とが、中間絶縁層9を
介して部分的に重畳しているので、信号線31と画素電
極41との間に発生する電界Ef2の力線は画素電極4
1の裏側に形成され、画素電極41と共通電極14との
間に形成される電界Ef1の力線にはほとんど影響を及
ぼさない。従って液晶分子のベンド型配向は乱されな
い。
In this color liquid crystal display device, as shown in FIG.
6, the pixel electrode 41 is formed in a layer closer to the common electrode 14 than the signal line 31, and the side portion of the pixel electrode 41 and the side portion of the signal line 31 form the intermediate insulating layer 9. Since they are partially overlapped with each other, the lines of force of the electric field Ef2 generated between the signal line 31 and the pixel electrode 41 are
1 is formed on the back side of No. 1 and has almost no influence on the lines of force of the electric field Ef1 formed between the pixel electrode 41 and the common electrode 14. Therefore, the bend type alignment of the liquid crystal molecules is not disturbed.

【0031】(基本構成例4)図8は基本構成例4のカ
ラー液晶表示装置におけるアクティブマトリックス型液
晶表示装置の一画素領域Pxを示す透過平面図、図9は
前記画素領域Pxを短辺軸B−B’方向に切った断面図
である。基本構成例4の液晶表示装置は、薄膜トランジ
スタの存在する基板1上にマトリクス状に配置された複
数の走査線11と、その上層にゲート絶縁層2を介して
交差する複数の信号線31を備え、走査線と信号線の交
差部には薄膜トランジスタ及び画素電極41を有してお
り、画素領域Pxを構成している。このうち、薄膜トラ
ンジスタ及び画素電極41は、基本構成例1とほぼ同様
である。ただし、基本構成例4では画素領域Pxの画素
電極41と信号線31との間に走査線11と同一層に設
置された共通配線13より延びる補償電極17が形成さ
れる。尚共通配線13及び補償電極17には共通電極1
4と同等の電圧を印加している。その他の構成は基本構
成例1と同様である。
(Basic Configuration Example 4) FIG. 8 is a transmissive plan view showing one pixel region Px of the active matrix type liquid crystal display device in the color liquid crystal display device of the basic configuration example 4, and FIG. 9 shows the pixel region Px as the short side axis. It is sectional drawing cut | disconnected in the BB 'direction. The liquid crystal display device of the basic configuration example 4 is provided with a plurality of scanning lines 11 arranged in a matrix on the substrate 1 where the thin film transistors are present, and a plurality of signal lines 31 crossing the gate insulating layer 2 above the scanning lines 11. The thin film transistor and the pixel electrode 41 are provided at the intersection of the scanning line and the signal line, and form the pixel region Px. Among them, the thin film transistor and the pixel electrode 41 are almost the same as those in the basic configuration example 1. However, in the basic configuration example 4, the compensation electrode 17 extending from the common line 13 provided in the same layer as the scanning line 11 is formed between the pixel electrode 41 in the pixel region Px and the signal line 31. The common electrode 13 is used as the common wiring 13 and the compensation electrode 17.
The voltage equivalent to 4 is applied. Other configurations are similar to those of the basic configuration example 1.

【0032】このカラー液晶表示装置において、電圧印
加時の電位は、共通電極14と補償電極17とは略同等
であり、共通電極14を基準にして画素電極41と信号
線31とに電位差がある。そこで図10に模式的に示す
ように、電圧印加時には、画素電極41と共通電極14
との間に電界Ef1の垂直方向の力線が形成されると共
に、画素電極41と補償電極17との間に電界Ef3の
力線と、信号線31と補償電極17との間に電界Ef4
の力線とが形成される。ところでこれらの電界Ef3、
Ef4の力線はいずれも画素電極41の下方に形成され
るので、画素電極41と共通電極14との間の液晶分子
Lcのベンド型配向に影響はない。また補償電極17が
ある電位を有して信号線と画素電極との間でさらに液晶
Lcとは遠い層となる基板1に近い層に形成されている
ため、信号線と画素電極間の電界は補償電極に収束する
ため液晶部には大きく漏れず、ねじれ配向とはなりにく
い。
In this color liquid crystal display device, the potential when the voltage is applied is substantially the same as that of the common electrode 14 and the compensation electrode 17, and there is a potential difference between the pixel electrode 41 and the signal line 31 with reference to the common electrode 14. . Therefore, as schematically shown in FIG. 10, when the voltage is applied, the pixel electrode 41 and the common electrode 14 are
A vertical force line of the electric field Ef1 is formed between the electric field Ef1 and the compensation electrode 17, and a line of electric field Ef3 between the pixel electrode 41 and the compensation electrode 17 and an electric field Ef4 between the signal line 31 and the compensation electrode 17.
Lines of force are formed. By the way, these electric fields Ef3,
Since all the lines of force of Ef4 are formed below the pixel electrode 41, there is no effect on the bend type alignment of the liquid crystal molecules Lc between the pixel electrode 41 and the common electrode 14. Further, since the compensation electrode 17 has a certain potential and is formed between the signal line and the pixel electrode in a layer closer to the substrate 1 which is a layer further away from the liquid crystal Lc, the electric field between the signal line and the pixel electrode is Since it converges on the compensating electrode, it does not largely leak to the liquid crystal portion, and is unlikely to be twisted.

【0033】また図15のように補償電極17は、特に
共通配線13を設けず、隣接する前段の画素領域の走査
線から延びてもよい。走査線にはその線上にある画素に
電圧を印加するため一時的に高電圧が印加されるが、そ
れ以外の時間は薄膜トランジスタを不活性にし液晶に印
加した電位を保持させるため信号線や画素電極よりも低
い電圧が印加されているのが普通である。この場合も、
信号線と画素電極との間の電界は補償電極17に収束す
るため水平成分は少なくなりねじれ配向となりにくい。
Further, as shown in FIG. 15, the compensation electrode 17 may extend from the scanning line of the adjacent preceding pixel region without providing the common wiring 13 in particular. A high voltage is temporarily applied to the scan line in order to apply a voltage to the pixels on that line, but for the rest of the time, in order to keep the potential applied to the liquid crystal inactive and hold the potential applied to the liquid crystal, the signal line or pixel electrode A lower voltage is usually applied. Also in this case,
Since the electric field between the signal line and the pixel electrode converges on the compensation electrode 17, the horizontal component is reduced and the twisted orientation is unlikely to occur.

【0034】(基本構成例5)図11は基本構成例5の
カラー液晶表示装置における断面図である。基本構成例
5の液晶表示装置は、アクティブマトリックス基板Ab
の表面が平坦となるよう形成されている以外の構成は基
本構成例2と同様である。この液晶表示装置の製造方法
を説明する。基板1上に基本構成例2と同様に画素電極
41まで形成し、ドレイン電極とソース電極間のn+a
−Si膜の除去を行う。その後、アクリルベースの透明
レジストを1μmから4μm程度の膜厚になるようスピ
ンコーティングにて塗布し焼成することで平坦な保護絶
縁層3を形成する。ここでアクリルベースの透明レジス
トを用いたがアクリルに限らずポリイミド等の塗布によ
り平坦な表面が得られるものであればよい。またa−S
i層の保護機能を向上させるためにはシリコンが混入し
たベンゾシクロブテンやポリシラザン等の塗布可能な幕
が望ましい。また、保護機能を向上させるためにはアク
リル等の塗布膜を形成する前に窒化シリコン膜を形成し
てもよい。
(Basic Configuration Example 5) FIG. 11 is a sectional view of a color liquid crystal display device of the basic configuration example 5. The liquid crystal display device of basic configuration example 5 has an active matrix substrate Ab.
The configuration is the same as that of the basic configuration example 2 except that the surface is formed to be flat. A method of manufacturing this liquid crystal display device will be described. Similar to the basic configuration example 2, the pixel electrode 41 is formed on the substrate 1, and n + a between the drain electrode and the source electrode is formed.
-The Si film is removed. Then, an acrylic-based transparent resist is applied by spin coating to a film thickness of about 1 μm to 4 μm and baked to form a flat protective insulating layer 3. Although an acrylic-based transparent resist is used here, it is not limited to acrylic and any other material may be used as long as a flat surface can be obtained by applying polyimide or the like. Also a-S
In order to improve the protection function of the i layer, a coatable curtain such as benzocyclobutene or polysilazane mixed with silicon is desirable. Further, in order to improve the protection function, a silicon nitride film may be formed before forming a coating film of acrylic or the like.

【0035】また、塗布膜にての平坦化に限らず、スパ
ッタリングやCVDにより絶縁膜を形成し研磨して平坦
化膜を形成する方法も可能である。スパッタリングやC
VDにより絶縁膜を形成し研磨して平坦化膜を形成する
製造方法は、非常に平らな膜面を形成できるので、高精
細なパターンニングが可能になると同時に耐熱性にも優
れたものとなる。
Further, the method of forming a flattening film is not limited to flattening with a coating film, and an insulating film may be formed by sputtering or CVD and polished to form a flattening film. Sputtering or C
The manufacturing method in which an insulating film is formed by VD and polished to form a flattening film can form a very flat film surface, which enables high-definition patterning and is also excellent in heat resistance. .

【0036】このように平坦化された基板上に、、ポリ
イミドよりなる配向膜を印刷法により成膜し、220℃
で焼成後、ラビング法により画素領域の短軸方向に配向
処理を行う。尚、各膜厚はこの値に限られるものではな
く用いる材料や表示装置の大きさ、薄膜トランジスタの
性能等により適宜変更してもよい。
On the thus flattened substrate, an alignment film made of polyimide was formed by a printing method, and 220 ° C.
After baking in, the alignment process is performed in the minor axis direction of the pixel region by a rubbing method. Each film thickness is not limited to this value, and may be appropriately changed depending on the material used, the size of the display device, the performance of the thin film transistor, and the like.

【0037】また、基本構成例5では基本構成例2と同
様に画素電極41が絶縁膜を挟んで信号線31の層より
上層に形成されているが、基本構成例1のように画素電
極41がゲート絶縁層2と保護絶縁層3との間に挟まれ
た信号線3と同一層に形成されている形態であってもよ
い。いずれの場合も、保護絶縁層の膜厚に比べ画素電極
の厚さが十分に薄いため平坦度が保たれる。このように
してアクティブマトリックス基板Abを得た。また、基
本構成例2と同様に透明基板Tbを形成し、アクティブ
マトリックス基板Abと透明基板Tb間にギャップに応
じた径を有するポリマービーズを全面に散布し、配向層
どうしが向かい合うように重ね、接着し、基板間にネマ
ティック液晶Lcを注入する。このようにして液晶表示
装置を得た。
Further, in the basic configuration example 5, the pixel electrode 41 is formed above the layer of the signal line 31 with the insulating film interposed therebetween as in the basic configuration example 2. However, as in the basic configuration example 1, the pixel electrode 41 is formed. May be formed in the same layer as the signal line 3 sandwiched between the gate insulating layer 2 and the protective insulating layer 3. In either case, the flatness is maintained because the pixel electrode is sufficiently thinner than the protective insulating layer. Thus, the active matrix substrate Ab was obtained. Further, similarly to the basic configuration example 2, the transparent substrate Tb is formed, polymer beads having a diameter corresponding to the gap are dispersed between the active matrix substrate Ab and the transparent substrate Tb, and the alignment layers are stacked so that the alignment layers face each other. Bonding and injecting nematic liquid crystal Lc between the substrates. Thus, a liquid crystal display device was obtained.

【0038】このカラー液晶表示装置は、アクティブマ
トリックス基板Abの対向面に凹凸がないので、表面の
凹凸に起因して液晶分子Lcのチルト方向が逆になる逆
チルト現象が起こることはない。従って、液晶分子Lc
のベンド型配向は安定する。アクティブマトリックス基
板表面の平坦化は前記の厚い透明性有機層によるほか、
透明性無機層を形成しその表面を研磨する方法などによ
っても実現することができる。
In this color liquid crystal display device, since the facing surface of the active matrix substrate Ab has no unevenness, the reverse tilt phenomenon in which the tilt directions of the liquid crystal molecules Lc are reversed due to the unevenness of the surface does not occur. Therefore, the liquid crystal molecule Lc
The bend type orientation of is stable. The flattening of the active matrix substrate surface is achieved by the thick transparent organic layer described above,
It can also be realized by a method of forming a transparent inorganic layer and polishing the surface thereof.

【0039】(実施形態1)図12は本発明に係る実施
形態1のカラー液晶表示装置における断面図である。実
施形態1の液晶表示装置は、薄膜トランジスタの存在す
る基板1上にマトリクス状に配置された複数の走査線
と、その上層にゲート絶縁層2を介して交差する複数の
信号線31を備え、走査線と信号線の交差部には薄膜ト
ランジスタ及び画素電極41を有しており、画素領域P
xを構成している。このうち、薄膜トランジスタ及び画
素電極41は、先に記載した基本構成例1とほぼ同様で
ある。ただし、アクティブマトリックス基板Abの対向
面に形成された有機透明膜からなる保護絶縁層3と透明
基板Tbの対向面に形成された保護絶縁層3とが配向方
向に沿って互いに逆向きに傾斜している。
(Embodiment 1) FIG. 12 is a sectional view of a color liquid crystal display device according to Embodiment 1 of the present invention. The liquid crystal display device according to the first embodiment includes a plurality of scanning lines arranged in a matrix on the substrate 1 where the thin film transistors are present, and a plurality of signal lines 31 which intersect the gate insulating layer 2 in the upper layer thereof, and scans. The thin film transistor and the pixel electrode 41 are provided at the intersection of the line and the signal line, and the pixel region P
constitutes x. Among them, the thin film transistor and the pixel electrode 41 are almost the same as those in the basic configuration example 1 described above. However, the protective insulating layer 3 made of an organic transparent film formed on the facing surface of the active matrix substrate Ab and the protective insulating layer 3 formed on the facing surface of the transparent substrate Tb are inclined in opposite directions along the alignment direction. ing.

【0040】この傾斜面の形成方法を述べる。基板1上
に基本構成例1と同様に画素電極まで形成し、ドレイン
電極とソース電極間のn+a−Si膜の除去を行う。そ
の後、透明レジストをパターンニングした後、レジスト
のガラス転移点以上の温度で焼成することで滑らかに傾
斜した保護絶縁層3を形成する。傾斜した保護絶縁層3
を形成する方法は特開平7−199193号公報や特開
平11−326910号公報に開示されているのでここ
では省略する。保護機能を向上させるためにはアクリル
等の塗布膜を形成する前に窒化シリコン膜を形成するこ
とが有効である。また、基板対向面の傾斜は、例えば輻
射線硬化型の樹脂を基板表面に塗布し基板を傾斜し、ま
たは斜め方向の遠心力を与えながら輻射線を照射して硬
化させるなどの方法によっても実現することができる。
A method of forming this inclined surface will be described. The pixel electrode is formed on the substrate 1 as in the basic configuration example 1, and the n + a-Si film between the drain electrode and the source electrode is removed. Then, after patterning the transparent resist, the protective insulating layer 3 that is smoothly inclined is formed by baking at a temperature equal to or higher than the glass transition point of the resist. Sloped protective insulation layer 3
Since the method of forming the film is disclosed in JP-A-7-199193 and JP-A-11-326910, the description thereof is omitted here. In order to improve the protective function, it is effective to form a silicon nitride film before forming a coating film of acrylic or the like. The inclination of the surface facing the substrate can also be achieved by, for example, applying a radiation-curable resin to the surface of the substrate to incline the substrate, or by irradiating with radiation while applying centrifugal force in an oblique direction to cure the substrate. can do.

【0041】このように作製された基板上に、ポリイミ
ドよりなる配向膜を印刷法により成膜し、220℃で焼
成後、ラビング法により傾斜方向に沿って配向処理を行
う。なお、ここではラビングを傾斜の低いほうから高い
方へむけて行うのが望ましい。これは高い方向から低い
方向へラビングすると傾斜と逆向きにチルト角が発生し
てしまい、傾斜の効果を低下させてしまうからである。
尚、各膜厚はこの値に限られるものではなく用いる材料
や表示装置の大きさ、薄膜トランジスタの性能等により
適宜変更してもよい。このようにしてアクティブマトリ
ックス基板Abを得た。
On the thus-prepared substrate, an alignment film made of polyimide is formed by a printing method, baked at 220 ° C., and then an alignment treatment is performed by a rubbing method along the inclination direction. Here, it is desirable to perform rubbing from a lower slope to a higher slope. This is because when rubbing from a high direction to a low direction, a tilt angle is generated in the direction opposite to the inclination, and the effect of the inclination is reduced.
Each film thickness is not limited to this value, and may be appropriately changed depending on the material used, the size of the display device, the performance of the thin film transistor, and the like. Thus, the active matrix substrate Ab was obtained.

【0042】また、アクティブマトリックス基板Abと
同様に、透明基板Tbにも傾斜した保護絶縁層3を形成
し、アクティブマトリックス基板Abと透明基板Tb間
にギャップに応じた径を有するポリマービーズを全面に
散布し、配向層どうしが向かい合うように重ね、接着
し、基板間にネマティック液晶Lcを注入する。このよ
うにして液晶表示装置を得た。
Similarly to the active matrix substrate Ab, the inclined protective insulating layer 3 is formed on the transparent substrate Tb, and polymer beads having a diameter corresponding to the gap between the active matrix substrate Ab and the transparent substrate Tb are formed on the entire surface. The nematic liquid crystal Lc is injected between the substrates by spraying and stacking so that the alignment layers face each other and adhering. Thus, a liquid crystal display device was obtained.

【0043】この実施形態において、双方の基板近辺の
液晶分子Lcは、基板の傾斜方向に配向処理されてい
る。従って界面付近の液晶分子は基板1,8に対して傾
斜角と配向膜により与えられるプレチルト角とを加算し
たチルト角を有することになる。この実施形態のカラー
液晶表示装置は、界面付近の液晶分子Lcが基板に対し
て大きくチルトしているので液晶分子がこの傾斜に沿っ
てベンド型に配向し易くなっている。従って外的な阻害
要因を排して安定なベンド型配向が得られる。一般にア
クティブマトリックス用に市販されている配向膜のプレ
チルト角は5°以下のものが多く、この方法は大きなチ
ルト角を形成するのに有用である。この傾斜は、基板全
体に一様に与えてもよいが、液晶分子に3°〜10°の
プレチルト角を与えることが望ましく、これを実現する
ためには基板の傾斜角を画素領域ごとに形成することが
好ましい。
In this embodiment, the liquid crystal molecules Lc in the vicinity of both substrates are oriented in the tilt direction of the substrates. Therefore, the liquid crystal molecules near the interface have a tilt angle with respect to the substrates 1 and 8 which is the sum of the tilt angle and the pretilt angle given by the alignment film. In the color liquid crystal display device of this embodiment, since the liquid crystal molecules Lc near the interface are largely tilted with respect to the substrate, the liquid crystal molecules are easily aligned in the bend type along this tilt. Therefore, a stable bend type orientation can be obtained by eliminating external hindrance factors. In general, many commercially available alignment films for active matrix have a pretilt angle of 5 ° or less, and this method is useful for forming a large tilt angle. This tilt may be given uniformly over the entire substrate, but it is desirable to give the liquid crystal molecules a pretilt angle of 3 ° to 10 °. In order to realize this, the tilt angle of the substrate is formed in each pixel region. Preferably.

【0044】(実施形態2)この実施形態は、図13に
断面図を示すように、画素領域Px内でアクティブマト
リックス基板Abの対向面に形成された有機透明膜から
なる保護絶縁層3と透明基板Tbの対向面に形成された
保護絶縁層3との間隙(セルギャップ)5が、画素電極
41の配向方向Orに沿って双方の辺部の間隙長D1よ
り中央部の間隙長D2が大となるように双方の対向面が
共にV字型に傾斜して形成されている。この場合、配向
膜のプレチルトは0°に近いほうがよい。これは配向膜
によるプレチルトが大きいと、どちらか一方の傾斜が効
果を低下させるからである。基板近辺の液晶分子Lc
は、アクティブマトリックス基板Abの対向面と透明基
板Tbの対向面とが各画素領域Pxの中央部において間
隙長が大となるようにV字型に傾斜して形成されている
と、配向方向に沿う双方の辺部において互いに逆方向に
チルトするようになる。もちろん画素領域の中央部にお
いて間隙長が小となり辺部で大となるような山形の傾斜
であっても同様な効果が得られる。この実施形態のカラ
ー液晶表示装置は、画素領域内で配向方向が異なる領域
が形成されているので、斜め方向から見た場合の視野角
特性をそれぞれの領域が互いに補い、より広い視野特性
が得られる。
(Embodiment 2) In this embodiment, as shown in the sectional view of FIG. 13, a protective insulating layer 3 formed of an organic transparent film and transparent on the opposite surface of the active matrix substrate Ab in the pixel region Px is transparent. The gap (cell gap) 5 with the protective insulating layer 3 formed on the opposing surface of the substrate Tb is larger than the gap length D1 of both sides along the alignment direction Or of the pixel electrode 41, and the gap length D2 of the central portion is larger. So that both facing surfaces are inclined in a V shape. In this case, the pretilt of the alignment film should be close to 0 °. This is because if the pretilt due to the alignment film is large, the inclination of either one of them decreases the effect. Liquid crystal molecules Lc near the substrate
When the opposing surface of the active matrix substrate Ab and the opposing surface of the transparent substrate Tb are formed to be inclined in a V shape so that the gap length becomes large in the central portion of each pixel region Px, the Both side portions along the side wall are tilted in opposite directions. Of course, the same effect can be obtained even with a mountain-shaped inclination in which the gap length is small in the central portion of the pixel region and is large in the side portion. In the color liquid crystal display device of this embodiment, since regions having different alignment directions are formed in the pixel region, the respective regions complement each other in the viewing angle characteristics when viewed from an oblique direction, and a wider viewing characteristic is obtained. To be

【0045】[0045]

【発明の効果】本発明の液晶表示装置は、アクティブマ
トリックス基板の対向面と透明基板の対向面とが配向方
向に沿って互いに逆向きに傾斜しているので、対向面の
凹凸の影響を受けて液晶分子のベンド型配向が乱される
ことはない。アクティブマトリックス基板の対向面と透
明基板の対向面との間隙が、画素電極の配向方向に沿っ
て双方の辺部の間隙長より中央部の間隙長が大となるよ
うにV字形に傾斜して形成されていれば、無印加モード
における遮光性の視野角依存性が減少し、視野角が広く
コントラストの良好な液晶表示装置が得られる。
According to the liquid crystal display device of the present invention, the opposing surface of the active matrix substrate and the opposing surface of the transparent substrate are inclined in opposite directions along the alignment direction, and therefore are affected by the unevenness of the opposing surface. Therefore, the bend type alignment of the liquid crystal molecules is not disturbed. The gap between the facing surface of the active matrix substrate and the facing surface of the transparent substrate is inclined in a V shape so that the gap length at the central portion is larger than the gap length at both sides along the alignment direction of the pixel electrode. If formed, the viewing angle dependence of the light blocking property in the non-application mode is reduced, and a liquid crystal display device having a wide viewing angle and good contrast can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一基本構成例における画素領域を示
す透視平面図。
FIG. 1 is a perspective plan view showing a pixel region in a basic configuration example of the present invention.

【図2】 図1の線A−A’で切った断面図。FIG. 2 is a sectional view taken along line A-A ′ in FIG.

【図3】 液晶分子の作動状態を示す液晶表示装置の模
式的断面図で、(a)は無印加モード、(b)は印加モ
ードを示す。
FIG. 3 is a schematic cross-sectional view of a liquid crystal display device showing an operating state of liquid crystal molecules, (a) showing a non-application mode and (b) showing an application mode.

【図4】 図14の線A−A’で切った断面図。FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG.

【図5】 液晶分子の作動状態を示す液晶表示装置の模
式的断面図。
FIG. 5 is a schematic cross-sectional view of a liquid crystal display device showing an operating state of liquid crystal molecules.

【図6】 本発明の他の一基本構成例における画素領域
を示す断面図。
FIG. 6 is a sectional view showing a pixel region in another basic configuration example of the present invention.

【図7】 液晶分子の作動状態を示す液晶表示装置の模
式的断面図。
FIG. 7 is a schematic cross-sectional view of a liquid crystal display device showing an operating state of liquid crystal molecules.

【図8】 本発明の他の一基本構成例における画素領域
を示す透視平面図。
FIG. 8 is a perspective plan view showing a pixel region in another basic configuration example of the present invention.

【図9】 図8の線B−B’で切った断面図。9 is a cross-sectional view taken along the line B-B 'of FIG.

【図10】液晶分子の作動状態を示す液晶表示装置の模
式的断面図。
FIG. 10 is a schematic cross-sectional view of a liquid crystal display device showing an operating state of liquid crystal molecules.

【図11】本発明の他の一基本構成例における画素領域
を示す断面図。
FIG. 11 is a cross-sectional view showing a pixel region in another basic configuration example of the present invention.

【図12】本発明の一実施形態における画素領域を示す
断面図。
FIG. 12 is a sectional view showing a pixel region according to an embodiment of the present invention.

【図13】本発明の他の一実施形態における画素領域を
示す断面図。
FIG. 13 is a sectional view showing a pixel region according to another embodiment of the present invention.

【図14】本発明の他の一基本構成例における画素領域
を示す透視平面図。
FIG. 14 is a perspective plan view showing a pixel region in another basic configuration example of the present invention.

【図15】本発明のさらに他の一基本構成例における画
素領域を示す透視平面図。
FIG. 15 is a perspective plan view showing a pixel region in still another basic configuration example of the present invention.

【図16】液晶分子のベンド型配向を説明する斜視図。FIG. 16 is a perspective view illustrating bend type alignment of liquid crystal molecules.

【図17】(a)(b)はそれぞれベンド型配向の状態
を示す画素領域の断面図。
17A and 17B are cross-sectional views of a pixel region showing a bend alignment state, respectively.

【符号の説明】[Explanation of symbols]

1,8:ガラス基板 2:ゲート絶縁層 3:保護絶縁層 4,6:配向膜 5:セルギャップ 7:カラーフィルタ 9:中間絶縁層 11:走査線 13:共通配線 14:共通電極 17:補償電極 31:信号線 41:画素電極 60:TFT Lc:液晶分子 Or:基板の配向方向 Ab:アクティブマトリックス基板 Tb:透明基板 Px:画素領域 Ef1,…,Ef4:電界 1,8: Glass substrate 2: Gate insulating layer 3: Protective insulation layer 4, 6: Alignment film 5: Cell gap 7: Color filter 9: Intermediate insulating layer 11: scanning line 13: Common wiring 14: Common electrode 17: Compensation electrode 31: signal line 41: Pixel electrode 60: TFT Lc: Liquid crystal molecule Or: orientation direction of substrate Ab: Active matrix substrate Tb: transparent substrate Px: Pixel area Ef1, ..., Ef4: electric field

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02F 1/1333 G02F 1/1337 G02F 1/139 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) G02F 1/1333 G02F 1/1337 G02F 1/139

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 並列する複数の走査線と、絶縁層を介し
てこの走査線と交差する複数の信号線とによって囲まれ
た画素領域に画素電極と薄膜トランジスタとが形成され
たアクティブマトリックス基板と、共通電極が形成され
た透明基板とが液晶を挟んで対向配置され、このアクテ
ィブマトリックス基板の対向面と透明基板の対向面とが
同一方向に配向処理されたOCB(Optically Compensa
ted Bend )方式の液晶表示装置であって、 画素領域内でアクティブマトリックス基板の対向面と透
明基板の対向面とが配向方向に沿って互いに逆向きに傾
斜したことを特徴とする液晶表示装置。
1. An active matrix substrate in which a pixel electrode and a thin film transistor are formed in a pixel region surrounded by a plurality of scanning lines arranged in parallel and a plurality of signal lines intersecting the scanning line via an insulating layer, An OCB (Optically Compensa) in which a transparent substrate on which a common electrode is formed is disposed so as to face each other with a liquid crystal in between, and the facing surface of the active matrix substrate and the facing surface of the transparent substrate are oriented in the same direction.
A ted Bend) type liquid crystal display device, characterized in that the facing surface of the active matrix substrate and the facing surface of the transparent substrate are inclined in opposite directions along the alignment direction in the pixel region.
【請求項2】 並列する複数の走査線と、絶縁層を介し
てこの走査線と交差する複数の信号線とによって囲まれ
た画素領域に画素電極と薄膜トランジスタとが形成され
たアクティブマトリックス基板と、共通電極が形成され
た透明基板とが液晶を挟んで対向配置され、このアクテ
ィブマトリックス基板の対向面と透明基板の対向面とが
同一方向に配向処理されたOCB(Optically Compensa
ted Bend )方式の液晶表示装置であって、 画素領域内でアクティブマトリックス基板の対向面と透
明基板の対向面との間隙が、画素電極の配向方向に沿っ
て双方の辺部の間隙長より中央部の間隙長が大となるよ
うにV字形に傾斜して形成されたことを特徴とする液晶
表示装置。
2. An active matrix substrate in which a pixel electrode and a thin film transistor are formed in a pixel region surrounded by a plurality of scanning lines arranged in parallel and a plurality of signal lines intersecting the scanning line via an insulating layer, An OCB (Optically Compensa) in which a transparent substrate on which a common electrode is formed is disposed so as to face each other with a liquid crystal in between, and the facing surface of the active matrix substrate and the facing surface of the transparent substrate are oriented in the same direction.
In the pixel area, the gap between the facing surface of the active matrix substrate and the facing surface of the transparent substrate is in the center of the gap length of both sides along the alignment direction of the pixel electrode. A liquid crystal display device, wherein the liquid crystal display device is formed so as to be inclined in a V shape so that the gap length of the portion becomes large.
【請求項3】 配向方向が、画素領域の短辺方向±45
°の範囲内にあることを特徴とする請求項1又は2記載
の液晶表示装置。
3. The alignment direction is ± 45 in the direction of the short side of the pixel region.
The liquid crystal display device according to claim 1 or 2, wherein the liquid crystal display device is in the range of °.
JP2002277751A 2002-09-24 2002-09-24 Liquid crystal display Expired - Fee Related JP3459916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277751A JP3459916B2 (en) 2002-09-24 2002-09-24 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277751A JP3459916B2 (en) 2002-09-24 2002-09-24 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP36842899A Division JP2001183666A (en) 1999-12-24 1999-12-24 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2003107484A JP2003107484A (en) 2003-04-09
JP3459916B2 true JP3459916B2 (en) 2003-10-27

Family

ID=19197018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277751A Expired - Fee Related JP3459916B2 (en) 2002-09-24 2002-09-24 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3459916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375783B2 (en) 2004-12-28 2008-05-20 Kabushiki Kaisha Toshiba Liquid crystal display

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440058B2 (en) * 2006-08-04 2008-10-21 Chunghwa Picture Tubes, Ltd. Liquid crystal display panel and liquid crystal display device
KR102296074B1 (en) * 2017-05-19 2021-08-31 삼성디스플레이 주식회사 Display device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375783B2 (en) 2004-12-28 2008-05-20 Kabushiki Kaisha Toshiba Liquid crystal display

Also Published As

Publication number Publication date
JP2003107484A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US6791630B2 (en) Liquid crystal display devices having pixel and transparent conductive electrodes contacting drain electrodes and methods of fabricating related liquid crystal display devices
US7940359B2 (en) Liquid crystal display comprising a dielectric layer having a first opening surrounding a patterned structure and exposing a portion of a first pixel electrode and a second pixel electrode formed on the dielectric layer
JP2001183666A (en) Liquid crystal display device
US7388639B2 (en) In-plane switching mode liquid crystal display device having multi-domains
US8334958B2 (en) Liquid crystal display and thin film transistor array panel therefor
US20020118330A1 (en) Array substrate for in-plane switching mode liquid crystal display device and manufacturing method thereof
US20080001883A1 (en) Liquid Crystal Display Device and Method for Fabricating the Same
US6784967B2 (en) In-plane switching LCD device having slanted corner portions
US7956944B2 (en) Liquid crystal display device having light blocking line disposed on same layer as gate line
US6583841B2 (en) In-Plane switching LCD panel wherein pixel electrodes and common electrodes having plurality of first tips and second tips respectively
JPH10333180A (en) Liquid crystal display device
US20080192194A1 (en) Liquid crystal display
JP3459916B2 (en) Liquid crystal display
US20020044244A1 (en) In-plane switching mode liquid crystal display device and method for manufacturing the same
KR101001948B1 (en) Multi-domain liquid crystal display device
US8098353B2 (en) Liquid crystal display with improved response speed and aperture ratio
JP4745013B2 (en) Liquid crystal display
JP2001255524A (en) Liquid crystal display element
KR20020067270A (en) Liquid crystal display device and method for fabricating the same
JP2005099855A (en) Active matrix type liquid crystal display device
JP2000310783A (en) Liquid crystal element
KR20080067858A (en) Liquid crystal display
JP2000010105A (en) Liquid crystal display element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

R150 Certificate of patent or registration of utility model

Ref document number: 3459916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees